
Performance Evaluation of E-Voting Based on Hyperledger Fabric Blockchain Platform

Shatha H. Saeed1*, Suha M. Hadi1, Ali H. Hamad2

1 Commission for Computers and Informatics, Informatics Institute for Postgraduate Studies, Baghdad 10001, Iraq
2 Department of Information and Communication Engineering, University of Baghdad, Baghdad 10071, Iraq

Corresponding Author Email: shatha.alkayal1975@gmail.com

https://doi.org/10.18280/ria.360410 ABSTRACT

Received: 24 June 2022

Accepted: 2 August 2022

Permissioned blockchain platforms have become more prevalent in a wide range of

applications. These, such as hyperledger fabric platforms, are sensitive to latency and

throughput. In this work, the E-voting case study adopts a hyperledger fabric platform

where performance evaluation has been studied in terms of scalability, latency, throughput,

CPU usage, and memory allocation. Three scenarios were performed with varying

transaction rates, block size, and organizations. Another two scenarios were performed, first

with varying block timeout and second, measuring the impact of CPUs and memory

allocation on the proposed fabric’s entities (peers, orderer, couchDB, chaincode, etc.). The

result shows that an increase in block size will significantly affect metrics such as latency

and throughput. Good results were obtained with high transaction send rates on large block

size. Similarly, low performance is obtained using a small block size with increased send

rates. Also, it was noticed that increasing the number of organizations will increase latency

and decrease the throughput. Therefore, in applications with a large number of concurrent

transactions, to maintain high throughput, block timeouts and block size should be large.

On The other hand, the number of CPUs and amount of memory allocation would impact

hyperledger fabric performance.

Keywords:

blockchain, hyperledger fabric, hyperledger

caliper, performance evaluation

1. INTRODUCTION

A lot of data is generated and exchanged extremely fast in

our daily lives. Therefore, platforms for data storage and

exchange securely and reliably are necessary to manipulate

this data. Usually, a third party entity controls and centralizes

information transfer; for example a transaction in financial

occurs between different entities, and a credit card service

provider plays an important role in completing the transaction.

Also, a fee is imposed by these providers for this trusted

service [1]. Trust and intermediaries are the biggest problems

facing data transfer; blockchain technology can overcome

these issues where a decentralized and distributed ledger of

encrypted transactions is used. Every single node within the

blockchain network holds a copy of the database stored in

blocks connected chronologically to form a chain of blocks.

Blockchain technology is a distributed database structure that

stores transactions where all nodes in the network must agree

on the transactions and their order [2].

Each block in a blockchain is assigned a unique identity

(hash) derived from the data included in that block and the

hash of the block that preceded it. This enables the discovery

of any modification to a block of data, as the modification will

change the block's hash and the hashes of all subsequent

blocks. The genesis block is the initial block in a blockchain

and does not contain a hash of any prior blocks. All blocks

may be verified by tracing them back to the genesis block.

Once executed, a new transaction is broadcast to the whole

blockchain network. Nodes known as block miners receive the

transaction and confirm its authenticity by validating the

signature. The authenticated transaction is then mined into

blocks that are securely encrypted. For a block miner to

generate a block, the consensus problem must be solved via

distribution. Any miner that solves the consensus problem

broadcasts the newly created block to the entire network.

When a new block is received, miners who have not solved the

consensus problem add it to their local chains because the

transaction has been validated and the block includes the

solution to the consensus problem. There are several

consensus algorithms, however, the following are the most

prevalent: proof-of-work, proof-of-stake, and practical-

byzantine-fault-tolerance [3].

Two types of blockchain technology have been introduced

which are permission and permissionless. This classification

is determined by the node's capability to access or add a new

block in the network. Although these platforms have some

similar characteristics, their differences could affect

requirements security that they fulfill. Most permissionless

blockchain platform uses Proof of Work (PoW) for consensus

which is computationally expensive and unsuitable for many

applications that handle large of transaction. In a

permissionless platform, permission is not required by a node

to join a network, however, additional layers of privacy and

control are needed for accessing and performing read/write

ledger operations. Some examples of this type of platform are

Bitcoin, and Ethereum [4, 5].

In permission blockchain platforms additional layers of

security are provided, such as access control layer to handle

permissions for specific operations by authorized nodes.

Platforms such as Corda, Fabric, Multichain, and Quorum are

permissioned blockchain. Hyperledger fabric is an open

source that uses permissioned Distributed Ledger Technology

Revue d'Intelligence Artificielle
Vol. 36, No. 4, August, 2022, pp. 581-587

Journal homepage: http://iieta.org/journals/ria

581

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360410&domain=pdf

(DLT) designed for enterprise usage, which comprises a

number of features that distinguish it from other popular

distributed ledger platforms. In addition to having a highly

modular and configurable architecture, fabric allows for

innovation, versatility, and optimization across various

industries including finance, banking, healthcare, human

resources, and insurance. Smart contracts can be created on

Fabric using general purpose programming languages

including Java, Go, or Node.js, where fabric is the first

platform that support these languages. Pluggable consensus

protocols are one of the platform's most important

differentiators, enabling it to be tailored to specific use cases

and trust models, through its modular design, the platform can

rely on well-established tools for Crash Fault Tolerant(CFT)

or Byzantine Fault Tolerant(BFT) ordering. By leveraging

consensus protocols over native cryptocurrencies, fabric can

reduce mining costs or fuel smart contract execution without

needing a native cryptocurrency [6]. Inspite of the many

advantages of blockchain technology, it faces some challenges

such as performance, privacy, and scalability. Performance is

the main challenge in blockchain implementations, where the

challenges included latency, throughput, bandwidth, size,

versioning, wasted resources, hard forks, and usability. These

challenges such as scalability, throughput, and latency have

not been evaluated extensively. Evaluation is also required

based on the number of peers, channels, organizations, nods,

and transactions [7, 8].

In this paper, performance evaluation of using hyperledger

fabric platform by measuring some metrics including average

latency, throughput, and scalability modification such as block

size, block timeout, number of endorser peers, and a number

of organizations. Additionally, CPU percentage usage and

memory allocation were evaluated to analyze the performance

fabric’s entities such as (chaincode, peers, orderer, etc). The

E-voting system based hyperledger fabric platform is

considered a case study. The hyperledger caliper benchmark

has been used for the performance evaluation of hyperledger

fabric with E-Voting. The rest of this paper is organized as

follows: Section 2, introduces a list of related work in the

performance evaluation of blockchain platforms. Section 3

discusses the background of hyperledger fabric. Section 4

proposed E-Voting system design with five scenarios

conducted. Finally, section 5 describes the conclusion.

2. RELATED WORK

Recently performance evaluation of blockchain technology

has the attention of many researchers due to its important role

in developing new algorithms. Hang et al. [9] designed a fish

farmer using a hyperledger fabric blockchain platform.

Hyperledger caliper was used for measuring different

evaluation metrics such as throughput and latency. Several

experiments were done in this work to study the relationship

between transaction send rate, latency, block size, and

throughput. Tanwar et al. [10] proposed a hyperledger fabric

for permission based electronic healthcare (HER) system,

where different performance metrics have been used to

evaluate the system such as throughput, latency, and round trip

time (RTT). Hang and Kim [11] proposed a construction

methodology based blockchain network to enhance the

hyperledger fabric performance by observing different

configurable network schemes. Kumar and Chand [12]

proposed MedHypChain which is a healthcare medical

system-based hyperledger fabric. The hyperledger caliper was

used for performance analysis in three metrics: Execution time,

latency time, and throughput. Lohachab et al. [13] proposed a

secure peer to peer(P2P), cyber physical conceptual energy

trading model with private and permissioned blockchain

platforms. Polge et al. [14] provided a comprehensive and

comparative study for different blockchain platforms (Fabric,

Quorum, Ethereum, R3 Corda, and MultiChain) with

performance, privacy, community activities, scalability, and

adoption criteria. Swathi and Venkatesan [15] introduced

permissioned blockchain to address scalability issues by

incorporating distributed machine learning techniques. Díaz-

Santiso and Fraga-Lamas [16] introduced a decentralized E-

Voting system that provides a higher level of security, cost-

efficiency, and transparency. Hyperledger fabric with smart

contracts was used to cast votes. Transaction load and latency

analysis of the proposed system were performed.

3. HYPERLEDGER FABRIC PLATFORM

The hyperledger project consists of a collection of open

source subprojects such as Iroha, Sawtooth, Fabric, Indy, and

Burro. Hyperledger fabric is a common open source

permissioned blockchain [17]. Hyperledger fabric doesn’t

have any cryptocurrency like Bitcoin and Ethereum, in this

platform access to the network is restricted to the network

members only. A ledger in the fabric is comprised of two parts,

a world state, and a blockchain. The world state is a database

that stores the current values of ledger states. In addition to

maintaining a versioned key-value store, fabric supports

CouchDB and LevelDB as state databases [18]; In the present

case study, CouchDB was used. The version number of each

key is updated each time it is written. A blockchain records all

successful and failed transactions (grouped into blocks) in a

network. Hyperledger Fabric supports smart contract creation

in general purpose languages (written in Go, Java, and NodeJs).

A chaincode is a smart contract in the fabric where all

functions that can be invoked by a transaction are defined.

Chaincodes come with endorsement policies that apply to their

linked smart contracts. An isolation mechanism called a

channel can ensure the privacy of transactions between

participants in a network. Every channel maintains its own

ledger, ensuring the transaction and data are only available to

member nodes in the channel. There are different types of

entities in a fabric network, including peer nodes, orderer

nodes, and clients that belong to different organizations. Each

of these has an identity on the network provided by the

Membership Service Provider (MSP). Certificate Authorities

(CA) create identities by generating a public and private key

pair that can be used to verify identity. Transactions are

executed and peer nodes maintain ledgers. All transactions in

the network are ordered by orderer nodes, which propose new

blocks and seek consensus. Orders are collected in an ordering

service, hyperledger fabric offers three ordering services (Solo,

Kafka, and Raft) [19]. Every peer node is a committer by

default, so it receives ordered state updates in the form of a

block of transactions from the ordering service and maintains

the ledger. When peer nodes receive a new block, they validate

the transactions, commit the changes to the local copy of the

ledger and append the block to the blockchain. Peer nodes can

endorse transactions as well, thus being called endorsers. In

order to gather endorsement proposals, the client proposes the

transaction request simultaneously to many peers. The

582

transaction is then broadcast to the orderer to be included in a

block and delivered to all peers for validation and commitment

[20]. Invoke and Query are the two types of transactions, the

invoke transaction runs the provided function with the

specified arguments. It may entail reading and updating the

state database, with success or failure as a result. The query

transaction runs the supplied function, which returns the

current state of the peer. As a result, only transactions that are

invoked change the status of the distributed ledger. Execute,

Order, and Validate are the three stages of a successful

transaction. Figure 1 illustrates the transaction flow within

hyperledger fabric.

Figure 1. Transaction flow in hyperledger fabric

In the executing stage, the client application uses the fabric

software development kit (SDK) to construct a transaction

proposal to invoke the chaincode function, which reads and

writes data to the ledger. Client credentials are used to sign the

proposal, and one or more endorsing peers simultaneously

receive it from the client. Then the peers perform a verification

process for endorsement such as transaction format,

duplication, issuer’s signature, etc. In the order stage, the

ordering service uses a consensus protocol to order

transactions received from the client. A transaction block is

generated when one of three conditions is met: block timeout,

block size, and block maxbytes. The final stage is the

validation where every peer validates the orderer’s signature

on the block, where the process is as follows: first peers

validate the orderer’s signature on the block, second signatures

are decoded and finally evaluate endorsement policy using

validation system chaincode (VSCC) that check if a sufficient

number of related endorsing peer signature, the peer then

checks the key version using Multi Version Concurrency

Control(MVCC). If VSCC and MVCC validation checks are

passed, the write sets to the world state otherwise the

validation stage is failed. Peers can notify subscribed clients

about the commit event [21].

4. PROPOSED E-VOTING SYSTEM DESIGN

Performance evaluation of hyperledger fabric using

hyperledger caliper under Linux operating system has been

proposed with E-voting case study. The proposed system

consists of client nodes (voting stations) that submit voting as

transactions to the client application (E-Voting APP) server,

fabric software application development kit(SDK) allows a

client application to interact and connect to all configured

members of the proposed fabric network. Peers’ node

(committer node and endorser node) arranged into an

organization, orderer service node, and channel represent

fabric network members. Each organization have, a certificate

authority (CA) to generate the certificates that represent

identities (key pairs), and a membership service provider

(MSP) contains a list of permissions identities. Figure 2

illustrated the architecture of the proposed system design.

Once the election’s voting period has been set to start by the

election commission authority, the registered voters could

only cast their vote during this period. Therefore, it extremely

leads to an increased number of concurrent voting transactions.

Figure 2. The architecture of the proposed E-voting system

is based on the hyperledger fabric network

Three different scenarios have been proposed: one, two, and

three organizations (two peers per organization and one

endorser peer in each organization) with two metrics to

monitor; throughput and average latency. Throughput is the

rate at which transactions are successfully processed when it

is included in a block and committed to the ledger as part of

the blockchain in transactions per second. Throughput was

given in Eq. (1), where TRT is transaction throughput, tct is

total committed transaction, tti is total time.

𝑇𝑅𝑇 =
𝑡𝑐𝑡

𝑡𝑡𝑖
 (1)

Latency could be calculated by Eq. (2), where TRL is

transaction latency, cti is transaction committing timestamp,

and sti is transaction submission timestamp.

𝑇𝑅𝐿 = 𝑐𝑡𝑖 − 𝑠𝑡𝑖 (2)

The committing timestamp is the time when a transaction is

committed to the ledger. While the average latency is the

average of the total transaction latency. Average latency was

given in Eq. (3), where ATL is average transaction latency, ttl

is total transactions latency, and tct is the total committed

transaction.

𝐴𝑇𝐿 =
𝑡𝑡𝑙

𝑡𝑐𝑡
 (3)

To measure the different impacts on the performance

metrics, five incoming transaction rates ranging from (50 tps,

100 tps, 150 tps, 200 tps, and 250 tps), have been considered.

The transactions are sent in parallel and generated by an

application were multiple client nodes issue transactions

simultaneously. The required load is generated by all

transactions. For every transaction, each node will issue 1000

transactions. The network will then validate the transactions

and append new blocks to the blockchain. Then, the fabric

583

network is scaled to multiple numbers of endorsement peers

and organizations. Additionally, the varying block sizes

specifically (10, 50, 100, 150, and 200) transactions per block

have been tested for each scenario. Algorithm .1 shows the

sequence of voting transactions.

Algorithm 1: Voting transaction
1 Input: VoteID , VoterID, candidateID

Start:

2 Voter registration process

3 If Start (voting time) {

4 Voter submits transaction

5 Transaction request forward to endorsing peers

6 Start endorsing peers simulate execution phase

7 If !has-voted(VoteID) AND vote-time!= end {

8 . endorser’s signature=True

9 else

10 transaction= False

11 }

12 Forward vote with endorser’s signature to

 orderer service

13 Start ordering phase{

14 voting transaction packed in block

15 Broadcast block to all peers

16 }

17 Start peer validate phase {

18 If (VSCC) and (MVCC) {

19 Vote transaction commit in the world state

20 else

21 Committing to the world state failed

22 }

23 }

24 Send a notification message to voter

25 End.

Three scenarios have been proposed: one, two, and three

organizations, for each scenario (two peers per organization

and one endorser peer in each organization). Each time block

size is increased, five rounds (round is an array of objects, each

describing the setting of a round) are run. Every round set with

1000 transactions on a fixed send rate (50 tps, 100 tps, 150 tps,

200 tps, and 250 tps). In these scenarios (2sec) block timeout

is specified. Performance evaluation could help to measure the

impact of scaling the organization and peers when varying

block size, Table 1 illustrate basic configuration parameters.

Table 1. Basic configuration parameters

Parameter Configuration

Round
5 rounds (each round set with one specific

send rate)

Transactions 1000 transactions per round

Transaction

mode
Read, Write (Vote)

Send Rate (50,100,150,200,250) tps

Block Size (10.50,100,150,200) transactions per block

Block

TimeOut
2 sec

i. One organization scenario

In this scenario, performance evaluation of varying block

size and transaction send rate has been tested. Figure 3(a)

shows the transaction throughput, where it is increased when

increasing in block size up to 100 transactions per block, the

highest throughput obtained was about (106 tps). While the

block size increased (150 and 200) transactions per block, it is

noted that the throughput slightly starts to decrease. Figure 3(b)

shows that the average latency, where it is decreases when

increasing in the block size up to 100 transactions per block.

When the block size increases to (150 and 200) transactions

per block, average latency starts to increase slightly. This

implies that this specific test environment when increasing

block size higher than 100 transactions per block does not have

a significant impact on performance. Furthermore, better

average latency and performance were noted for small send

rates, like 50 transactions per second, when using smaller

block sizes, such as 10 transactions per block, so increasing

block sizes did not greatly impact performance, but it was still

noticeable.

(a)

(b)

(c)

(d)

584

(e)

(f)

Figure 3. The results of varying block size experiments

ii. Two organizations scenario

According to this scenario, a study of the performance

evaluation of varying block size and transaction send rate has

been tested. Figure 3(c) shows that the transaction throughput

increased when increasing in block size up to 100 transactions

per block, where (61 tps) was the highest throughput obtained.

While when the block size increased to (150 and 200)

transactions per block, the throughput is slightly decreased.

Figure 3(d) shows that the average latency decreases when

increasing in the block size up to 100 transactions per block,

the growth in latency was slightly higher when block size

increases to (150 and 200). The results indicate that increasing

block size to higher than 100 transactions per block does not

have a significant impact on performance. Better performance

and latency were observed for small send rates, like 50 tps,

when using a smaller block size like 50 transactions per block,

so increasing the block size did not affect performance that

much, even so, it is still noticeable.

iii. Three organizations scenario

Based on this scenario, performance evaluation of varying

block size and transaction send rate has been tested. Figure 3(e)

shows that increased transaction throughput when increasing

in block size up to 100 transactions per block, the highest

throughput obtained was (40.3 tps). During the block size

increased by (150 and 200) transactions per block, the

throughput of each block size started to slightly decreased.

Figure 3(f) shows that the transaction average latency

decreases when increasing in block size up to 100 transactions

per block, while average latency growth slightly increases by

increasing block size to (150 and 200) transactions per block.

Another observation was found, for a small send rate like (50

tps) was better throughput and latency with a smaller block

size like 50 transactions per block, which means increasing the

block size had a small effect on performance, but the

difference is quite small.

iv. Two organizations with varying block timeout scenario

Another scenario has been conducted when varying block

timeout (5sec, 2sec, 0.5ses, and 0.25sec, 0.1sec) to evaluate

the performance of the proposed fabric network consisting of

two organizations and two peers (one endorser peer in each

organization) per organization and fixed block size to 100

transactions per block. The impact of varying block timeout

on performance over different transaction send rate were

evaluated. Table 2. shows the network configuration

parameters of the caliper used to perform this scenario. Two

organizations with two peers (one endorser in each

organization) per organization configured a network scenario

with a fixed block size (100 transactions per block) was

selected for the following reasons:

·Despite one organization with two peers (one endorser in

each organization) scenario obtained the best performance as

discussed in scenario (i), but it’s not suitable due to have a

single endorser peer, so any fail on it leads to rejecting all

transaction proposal and stop the transaction workflow.

·Three organization with two peers (one endorser in each

organization) scenario among other scenario obtained the

worst performance as discussed in scenario (iii), despite it has

three endorser peers distributed over three organizations and

any endorser peer’s failure does not effect on transactions

workflow, but it’s latency increases when the number of

parallel transactions increases, this because when increase

endorsers, the client waits for endorsers response before

sending transactions to the orderer.

·Block size (100 transactions per block) was fixed for this

scenario because it obtained the highest throughput and lowest

latency among all the previous three scenarios.

Table 2. Network configuration with varied block timeout

measurement

Parameter Configuration

Round 5 rounds

Network size
2Org 2Peer(one each organization’s peer as an

endorser peer)

Transactions 1000 transactions per round

Transaction

mode
Read, Write (Vote)

Send Rate (50,100,150,200,250) tps

Block size (100) transactions per block

Block Timeout 5sec, 2sec, 0.5sec, 0.25sec, 0.1sec

Figure 4(a) shows that the throughput increases when

increasing block timeout. For 5sec block timeout the highest

throughput obtained was (97 tps). While when the block

timeout decreased to (2 sec, 0.5 sec, 0.25 sec, and 0.1 sec), the

throughput of each case is slightly decreased. Figure 4(b)

shows that the re transaction average latency decreases when

increase the block timeout, the highest latency dose not

reached (2 sec) when block timeout was (5 sec), while the

highest latency reached was (10 sec, 11 sec, 12 sec, 13 sec)

when decreased block timeout to (2 sec, 0.5sec, 0.25 sec, and

0.1 sec) respectively. A decreasing in block timeout implies

cutting the block before it reached a specific capacity. These

results indicate that the increasing of block timeout has the

better performance when increasing block sizes.

v. The impact of CPU usage and memory allocation on

performance

In this scenario Two organizations with two peers (one

endorser in each organization) per organization configured a

network scenario with a fixed block size (100 transactions per

585

block) was selected for the same reasons discuses in scenario

(iv). Also block timeout was fixed to (2 Sec). To evaluate the

impact of CPU usage and memory allocation on proposed

network performance. Figure 5(a) shows that the CPU usage

will be high by couchDB0 and couchDb2 followed by

peer0.Org, peer0.Org2, chaincode.peer0.Org1,and

chaincode.peer0.Org2. This indicate that execution and

validation stage consume high CPU than other stage. Figure 5

(b) shows the memory allocation will be high in peer0.Org1,

and peer0.Org2(which are endorsing and committing peers)

followed by peer1.Org1, and peer1.Org2 which are

committing peers).

(a)

(b)

Figure 4. The results of the varying block timeout

experiment

(a)

(b)

Figure 5. The CPU usage and memory allocation by

Hyperledger Fabric’s entities

5. CONCLUSIONS

This paper discusses the effect of the E-Voting workload on

the performance of the hyperledger fabric blockchain platform

in terms of latency, scalability, and throughput. Several

scenarios were performed by varying transaction send rates

(tps), block size, block timeout, and the number of

organizations. In summary, the blockchain network depends

on network design, smart contract complexity/operations, and

hardware configuration. So, in more detail, the following

conclusions were reached:

(1) Increase block size significantly affects the performance

of the blockchain network, particularly in latency and

throughput.

(2) The type of transactions (i.e. invoke or query transaction)

affects the network latency due to complexity and the number

of operations involved.

(3) Latency increases with the increase in number of

organizations.

(4) Good results were obtained with high transaction send

rates on large block size. Similarly, low performance is

obtained when using a small block size with increasing in send

rates.

(5) At low transaction arrival rates, a low block size is

preferable, so that the ordering service does not have to wait

for a long time until enough transactions have arrived for a

block to be created. However, as the transaction arrival rate

increases, this delay becomes less significant.

(6) In applications with a large number of concurrent

transactions, block timeouts and size should be large to

maintain high throughput.

(7) The number of CPUs and amount of memory

significantly affect hyperledger fabric performance.

ACKNOWLEDGMENT

This work is supported by the Informatics Institute for

Postgraduate Studies, Commission for Computers and

Informatics.

REFERENCES

[1] Dabbagh, M., Choo, K.K.R., Beheshti, A., Tahir, M.,

Safa, N.S. (2021). A survey of empirical performance

evaluation of permissioned blockchain platforms:

Challenges and opportunities. Computers & Security,

100: 102078.

http://dx.doi.org/10.1016/j.cose.2020.102078

[2] Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B.C.,

Wang, J. (2018). Untangling blockchain: A data

processing view of blockchain systems. IEEE

Transactions on Knowledge and Data Engineering, 30(7):

1366-1385.

http://dx.doi.org/10.1109/TKDE.2017.2781227

[3] Androulaki, E., Barger, A., Bortnikov, V., et al. (2018).

Hyperledger fabric: A distributed operating system for

permissioned blockchains. In Proceedings of the

Thirteenth Eurosys Conference, pp. 1-15.

https://doi.org/10.1145/3190508.3190538

[4] Nasir, Q., Qasse, I.A., Abu Talib, M., Nassif, A.B. (2018).

Performance analysis of Hyperledger fabric platforms.

Security and Communication Networks, 2018: 3976093.

586

http://dx.doi.org/10.1016/j.cose.2020.102078
http://dx.doi.org/10.1109/TKDE.2017.2781227

http://dx.doi.org/10.1155/2018/3976093

[5] Khan, D., Jung, L.T., Hashmani, M.A., Cheong, M.K.

(2022). Empirical performance analysis of Hyperledger

LTS for small and medium enterprises. Sensors, 22(3):

915. https://doi.org/10.3390/s22030915

[6] Berendea, N., Mercier, H., Onica, E., Riviere, E. (2020).

Fair and efficient gossip in Hyperledger fabric. In 2020

IEEE 40th International Conference on Distributed

Computing Systems (ICDCS), pp. 190-200.

http://dx.doi.org/10.1109/ICDCS47774.2020.00027

[7] Kuzlu, M., Pipattanasomporn, M., Gurses, L., Rahman,

S. (2019). Performance analysis of a Hyperledger fabric

blockchain framework: Throughput, latency and

scalability. In 2019 IEEE International Conference on

Blockchain (Blockchain), Atlanta, GA, USA, pp. 536-

540. http://dx.doi.org/10.1109/Blockchain.2019.00003

[8] Hyperledger Caliper Architecture. Available online

https://hyperledger.github.io/caliper/v0.3.2/architecture/,

accessed on 27 May 2022.

[9] Hang, L., Ullah, I., Kim, D.H. (2020). A secure fish farm

platform based on blockchain for agriculture data

integrity. Computers and Electronics in Agriculture, 170:

105251.

http://dx.doi.org/10.1016/j.compag.2020.105251

[10] Tanwar, S., Parekh, K., Evans, R. (2020). Blockchain-

based electronic healthcare record system for healthcare

4.0 applications. Journal of Information Security and

Applications, 50: 102407.

http://dx.doi.org/10.1016/j.jisa.2019.102407

[11] Hang, L., Kim, D.H. (2021). Optimal blockchain

network construction methodology based on analysis of

configurable components for enhancing hyperledger

fabric performance. Blockchain: Research and

Applications, 2(1): 100009.

http://dx.doi.org/10.1016/j.bcra.2021.100009

[12] Kumar, M., Chand, S. (2021). MedHypChain: A patient-

centered interoperability Hyperledger-based medical

healthcare system: Regulation in COVID-19 pandemic.

Journal of Network and Computer Applications, 179:

102975. http://dx.doi.org/10.1016/j.jnca.2021.102975

[13] Lohachab, A., Garg, S., Kang, B.H., Amin, M.B. (2021).

Performance evaluation of Hyperledger Fabric-enabled

framework for pervasive peer-to-peer energy trading in

smart Cyber–Physical Systems. Future Generation

Computer Systems, 118: 392-416.

http://dx.doi.org/10.1016/j.future.2021.01.023

[14] Polge, J., Robert, J., Le Traon, Y. (2021). Permissioned

blockchain frameworks in the industry: A comparison.

ICT Express, 7(2): 229-233.

http://dx.doi.org/10.1016/j.icte.2020.09.002

[15] Swathi, P., Venkatesan, M. (2021). Scalability

improvement and analysis of permissioned-blockchain.

ICT Express, 7(3): 283-289.

http://dx.doi.org/10.1016/j.icte.2021.08.015

[16] Díaz-Santiso, J., Fraga-Lamas, P. (2021). E-Voting

system using Hyperledger fabric blockchain and smart

contracts. Engineering Proceedings, 7(1): 11.

https://doi.org/10.3390/engproc2021007011

[17] The Linux Foundation Project. Available online:

https://www.hyperledger.org, accessed on 27 May 2022.

[18] Chacko, J.A., Mayer, R., Jacobsen, H.A. (2021). Why do

my blockchain transactions fail? A study of Hyperledger

fabric. In Proceedings of the 2021 International

Conference on Management of Data, pp. 221-234.

http://dx.doi.org/10.1145/3448016.3452823

[19] Shalaby, S., Abdellatif, A.A., Al-Ali, A., Mohamed, A.,

Erbad, A., Guizani, M. (2020). Performance evaluation

of Hyperledger fabric. In 2020 IEEE International

Conference on Informatics, IoT, and Enabling

Technologies (ICIoT), pp. 608-613.

http://dx.doi.org/10.1109/ICIoT48696.2020.9089614

[20] Thakkar, P., Nathan, S., Viswanathan, B. (2018).

Performance benchmarking and optimizing hyperledger

fabric blockchain platform. In 2018 IEEE 26th

International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication

Systems (MASCOTS), pp. 264-276.

http://dx.doi.org/10.1109/MASCOTS.2018.00034

[21] Sukhwani, H., Wang, N., Trivedi, K.S., Rindos, A.

(2018). Performance modeling of Hyperledger fabric

(permissioned blockchain network). In 2018 IEEE 17th

International Symposium on Network Computing and

Applications (NCA), pp. 1-8.

http://dx.doi.org/10.1109/NCA.2018.8548070

587

http://dx.doi.org/10.1155/2018/3976093
http://dx.doi.org/10.1109/ICDCS47774.2020.00027
http://dx.doi.org/10.1109/Blockchain.2019.00003
http://dx.doi.org/10.1016/j.compag.2020.105251
http://dx.doi.org/10.1016/j.jisa.2019.102407
http://dx.doi.org/10.1016/j.bcra.2021.100009
http://dx.doi.org/10.1016/j.jnca.2021.102975
http://dx.doi.org/10.1016/j.future.2021.01.023
http://dx.doi.org/10.1016/j.icte.2020.09.002
http://dx.doi.org/10.1145/3448016.3452823
http://dx.doi.org/10.1109/ICIoT48696.2020.9089614
http://dx.doi.org/10.1109/MASCOTS.2018.00034
http://dx.doi.org/10.1109/NCA.2018.8548070

