
A Novel Sobel Edge Detection Accelerator Based on Reconfigurable Architecture

Li Xu*, Dechun Zheng

School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China

Corresponding Author Email: xuli@nbut.edu.cn

https://doi.org/10.18280/ts.390436 ABSTRACT

Received: 5 May 2022

Accepted: 25 July 2022

A novel Sobel edge detection accelerator based on reconfigurable architecture is proposed

to solve the problem of low power-to-performance ratio of traditional Sobel edge detection

algorithm in CPU processing. The accelerator adopts pixel level fine grain image data

parallel processing and row buffer storage architecture to improve the processing efficiency

of edge detection. At the same time, a reconfigurable architecture based on FPGA is built.

Through experiments, it can be found that the acceleration effect of the edge detection

accelerator on video data is superior to that of the CPU software. Compared with similar

accelerators, the acceleration performance of the novel accelerators improves by 10%. The

results show that the proposed edge detection accelerator can be used in embedded systems

to provide edge detection processing capability with high performance power consumption

ratio.

Keywords:

reconfigurable architecture, Sobel edge

detection, accelerator

1. INTRODUCTION

The edge is the collection of all pixels in the image area

where the gray level changes suddenly, containing a large

number of effective parameters of the image. Image edge

detection is usually used as a preprocessing step for image

analysis and understanding, and the purpose of image

segmentation is achieved by extracting the boundary lines of

different regions. In the fields of image feature extraction,

target recognition and tracking, image edge detection plays an

important role. Edge detection methods can be divided into

spatial domain detection and transform domain detection. The

commonly used Robert, Prewit, LOG, Canny, Sobel and other

algorithms all belong to spatial detection [1]. Among them,

Robert and Prewit have low edge positioning accuracy. LOG

operators cannot identify the direction of edges and are

sensitive to noise. Canny operators have superior functions but

are complex to implement [2]. It is difficult to use them in real-

time hardware systems. Although traditional Sobel algorithms

need to manually specify detection thresholds, they have the

advantages of simple detection principle and easy hardware

implementation.

With the increasing complexity of the algorithm and the

amount of data, the reconfigurable system based on FPGA

uses a reconfigurable structure to implement the edge

detection algorithm [3], which can meet the requirements of

big data, high speed and high stability. And the

implementation of Sobel edge detection algorithm with

reconfigurable system can improve the processing speed [4],

so that the operation of Sobel algorithm is no longer the

bottleneck of the whole system efficiency, and the algorithm

can be applied to the local computing environment with high

real-time requirements. In addition, in some applications with

high security and confidentiality, such as radar monitoring [5]

and remote sensing identification [6], the application of

reconfigurable architecture to build special embedded chips

can also improve system security and reduce system power

consumption.

Therefore, in recent years, a lot of related work has been

devoted to the research of edge detection accelerator based on

reconfigurable architecture. Menaka et al. [7-10] designed a

high-speed and low-power edge detection accelerator.

However, during system verification, some images are stored

in memory in advance, others are transferred from the upper

computer to the system for edge extraction, and some do not

use actual images. At the same time, the detection only aims

at the image without optimizing the video. In addition, in order

to effectively implement edge detection, the algorithm

becomes more and more complex, which is a huge challenge

to the edge detection accelerator with reconfigurable

architecture. Jiang et al. [11-15] put forward sequence stream

processor and pipeline processing method to build the edge

detection accelerator based on reconfigurable architecture

with the purpose of simplifying computing components and

improving parallelism, and achieved certain results. However,

these systems did not optimize the architecture for video

streams, nor did they consider the parallel acceleration of

memory in the reconfigurable architecture, but only achieved

processing efficiency by improving the performance of

computing components.

In the method proposed in this paper, firstly, RGB video

frame data is converted into gray scale. Then, according to the

characteristics of video frame data and Sobel algorithm, the

image is parallelized with pixel level fine granularity. And

according to the characteristics of pixel level fine granularity

data, the row buffer storage architecture is designed. Finally,

Sobel edge detection accelerator based on reconfigurable

architecture is designed to accelerate the processing capability

of edge detection.

2. SOBEL ALGORITHM

The common method for edge detection is image gradient

Traitement du Signal
Vol. 39, No. 4, August, 2022, pp. 1421-1427

Journal homepage: http://iieta.org/journals/ts

1421

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.390436&domain=pdf

value detection, which uses discrete differential operators to

calculate the approximate gradient of pixel gray level for the

pixel points in the image edge area. The greater the gradient

value is, the higher the possibility of edge is. This algorithm is

called gradient calculation method, also known as Sobel

algorithm. For a digital image, the gradient vector at a pixel

point can represent that the directional derivative at the point

gets the maximum value along the direction, as shown in

Formula (1), that is, the image changes fastest along the

gradient direction at the point, that is, the so-called edge. The

gradient is the sum of X direction (horizontal) and Y direction

(vertical), and the continuous form of X direction of gradient

at a point is shown in Eq. (2). The same is true for the Y

direction. In the discrete system, the differential is

approximated by subtracting the previous result from the

current one.

grad (x,y) (,) { , }
f f

f f x y
x y

 
=  =

 
 (1)

0

(,) (,)
lim
x

f f x x y f x y

x x →

 +  −
=

 
 (2)

The core of Sobel algorithm is two 3*3 anisotropic gradient

matrices: X and Y, namely Sobel operator. X is used to

calculate the horizontal gradient and Y is used to calculate the

vertical gradient, as shown in Figure 1 and Figure 2. The

matrix is obtained by weighting the gradient in four directions

including horizontal, vertical and two diagonals [5].

Sobel algorithm conducts convolution operation between

image pixel value and Sobel operator [16], and obtains the

gradient value of image gray level using difference calculation

method. According to the gradient value, it can be judged

whether the pixel point is a boundary. The operator in X

direction and Y direction is convolved with the matrix to

obtain the corresponding result, and then the gradient value is

obtained through the gradient calculation formula of the image

gray function. Finally, the edge information is determined by

the threshold operation. It is assumed that A is the 3*3 gray

matrix of the image to be detected. Let the X direction and Y

direction operators conduct convolution operation with A

matrix, and the results obtained are represented by Gx and Gy,

as shown in the following Eqns. (3) and (4).

1 0 1 1

2 0 2 * [-1 0 1]* 2 *

1 0 1 1

xG A A

−   
   

= − =
   
   −   

 (3)

y

1 2 1 1

0 0 0 * [1 2 1]* 0 *

1 2 1 -1

G A A

− − −   
   

= =
   
      

 (4)

According to the gradient templates (a) and (b) in Figure 2,

they are convolved with the pixels of the image, and the

formula is as follows:

G (1 2* 2 3) (7 2* 8 9)x z z z z z z= + + − + + (5)

G (3 2* 6 9) (1 2* 4 7)y z z z z z z= + + − + + (6)

Then the gradient value is obtained through the gradient

calculation formula of the image gray function. The total

gradient 𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 , which is actually simplified to the

absolute value form |𝐺| = |𝐺𝑥| + |𝐺𝑦| , and the gradient

direction 𝜃 = arctan
𝐺𝑦

𝐺𝑥
. According to the θ value, the

direction angle of the gradient change of the pixel point is

obtained, so as to determine the position of the next boundary

pixel point. The threshold operation can be used to determine

the edge information. Assuming that the threshold value is M,

if it is greater than M, the pixel is a boundary value. If it is less

than M, it is not a boundary value. Because Sobel operator

weights the influence of pixel position, it can lower down the

degree of edge blur, and has better detection effect than the

traditional Prewitt operator and Roberts operator.

Figure 1. 3*3 Area

Figure 2. Sobel operator horizontal and vertical gradient

template

3. IMPLEMENTATION OF EDGE DETECTION

ACCELERATOR BASED ON SOBEL

3.1 Overall implementation scheme of Sobel algorithm

As shown in Figure 3, Sobel algorithm is optimized in this

paper, which is suitable for accelerator implementation

through hardware. First, the received 24 bit RGB format data

information of each pixel is converted into 8-bit gray image,

and the gray images are stored in Cache. At the same time,

according to the properties of two-dimensional convolution,

the convolution window is slid to accumulate the index values

below the current row. The offset value of the convolution

window relative to the initial position is calculated when

convolving the 3*3 convolution window and the image in the

cache region. After the matrix multiplication is completed by

multiplying the convolution kernel and image matrix, whether

the index values of the current row and column of the pixel are

greater than or equal to 2 can be judged. The judgment of the

index value is used to carry out the zero filling processing to

ensure that the output image pixel is consistent with that of the

source image, and other data are sent into the subfunction of

the operation window to sum the multiplication result window.

The accelerator decomposes two-dimensional discrete

convolution into matrix multiplication and window

1422

summation. The two-dimensional discrete convolution

formula is shown in Formula (7), where f [x, y] refers to the

image matrix and g [x, y] refers to the operator matrix.

1 2
[,]* [,] [,] [,]

n n
f x y g x y f x y g x y

+ +

=− =−
=  

(7)

3.2 Pixel level fine grain image parallel data processing

The original data of the accelerator is the video picture

captured by the camera in real time. Each frame of the video

is an image. When the video image processing is implemented,

different granularity of processing interval can be adopted for

images to achieve different computing power. For an image or

a frame of a video, there are three different processing

granularities: from small to large, pixel level, block level, and

frame level. In order to achieve the optimal efficiency of

accelerator and the simplest design, the advantages and

disadvantages of each processing granularity are discussed and

the processing granularity is determined. In a video, a static

image is a frame, and several static images form a video.

Frame level processing is to read a whole picture or a frame of

video into memory at one time for overall calculation. Block

level processing refers to that a frame of video or an image can

be divided into several blocks, one image block is calculated

each time, and the whole image is finally processed. Pixel is

the basic unit of the image, and the pixel level processing is to

read in each pixel at one time and process them in turn.

The processing granularity in the code of traditional

software implementation algorithm is frame level processing,

which has two problems: first, low efficiency and high

resource consumption appear. When a frame of video image is

processed, the whole image needs to be read into the memory

and then calculated. The resources in the reconfigurable

hardware are very limited. When the amount of data is large,

the image stored in the memory consumes resources. In

addition, the calculation is not performed until a whole image

is read in, causing low efficiency. In fact, when the image is

read in a small part, the calculation can be performed to reduce

the waiting time. Second, the simultaneous design of signal is

complex.

Figure 3. Sobel algorithm implementation flowchart

1423

As shown in Figure 4, all video frames have three areas:

vertical blanking area, horizontal blanking area and active

video area. The converting of optical signals to electrical

signals starts from the upper left corner and moves

horizontally forward. At the same time, the scanning point

moves downward at a certain rate. When the scanning point

reaches the far right, it quickly returns to the left, generating a

horizontal blanking area in the process gap. After scanning an

image, the scanning point returns to the upper left corner from

the lower right corner of the image to start scanning the next

frame. This time interval generates a vertical blanking area

[17]. Therefore, when processing a frame of a video image, it

is necessary to avoid the horizontal and vertical blanking areas.

When it is in the active area, it is necessary to carry out the

algorithm operation of edge extraction, which is more complex.

Such processing leads to the need to increase the processing of

synchronization signals, the addition of which will lead to the

upper design.

Figure 4. Video frame area

Using block level processing granularity, we need to

consider the image blocking strategy. Since Sobel operator is

a 3*3 area, we can define the hardware only for gradient

calculation part, that is, gradient operator only acts on a 3*3

area and does not process the whole image. If hardware

modules are created in this way, additional hardware modules

are required. Before calculation, an image is divided into

several small windows in the size of 3*3, and additional

modules are added, which increases the difficulty of system

design and debugging. It can also be considered to divide a

row into a module to process data in one row at a time to

reduce processor interaction. However, Sobel operator needs

multiple rows of data for edge extraction, and complex control

mechanism synchronization signals need to be designed to

synchronize multiple rows of data.

To sum up, this paper adopts pixel level fine-grained image

data processing, which is suitable for large-scale image

processing, saves storage space, simplifies synchronization

mechanism, and improves the efficiency of edge detection.

In the design of the accelerator, the receiver converts the

RGB24 format image into 8-bit gray-scale image. The gray-

scale conversion is to facilitate the design of cache, reduce the

amount of computation, and facilitate circuit integration. A

parallel pipelining storage system is designed to accelerate the

algorithm of architecture. The gray-scale conversion process

is shown in Formula (8). RGB is the 8bit value of the red,

green and blue components of the RGB 24 format.

0.229 0.587 0.114Y R G B= + + (8)

3.3 Row buffer storage architecture

The 9 pixels required by Sobel algorithm for a calculation

are not in the same line. As shown in the left one of Figure 5,

when calculating the gradient value of F point, it is necessary

to read all the data in the row of A and E pixel points, as well

as the data in the row of I pixel point to K pixel point. The row

buffer can provide simultaneous access to multiple different

lines in a clock cycle. Therefore, the line buffer is required to

provide a cache of multiline pixels. In addition, since Sobel

operator is a 3*3 data area, a 3*3 sliding window is required

to cache the data that needs to be convolved with Sobel, in

addition to a row buffer for caching 3 rows of data.

As shown in Figure 5, this paper designs a row buffer

storage architecture that can buffer three rows of pixels. The

length is the width of the original image. The row buffer can

store three rows of complete data of the original image. First,

the pixels of ROW0 line in the original image enter ROW2

line of the line buffer in turn for caching. Since ROW0 line is

the boundary line of the image, it will not be calculated with

Sobel calculation, but will directly process the boundary

gradient and directly assign the gradient value. After the

ROW2 area of the line buffer is filled, move up to the ROW1

line of the line buffer, and the pixels of the original image

ROW1 line enter the ROW2 line of the line buffer in turn.

Since ROW1 line of the original image is a sub boundary line,

it will not be operated with Sobel operator, but directly enters

into boundary gradient processing and directly assigns

gradient values. The data of ROW1 and ROW2 in the row

buffer are moved up into ROW0 and ROW1 rows. Pixels of

ROW2 row in the original image are stored in ROW2 row of

the row buffer in turn. When the three rows of the row buffer

are full, the row buffer enters the sliding window in sequence

according to COL0, COL1... COLn columns. Finally, as

shown in Figure 6, the pixel in the sliding window is

convolved with Sobel operator to obtain the result.

Figure 5. Line cache storage structure

1424

Figure 6. Sliding window and Sobel operator convolution

After all the pixels in ROW0, ROW1, and ROW2 lines of

the line buffer are processed, the line buffer moves the pixels

upward, discarding the pixels in ROW0 line, moving the pixels

in ROW2 line into ROW1 line, moving the pixels in ROW1

line into ROW0 line, and the data in ROW3 line of the original

image will be successively cached in ROW2 line of the line

buffer. And the rest is done in the same manner, until the whole

image is processed.

4. RESULTS AND ANALYSIS

4.1 Validation test platform

The verification test platform is mainly based on Zynq-7000,

which is internally equipped with an ARM Cortex-A9

processor and FPGA [7]. Its peripheral hardware mainly

consists of HDMI interface, 7-inch IPS screen and keyboard.

The verification test platform has PS, PL and other peripheral

interfaces, such as Ethernet, HDMI, GPIO, USB, UART, etc.

The specific architecture of the verification test platform is

shown in Figure 7. The Zynq based SOC is divided into PS

end and PL end. The PS end of the system is responsible for

image acquisition, the PL end is responsible for video image

processing and display, and the AXI protocol is used for data

transmission at PL and PS ends. The PL end is equipped with

FPGA, Sobel accelerator is implemented on FPGA, and

VDMA is the video transmission module in Zynq. After the

PS end of the verification test platform conducts video capture,

the video stream is directly sent to the image processing

module at the PL end through the pin for image processing.

The overall architecture is simple and easy to implement.

Test process

The input test data is the real-time video data stream

captured by the camera. Based on the verification test platform,

Sobel algorithm can be smoothly run under 1024 * 768 (60fps)

video input. The effect of Sobel edge extraction is shown in

Figure 8, where (a) is one frame of the original video image,

and (b) is the result of edge extraction. The system has good

real-time performance when using hardware to accelerate

processing with Sobel algorithm, and video images do not

suffer from jamming and tearing.

Figure 7. Test and verification platform

Figure 8. Sobel edge detection results

4.2 Comparative experiment and analysis

The efficiency of video image edge extraction is measured

by the time of a frame processing. The shorter the time is, the

higher the efficiency of edge processing is. In order to obtain

more comprehensive results, this paper uses images with

different resolutions to verify one by one. The horizontal

comparison of Sobel edge extraction efficiency by using

hardware means that the time taken by FPGA-based edge

detection systems in different papers to detect images is

compared with that of this system. The results are shown in

Table 1.

The image edge detection systems are all based on static

images [18], and the processing time is calculated according

to the processing time of an image, while Monson et al. [19]

directly used FPGA to process video stream data without the

help of a processor. Taslimiet et al. [20] and Jiang et al. [21]

enhanced the processing capacity by improving the computing

components. However, Kumar et al. [22] uses a low efficiency

FPGA, so its processing capacity is relatively poor.

At the same time, through the analysis of experimental

results, we can see that the FPS of each method has been more

than 30, which meets the real-time requirements of the human

eye, and is one order of magnitude higher than the human eye

in terms of real-time requirements. This means that the three

algorithms all meet the video post-processing flow and the

characteristics of non-jamming. It can be seen that although

the architecture of each accelerator is different, this article still

has certain advantages in processing time.

1425

In addition, this paper also compares the performance of

hardware and software in processing different pixel images, as

shown in Table 2. The software is based on Intel i5-6300HQ

processor.

It can be seen that the efficiency of the reconfigurable

accelerator for edge detection is much higher than that of the

software. With the increase of image pixels, the time growth

rate of the software for edge detection is more obvious than

that of the hardware for edge detection. That is to say, with the

increase of image pixels, the FPGA-based acceleration effect

is more significant. High-performance CPU can achieve the

same performance as reconfigurable accelerator [23], but the

power consumption of CPU is 6 times that of FPGA. The GPU

is selected as the processing unit and the edge detection

accelerator is designed. Although the processing capacity is

slightly higher than that of CPU and FPGA, the power

consumption is higher than that of CPU [24, 25]. This further

shows that the role of the high-performance CPU or GPU in

enhancing the system performance is limited even though they

continue to improve their performance or add more multi-

cores, while the reconfigurable accelerator based on FPGA is

an ideal choice for accelerating embedded graphics and image

processing, which can meet the stringent requirements of

power consumption and resources.

Table 1. FPGA based edge detection accelerator comparison

Papers FPGA Resolution Time(ms)

[18] Xilinx Virtex-5 640*480 6.41

[19] Xilinx Virtex-7 640*480 2.58

[20] Xilinx Virtex-6 512*512 2.2

[21] Xilinx Virtex-5 512*512 2.62

[22] Xilinx xc7z020-1clg484 320*320 80.47

This paper Zynq 7000 640*480 2.03

Table 2. Hardware and software edge detection comparison

Resolution Hardware(ms) Software(ms) Acceleration ratio

640*480 2.0 12.2 6.1

1280*720 8.2 58.7 7.2

5. SUMMARY

In this paper, a novel Sobel edge detection accelerator based

on reconfigurable architecture is designed. The accelerator

uses pixel level fine grain image parallel data processing and

row buffer storage architecture to improve the processing

ability of the accelerator. Video streams with different

resolutions are input, and Sobel edge detection contrast

experiments are carried out through software and hardware,

respectively, to verify the acceleration effect of the accelerator

proposed in this paper. At the same time, comparing the

accelerator with other similar accelerators, it can be seen that

the accelerator proposed in this paper has more acceleration

advantages than similar accelerators, and can improve the

processing efficiency by 10%.

ACKNOWLEDGMENT

This research was supported by Zhejiang Provincial Natural

Science Foundation of China (Grant No.: LY19F020008) and

Zhejiang Province Commonweal Projects of China (Grant No.:

LGG19F03007).

REFERENCES

[1] Shah, B.K., Kedia, V., Raut, R., Ansari, S., Shroff, A.

(2020). Evaluation and comparative study of edge

detection techniques. IOSR Journal of Computer

Engineering, 22(5): 6-15.

[2] Gaurav, K., Ghanekar, U. (2018). Image steganography

based on Canny edge detection, dilation operator and

hybrid coding. Journal of Information Security and

Applications, 41: 41-51.

https://doi.org/10.1016/j.jisa.2018.05.001

[3] Menaka, R., Janarthanan, R., Deeba, K. (2020). FPGA

implementation of low power and high speed image edge

detection algorithm. Microprocessors and Microsystems,

75: 103053.

https://doi.org/10.1016/j.micpro.2020.103053

[4] Zhang, K., Zhang, Y., Wang, P., Tian, Y., Yang, J. (2018).

An improved sobel edge algorithm and FPGA

implementation. Procedia Computer Science, 131: 243-

248. https://doi.org/10.1016/j.procs.2018.04.209

[5] Buzzi, S., Grossi, E., Lops, M., Venturino, L. (2021).

Radar target detection aided by reconfigurable intelligent

surfaces. IEEE Signal Processing Letters, 28: 1315-1319.

https://doi.org/10.1109/LSP.2021.3089085

[6] Aziz, S.M., Hoskin, D.H., Pham, D.M., Kamruzzaman, J.

(2022). Remote reconfiguration of FPGA-based wireless

sensor nodes for flexible Internet of Things. Computers

and Electrical Engineering, 100: 107935.

https://doi.org/10.1016/j.compeleceng.2022.107935

[7] Menaka, R., Janarthanan, R., Deeba, K. (2020). FPGA

implementation of low power and high speed image edge

detection algorithm. Microprocessors and Microsystems,

75: 103053.

https://doi.org/10.1016/j.micpro.2020.103053

[8] Ravivarma, G., Gavaskar, K., Malathi, D., Asha, K.G.,

Ashok, B., Aarthi, S. (2021). Implementation of Sobel

operator based image edge detection on FPGA. Materials

Today: Proceedings, 45: 2401-2407.

https://doi.org/10.1016/j.matpr.2020.10.825

[9] Sangeetha, D., Deepa, P. (2019). FPGA implementation

of cost-effective robust Canny edge detection algorithm.

Journal of Real-Time Image Processing, 16(4): 957-970.

https://doi.org/10.1007/s11554-016-0582-2

[10] Hagara, M., Stojanović, R., Bagala, T., Kubinec, P.,

Ondráček, O. (2020). Grayscale image formats for edge

detection and for its FPGA implementation.

Microprocessors and Microsystems, 75: 103056.

https://doi.org/10.1016/j.micpro.2020.103056

[11] Wang, Y., Xie, W., Chen, H., Li, D.D.U. (2021).

Multichannel time-to-digital converters with automatic

calibration in Xilinx Zynq-7000 FPGA devices. IEEE

Transactions on Industrial Electronics, 69(9): 9634-9643.

https://doi.org/10.1109/TIE.2021.3111563

[12] Wang, P., McAllister, J. (2016). Streaming elements for

FPGA signal and image processing accelerators. IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, 24(6): 2262-2274.

https://doi.org/10.1109/TVLSI.2015.2504871

[13] Vourvoulakis, J., Kalomiros, J., Lygouras, J. (2016).

Fully pipelined FPGA-based architecture for real-time

SIFT extraction. Microprocessors and Microsystems, 40:

53-73. https://doi.org/10.1016/j.micpro.2015.11.013

[14] Amiri, M., Siddiqui, F.M., Kelly, C., Woods, R., Rafferty,

K., Bardak, B. (2017). FPGA-based soft-core processors

1426

for image processing applications. Journal of Signal

Processing Systems, 87(1): 139-156.

https://doi.org/10.1007/s11265-016-1185-7

[15] Nausheen, N., Seal, A., Khanna, P., Halder, S. (2018). A

FPGA based implementation of Sobel edge detection.

Microprocessors and Microsystems, 56: 84-91.

https://doi.org/10.1016/j.micpro.2017.10.011

[16] Han, L., Tian, Y., Qi, Q. (2020). Research on edge

detection algorithm based on improved sobel operator.

InMATEC Web of Conferences, 309: 03031.

https://doi.org/10.1051/matecconf/202030903031

[17] Vieri, C., Lee, G., Balram, N., Jung, S.H., Yang, J.Y.,

Yoon, S.Y., Kang, I.B. (2018). An 18 megapixel

4.3″1443 PPI 120 Hz OLED display for wide field of

view high acuity head mounted displays. Journal of the

Society for Information Display, 26(5): 314-324.

https://doi.org/10.1002/jsid.658

[18] Chaple, G., Daruwala, R.D. (2014). Design of Sobel

operator based image edge detection algorithm on FPGA.

In 2014 International Conference on Communication and

Signal Processing, 788-792.

https://doi.org/10.1109/ICCSP.2014.6949951

[19] Monson, J., Wirthlin, M., Hutchings, B.L. (2013).

Optimization techniques for a high level synthesis

implementation of the Sobel filter. In 2013 International

Conference on Reconfigurable Computing and FPGAs

(ReConFig), 1-6.

https://doi.org/10.1109/ReConFig.2013.6732315

[20] Taslimi, S., Faraji, R., Aghasi, A., Naji, H.R. (2020).

Adaptive edge detection technique implemented on

FPGA. Iranian Journal of Science and Technology,

Transactions of Electrical Engineering, 44(4): 1571-1582.

https://doi.org/10.1007/s40998-020-00333-5

[21] Jiang, J., Liu, C., Ling, S. (2018). An FPGA

implementation for real-time edge detection. Journal of

Real-Time Image Processing, 15(4): 787-797.

https://doi.org/10.1007/s11554-015-0521-7

[22] Kumar, V., Asati, A., Gupta, A. (2017). Hardware

implementation of a novel edge-map generation

technique for pupil detection in NIR images. Engineering

Science and Technology, an International Journal, 20(2):

694-704. https://doi.org/10.1016/j.jestch.2016.11.001

[23] Georgis, G., Lentaris, G., Reisis, D. (2019). Acceleration

techniques and evaluation on multi-core CPU, GPU and

FPGA for image processing and super-resolution.

Journal of Real-Time Image Processing, 16(4): 1207-

1234. https://doi.org/10.1007/s11554-016-0619-6

[24] Iqbal, B., Iqbal, W., Khan, N., Mahmood, A., Erradi, A.

(2020). Canny edge detection and Hough transform for

high resolution video streams using Hadoop and Spark.

Cluster Computing, 23(1): 397-408.

https://doi.org/10.1007/s10586-019-02929-x

[25] Du, C., Yuan, J., Dong, J., Li, L., Chen, M., Li, T. (2020).

GPU based parallel optimization for real time panoramic

video stitching. Pattern Recognition Letters, 133: 62-69.

https://doi.org/10.1007/s10586-019-02929-x

1427

