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 In many engineering fields such as aerospace, marine, automotive and mechanical, the 

design of planar structures consisting of rectangular plates commonly requires the use of 

holes as a technological solution in fastening assemblies. The major goal of this research 

is to examine the impact of stress concentration factors (SCF) in the specific case of 

planar structures, highlight their relevance as a potential source of structural failure, and 

compare the various techniques employed to gauge their magnitude. Particular emphasis 

will be placed on rectangular plates with holes since these plates' shape discontinuities 

alter the stress field, leading to a local increase in the stress field that, if not accurately 

predicted and analyzed at the design stage, could endanger the entire structure. For the 

studied case (rectangular plate with central hole subjected to uniform tensile field), a new 

finite element formulation based on 3-noded triangular element has been suggested to 

estimate the field variables (stress). MATLAB programming has been developed by 

considering this element. Analysis has been carried out for the same structure 

(rectangular plate) with analysis software Abaqus. Finding was compared to several 

analytical solutions published in the literature, based on Heywood, Howland, and Flynn 

formulations. Obtained results were in good agreement. 

 

Keywords: 

stress concentration factor, plate with hole 

finite element method, MATLAB programming 

 

 

 
1. INTRODUCTION 

 

The phenomena of stress concentration around geometric 

singularities that arise in structures and devices is extremely 

important. It is the main cause of crack propagation and failure 

[1]. The stress concentration area is often the site of initiation 

of fatigue cracks but can also be the origin of a sudden break 

in the case of a brittle material. The stress concentration near 

a geometric discontinuity, such as a hole, is predicted by a 

characteristic that is commonly referred to as the stress 

concentration factor (SCF) [1]. In the case of a perforated plate, 

this parameter called Kt is defined as the ratio of the maximal 

real stress σmax acting around the hole to the nominal stress 

σnom imposed at the plate border [2]. In 1898, Kirsh was the 

first to emphasize the phenomenon of stress concentration [3]. 

It was for a problem of measuring the stresses around a hole. 

Afterward, analytical solutions were progressively found and 

proposed, by different authors for structures with increasingly 

complex geometries. Several analytical and numerical types of 

researches have been carried out on the stress concentration 

phenomena. Among the early works, we can quote the famous 

contributions of Heywood [4], Howland [5], Pilkey [6], and 

Peterson [7]. Heywood, Peterson, and Pilkey have studied a 

variety of isotropic structures with several different kinds of 

holes. Howland found the answer to the problem posed by a 

rectangular plate with a hole in the center that is being loaded 

tensile. Timoshenko and Goodier (1951), have carried out a 

survey on stress concentration phenomena surrounding holes 

in the case of infinite width plates based on a classical 

approach employing a two-dimensional solution [8]. In an 

interesting work [9], Jain and Mittal studied the influence of 

hole diameter concerning plate width upon stress 

concentration factor and strain in isotropic, orthotropic, and 

laminated composite plates, under various transverse static 

loading conditions. Giare and Shabahang [10] developed a 

novel procedure to mitigate the stress concentration around the 

hole in an isotropic plate using composite patches. Zappalorto 

and Carraro proposed an engineering formula to estimate the 

stress concentration factor for orthotropic composite plates 

[11]. The study conducted by Jafari and Ardalani [12] involves 

the stress distribution surrounding regular holes infinite metal 

plates, under the assumption of a plane stress state and a 

uniaxial loading condition. The authors proposed an analytical 

solution based on Muskhelishvili complex variables. 

Nowadays, computational techniques and especially the finite 

element method are widely used to analyze the stress 

concentration phenomena for different configurations of 

structures with cutouts. The use of adapted software based on 

this method and featuring new techniques such as automatic 

generation of meshes and their refinement has considerably 

improved the accuracy of calculations. Khechai et al. [13] 

investigated the stress concentration phenomena in isotropic 

and laminated plates with inclined elliptical holes using a 

numerical model. They introduced a finite element analysis 

using two finite elements in conjunction. A linear 

isoparametric membrane element was the first finite element, 

and a high precision Hermitian element was the second. In Ref 

[14] the authors curried out an interesting experimental, 
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analytical, and finite element study of stress concentration 

factors for both isotropic and composite materials.  

In spite of the enormous technological progress in the field 

of structural assembly, the joining by screwing and riveting 

requiring the use of holes, remains unavoidable especially in 

the fields of aeronautics, space, naval and automotive industry. 

Although a great deal of research has been dedicated to the 

phenomenon of stress concentration in planar structures with 

holes, under different solicitations, it presents many 

complexities and gaps. 

This study is intended as a contribution to this work. Its 

main objective is to investigate the stress field at the edge of 

the hole of a rectangular plate loaded in tension and to analyze 

the stress concentration phenomena in case of steel rectangular 

isotropic plates with central circular hole. The application of 

the finite element approach is necessary and becomes essential 

in order to appropriately identify the resulting stress field and 

subsequently the stress concentration parameters. A finite 

element of the three-node triangular constant strain element 

has been presented in this paper. MATLAB programming has 

been developed by considering this element. The stress field 

could be precisely determined in the edge of the hole. The 

obtained results were confirmed with other results provided by 

the ABAQUS software. The agreement of the findings was 

outstanding. The second part of this work evaluates the global 

and the net stress concentration factor (SCF) by suggested 

element and Abaqus software, comparing them with some 

commonly used analytical methods. As well, the results are in 

good agreement. 

 

 

2. THEORETICAL FORMULATION 
 

The fundamental purpose of studying thin plates under 

mechanical loadings, such as pressures and uniformly 

distributed forces, is to identify the effect on the structural 

response to the loads [15]. The objective of this research is to 

investigate the distribution of stress field and stress 

concentration factor, in isotropic plates subjected to tension 

load around a circular central hole. Consider a rectangular 

isotropic thin plate with a circular central hole of diameter (d) 

and thickness (t), subjected to pure tensile stress in the 

direction of the plate's axis x (Figure 1); the plate's dimensions 

are assumed to be sufficiently large in comparison to the radius 

r, and volume forces are ignored in-plane stress. According to 

literature the analytical solution of the plane elasticity 

distribution of the stress field in polar coordinates (r, θ) [16-

19]: 
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The following transformation is used to find the relationship 

between stresses stated in polar coordinates (r,θ) and those 

expressed in the Cartesian coordinate system (x,y): 
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Figure 1. Plate with central hole under uniaxial tension field 

 

In Eq. (2) [T] represents the passage matrix: 
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This leads to the expression of the stress tensor expressed in 

the Cartesian coordinate system: 
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The SCF is defined, as the ratio of the maximum stress, σmax, 

recorded on the plate by the nominal stress, σnom, calculated in 

the hole section, according to Eq. (5). 
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σ
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max
tK =  (5) 

 

where, σmax is evaluated by numerical methods or by analytical 

approaches in the case of simple geometries. It is also 

estimated by experimental methods such as photoelasticity 

and digital image correlation. On the other hand, σnom can be 

evaluated using strength material formulas. Several formulas 

based on experimental data fitting are used to calculate the 

SCF. The author in reference [20] proposed Eq. (6) as potential 

expression for determining SCF in case of isotropic plate with 

central hole. 
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According to Heywood investigation [4], in case of finite 

rectangular isotropic plate with a central hole subjected to a 

unidirectional axial force, the SCF is given by the following 

equation: 
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Howland [5] provided the following formula for the global 

stress concentration factor Kt for an isotropic rectangular plate 

with a central circular hole under tensile stress: 
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Another manner of calculating the stress concentration 

factor is to use the average stress over the net section taking 

into account the hole. The stress concentration factor in this 

setting is referred to as the net stress concentration factor Kn, 

and it can be related to the global stress concentration factor 

Kt by using the subsequent formula [1, 5, 21]: 
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3. FINITE ELEMENT FORMULATION 
 

In this work, an isotropic three-node triangular constant 

strain element (CSE) was used. As shown in Figure 2, the 

proposed element is defined by one node at each corner. In the 

global Cartesian coordinate system, the nodes have 

coordinates (xi, yi), (xj, yj), and (xk, yk). Each node provides 

two degrees of freedom, u and v, which represent translation 

in both the global x and y directions. In the case of plane stress, 

the stress-strain relationship is given as follow: 

 
    εσ D=  (10) 

 

where, [D] is the matrix form of the Hooke’s law in a two-

dimensional space, {σ} and {ε} are stress and strain tensors, 

respectively. Explicitly: 
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𝜎xx, 𝜎yy, are the components of normal stresses and 𝜏xy the 

component of shear stress over x-y plane. For this three-node 

element, the shape functions are given as: 
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where, 
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The displacement field over the element is approximated in 

a matrix form as: 
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Knowing that: 
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The plane-strain can be derived from Eq. (5) as: 
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These relations can be written in a matrix form as: 

 
    UL=ε  (17) 

 

where, [L] is a linear differential operator. Substituting Eq. (14) 

and using (12) into Eq. (16) yields 

 
    UB=ε  (18) 

 

Knowing that total strain energy of the element is defined 

as: 
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Eq. (20) is obtained by replacing Eq. (18) into Eq. (19): 
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In Eq. (21), [B] stands for the strain-displacement matrix, 

(𝛽i, 𝛽j, 𝛽k, λi, λj, λk) represents the coefficients stated in Eq. 

(12), and A indicates the triangle element's area. Based on the 

principle of minimum potential energy, the first variation 

provides the expression of the elementary stiffness matrix and 

the vector loads as: 
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Figure 2. Three-node triangular constant strain element  

 

The stiffness matrix of the assembly is constructed after the 

element stiffness matrices and element vectors have been 

calculated in the global coordinate system. The nodal variables 

are generalized displacements, which can be translations, 

rotations, or other spatial derivatives of them. Let's denote the 

total number of elements and the nodal degree of freedom 

'nelem' and 'sdof,' respectively. sdof x sdof is the order of the 

constructed stiffness matrix [K], and P is the typical load 

vector of dimension sdof x1. Thus, the global stiffness matrix 

and the global load vector can be obtained by the following 

algebraic sum: 
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And: 
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4. DESCRIPTION OF THE PROBLEM 

 

This analysis was performed for a steel isotropic rectangular 

plate of length L=200 mm, width W=100 and thickness of 1 

mm, with a central hole of radius r=5 mm. The plate has elastic 

modulus E = 210 000 MPa, Poisson’s ratio υ = 0.33 and mass 

density  = 7800 kg/m3. One of the plate's ends is fixed, while 

the other is subjected to a unidirectional tensile load of 100 

MPa, as indicated in Figure 1. Only one quarter of the plate 

was considered to compute the stress concentration factor due 

to geometric and material symmetry. The x-axis points are 

constrained in the y direction, whereas the y-axis points are 

constrained in the x direction. When an axial force is applied 

to the plate, it creates a complex stress distribution not only in 

the localized region of the hole edge, but also in the 

surrounding zones. To accurately determine the resulting 

stress field and subsequently the stress concentration factors, 

the use of the finite element method is required and becomes 

indispensable. In this work we will provide a finite element of 

type three-node triangular constant strain element. The plate 

is descritized in several elements as presented and detailed in 

Section 5. A convergence study of the meshing has been 

conducted. The validation of the proposed element has been 

made through the confrontation of the results obtained with 

others provided by the computational code ABAQUS after the 

achievement of the simulation of the same problem with the 

identical conditions of geometry and mechanical 

characteristics of the plate object of this research. Global and 

net stress concentration factors, Kt and Kn, respectively, were 

computed for varying ratios (d/W) in range of 0.1 to 0.6, using 

several analytical approaches including Heywood, Howland, 

and Flynn formulations (Eqns. (6), (7), and (8)), and then they 

were being compared with the solutions obtained by suggested 

triangular element and ABAQUS software. The resulting 

values of Kt and Kn are summarized in Table 2.  

 

 

5. RESULTS AND DISCUSSION 

 

5.1 Validation of the proposed finite element 

 

To carry out the finite element analysis of the plate, we 

firstly used 26 elements to discretize the domain as shown in 

Figure 3. Notice that the nodes coordinates were generated 

using Abaqus Mesh module. The coordinates x and y of the 

nodes are given in the form of a matrix of dimension (nnd, 2). 

The element connectivity is given in the matrix connec(nel, 3). 

A load of 100 MPa is applied at nodes numbered 7, 6, 14 and 

5. The force was assembled into the global force vector in the 

main program. To read the data, we used a M-file. The input 

data for this case consist of: 

nnd=22; number of nodes 

nel=26; number of elements 

nne=3; number of nodes per element 

nodof=2; number of degrees of freedom per node  

 

 
 

Figure 3. Finite element discretization with 26 linear 

triangular elements 

 

ABAQUS finite element analysis software is renowned for 

its reliability and efficiency. It is indeed a capable way of 

analyzing a wide range of problems. Elasticity, fluid motion, 

heat transport and ectromagnetism are among the challenges 

that this software can address. In addition, it can also offer the 

best solutions to linear, nonlinear, explicit and dynamic 

problems. In this study numerical simulation analysis was 

carried out using ABAQUS software code to approve the 

suggested finite element results. A static general step was used 

to determine the stresses. One quarter of the plate is discretized 

into a finite number of rectangular elements. The CPS3 3-node 

linear plane stress element was employed as depicted in Figure 

4b and Figure 5b. The stress field surrounding the hole is 

provided by the computational program. It also gives the 

maximum stresses values, allowing the stress concentration 

factor (SCF) to be calculated using Eq. (5). The results are first 

displayed as they were provided by the calculation program 

performed with a coarse mesh. Figure 4(a) and Figure 5(a) 

show the iso-values of the stress field given by the calculation 

program. To validate the proposed finite element, a simulation 

under Abaqus software was performed with the same meshing 
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density. Figure 4(b) and Figure 5(b) present the same profile 

given by Abaqus. Furthermore, because the stress field near 

the hole changes rapidly, a higher mesh density with smaller 

elements is used towards the hole boundary. Nevertheless, it is 

very useful to carry out a convergence study of the mesh. We 

have chosen several mesh densities. Convergence was 

achieved with a mesh size of 1442 elements. The relative 

errors were calculated using the following equation: 

 

%100
FEM

lTheoriticaFEM
(%)e 

−
=  (26) 

 

 
(a) 

 
(b) 

 

Figure 4. Iso-stress values, in case of one quarter of thea 

plate modeled using 26 elements: a) the calculation program; 

b) Abaqus simulation 

 

Table 1. Numerical results obtained from the convergence 

study 

 
Stress Concentration Factor (SCF) 

Elements Theoretical Present Abaqus Error (%) 

10 3.000 1.333 1.333 125.056 

14 3.000 1.341 1.341 123.7147 

26 3.000 1.528 1.528 96.335 

48 3.000 1.73 1.73 73.410 

68 3.000 1.843 1.843 62.778 

104 3.000 1.979 1.979 51.593 

130 3.000 2.091 2.091 43.472 

272 3.000 2.37 2.37 26.582 

384 3.000 2.52 2.52 19.047 

436 3.000 2.561 2.561 17.141 

578 3.000 2.662 2.662 12.697 

672 3.000 2.706 2.706 10.865 

740 3.000 2.747 2.747 9.210 

846 3.000 2.783 2.783 7.797 

922 3.000 2.817 2.817 6.496 

1040 3.000 2.847 2.847 5.374 

1442 3.000 2.996 2.996 0.133 

 

The numerical results obtained from the convergence study 

are depicted in Figure 6 and Table 1. From Figure 6, one can 

see clearly the convergence obtained for the proposed finite 

element. 
 

 
(a) 

 
(b) 

 

Figure 5. Iso-stress values, in case of one quarter of the plate 

modeled using 1442 elements: a) the calculation program; b) 

Abaqus simulation 
 

 
 

Figure 6. Convergence study 

  

5.2 Stress concentration analysis 

 

Numerical analysis was conducted using the FEM 

ABAQUS package [22] and the proposed finite element to 

validate the analytical findings. Figure 4 and Figure 5 illustrate 

the FEM models that were used. The finite element mesh is 

refined around the holes in both numerical cases. A linear 

elastic approach is employed to model the material behavior. 

For various (d/W) ratios in range of 0.1 to 0.6, global and net 

stress concentration factors for the isotropic plates with central 
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hole were calculated, using Heywood, Howland and Flynn 

formulations (Eqns. (6), (7), and (8)), in order to be compared 

with FE results. For numerical methods, in each computation 

step, global and net stress concentration factors are obtained 

by dividing maximum stress concentration extracted from 

MATLAB programming and Abaqus software, by the nominal 

and average stress according to Eq. (5) and Eq. (9). Figure 7, 

Figure 8 and Tables 2 present the main numerical results. 

Three analytical techniques, as well as FEM procedures, were 

used to compare the stresses. Maximum and stress distribution 

around the hole with d/W = 0.1 are shown in Figure 4. As the 

(d/W) ratio rises, the global stress concentration factor Kt 

values rise. For a growth in diameter, this suggests a rise in the 

stress concentration factor. The net stress concentration factor 

Kn, on the other hand, decreases when the (d/W) ratio increases, 

indicating a decrease in SCF for an increase in diameter. We 

can also notice that for the case of the global stress 

concentration factor Kt, the findings obtained by the suggested 

finite element are quite similar with the results of the 

theoretical approaches used, as shown in Figure 7 and Table 2. 

As depicted in Figure 8, when comparing the results provides 

by the proposed element to those generated by the analytical 

approaches, a substantial difference is noticed for the net stress 

concentration factor Kn when the ratio (d/W) is greater than 

0.4. This can be explained by the fact that plastic deformation 

occurs along the hole edge of a steel plate with bigger hole 

diameters (a/w greater than 0.4). However, the present FE 

analysis was performed in the context of the elastic analysis. 

Tables 1 and 2 show that the values of the stress concentration 

factor, global Kt, and net Kn generated by the MATLAB 

program based on the present element and those provided by 

Abaqus are in perfect accord. 

 

Table 2. Variation of the global and net SCF with respect to (d/W) ratio, using the proposed finite element and commonly used 

analytical approaches 

 
 Heywood (Eq.) Howland (Eq.) Flynn (Eq.) FEM present FEM Abaqus 

d/W Kt Kn Kt Kn Kt Kn Kt Kn Kt Kn 

0.1 3.03 2.73 3.035 2.731 3.024 2.722 2.99 2.691 2.99 2.691 

0.2 3.14 2.51 3.148 2.519 3.135 2.508 3.18 2.544 3.18 2.544 

0.3 3.35 2.34 3.367 2.357 3.355 2.349 3.38 2.366 3.38 2.366 

0.4 3.69 2.22 3.732 2.239 3.726 2.235 3.74 2.244 3.74 2.244 

0.5 4.25 2.13 4.314 2.157 4.317 2.158 4.33 2.165 4.33 2.165 

0.6 5.16 2.06 5.255 2.102 5.272 2.109 5.29 2.116 5.29 2.116 

0.7 6.76 2.03 6.889 2.066 6.925 2.077 6.92 2.076 6.92 2.076 
 

  
  

Figure 7. Evolution of the global stress concentration factor 

Kt, with respect to (W/d) ratio 

Figure 8. Evolution of the net stress concentration factor Kn, 

with respect to (W/d) ratio 
 

 

6. CONCLUSIONS 

 

In this research, a triangular three-node constant strain 

element was suggested to compute the stress concentration 

factor (SCF) for a thin rectangular steel plate subjected to a 

tensile field. A comparison between the values of the global 

stress concentration coefficients (Kt) and net (Kn) generated 

by a MATLAB computational program based on the proposed 

finite element, by a simulation under Abaqus software and by 

commonly used analytical solutions has been carried out. The 

following findings can be inferred: 

- As it can be seen from the finding, the agreement 

between results obtained with Heywood, Howland 

and Flynn formulations and both proposed finite 

element and ABAQUS simulation, for the studied 

plate. 

- The global stress concentration factor Kt values climb 

as the (d/W) ratio rises. This indicates an increase in 

the stress concentration factor for a diameter increase. 

When the (d/W) ratio grows, the net stress 

concentration factor Kn drops, suggesting a decrease 

in SCF for an increase in diameter. 

- For the global stress concentration factor Kt, the 

findings obtained by the suggested finite element are 

very similar to the results of the theoretical 

approaches employed and the simulation using 
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Abaqus. 

- When the ratio (d/W) is greater than 0.4, there is a

significant discrepancy between the findings

supplied by the suggested element and those

generated by analytical approaches for the net stress

concentration factor Kn. This outcome can be

attributed to the fact that plastic deformation occurs

along the hole edge of the steel plate with larger hole

diameters ((a/w) greater than 0.4).

- The values of the stress concentration factor, global

Kt, and net Kn supplied by the MATLAB software

based on the current element match perfectly with

those provided by Abaqus.

- This work has shown the robustness, efficiency and

accuracy of the proposed finite element in capturing

stress concentration around holes in case of steel

perforated rectangular plates.

- This study confirmed the potential choice of the

CPS3 3-node linear plane stress element embedded in

Abaqus for the study and capture of stress

concentration phenomena in planar holey structures.

- This study concerns and deals mainly with the case

of isotropic plates. The results are not applicable to

the case of composite plates. The chosen finite

element can be improved and extended to this case in

future studies.
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