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Magnetic Resonance Imaging plays an important role in diagnosing the brain tumor 

accurately, but it requires the approach to enhance the magnetic resonance images to assist 

physicians in brain tumor detection and making the treatment plan precisely to reduce the 

mortality rate. Therefore, in this proposed work, a comprehensive learning-based elephant 

herding optimization technique has been introduced to select the optimal value of 

smoothness factor in Bi-Histogram Equalization with Adaptive Sigmoid Function that 

enhances the visual quality as well as the appearance of the suspicious regions in magnetic 

resonance images. Further, the enhancement performance has been evaluated by the 

enhancement quality metrics. The metrics used include mean square error, peak signal to 

noise ratio, mean absolute error, structural similarity index metric, feature similarity index 

metric, Riesz transformed based feature similarity index metric, spectral residual-based 

similarity index metric, and absolute mean brightness error. The outcomes of this proposed 

work have a remarkable impact on enhancing magnetic resonance images and providing 

visual assistance for diagnosing brain tumors. The performance of the evaluation metrics is 

verified with Friedman's mean rank test, which strongly indicates a statistical difference 

between the proposed method and state-of-the-art methods. 
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1. INTRODUCTION

A brain tumor is a cell growth that is uncontrolled in any 

brain area [1]. A total of 400000 cases of brain tumors are 

diagnosed globally every year, of which 120000 patients 

become cancerous due to late diagnosis [2]. As per the 

GLOBOCAN 2020 report, 308102 new cancerous brain tumor 

(1.6% of total cancerous tumor) cases were added in 2020, and 

251329 lost their life (2.5% overall mortality rate due to 

cancerous tumor) worldwide [3]. According to the central 

nervous system of India, around 0.005% to 0.01% of the 

population is diagnosed with brain tumors, of which 2% have 

cancerous brain tumors [4]. According to the American Brain 

Tumor Association and the World Health Organization 

(WHO), the brain tumor grading system employs a range from 

one to four grades for designating tumors as malignant or non-

cancerous [5]. According to this scale, grades I and II fall 

under non-cancerous (Benign) tumors and are slow growth 

rate tumors. Therefore, patients with grade II tumors need 

proper monitoring and regular observation to cure well on time 

before these become grade III or malignant. Grades III and IV 

are categorized as malignant tumors and are high-grade tumors 

with high growth rates [6]. The above grading plays an 

essential role in the survival of brain tumor patients that 

depends on the accurate detection of brain tumors. Medical 

imaging techniques are adopted these days to diagnose brain 

tumors. Non-invasive diagnosis methods in medical imaging 

[7], Computed Tomography (CT) [8], and Magnetic 

Resonance Imaging (MRI) are widely used in the present 

scenario. MRI gives more valuable information than CT for 

brain tumor detection and provides a tumor progress model 

during treatment [9]. MRI techniques of image modalities of 

brain tumors help experts with early diagnosis and treatment. 

The MR images may contain some noise, and this may affect 

the accurate diagnosis of brain tumors. Thus it requires 

enhancing the image quality to increase the detection accuracy 

of brain tumors. 

In this paper, an approach for enhancing the MR images is 

proposed. The Comprehensive Learning-based Elephant 

Herding Optimization technique has been proposed to 

optimize the smoothness factor of Bi-Histogram Equalization 

with Adaptive Sigmoid Function (BEASF), which gives better 

results in terms of visual inspection as well as parametric 

evaluation metrics. The enhanced images show better feature 

variance without distracting the structural similarity index 

metrics of brain tumor MR images.  

The rest of the paper is organized as follows. The existing 

work in the field of MR image enhancement is presented in 

Section 2. the material and proposed methodology are 

described in Section 3. Section 4 contains information 

regarding the database used. The output findings and the 

Friedman rank test is presented in Section 5 to examine the 

ranking of the proposed methodology. Finally, Section 6 

summaries the proposed approach and its future scope. 

2. LITERATURE REVIEW

MRI is the most extensively utilized imaging technology for 

detecting tumor cells. Different MRI techniques like T1-

weighted, T2-Weighted, and FLAIR are commonly used. 

During the imaging process, some noise also enters these 
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images, which affects the contrast of the image. So it becomes 

difficult to detect the region that has a tumor. The work of 

researchers who have adopted various strategies to enhance 

MR images is covered in this section. 

Wood and Runge proposed denoising using a sigma filter 

[10]. Xue et al. [11] proposed a method for denoising using 

wavelet thresholding. Christensen [12] proposed a technique 

for smoothening the histogram, boxcar filtering, that was 

helpful for image normalization. Weiselfeld and Warfield [13] 

used KullbackLeibler Divergence to normalize the intensities 

within an image for improved segmentation. Joshi et al. [14] 

presented a skull stripping procedure to improve the region of 

interest, allowing medical specialists to diagnose patients 

more accurately. Liu et al. [15] proposed an algorithm where 

they first applied clustering. After that, they used histogram 

normalization to increase the contrast between brain 

metastases and surrounding tissues. Rajeesh et al. [16] 

proposed a wave atom shrinkage filter for denoising and 

enhancement. Khademi et al. [17] proposed an edge-

preserving smoothing filter to remove the unused parts of MR 

images, enhance the region of interest, and increase noise 

attenuation. Rallabandi and Roy [18] proposed a stochastic 

resonator algorithm for denoising the images and gave an 

enhancement factor. Bandyopadhyay [19] presented 

histogram equalization with median filter, unsharp masking, 

thresholding, and mean filter for noise removing before 

segmentation by region growing. George and Karnan [20] 

proposed a center-weighted median filter for denoising and 

compared it with the median and weighted median filter. Birla 

and Shantaiya [21] employed a combination of blind 

convolution techniques, median filter, and Wiener filter. 

Sharma and Meghrajani [22] suggested a method for 

enhancing the contrast of low-intensity greyscale MR images 

with histogram equalization. Benson and Lajish [23] proposed 

an algorithm for skull stripping of the brain via mathematical 

morphology. Chen et al. [24] proposed a method using 

hierarchical correlation histogram analysis to automatically 

modify image contrast in three primary atrophic cell regions 

of MR images of Parkinson's disease patients. Natteshan and 

Jothi [25] suggested a method in which the image was first 

denoised with a Wiener filter. Then contrast was enhanced 

with Contrast Limited Adaptive Histogram Equalization 

(CLAHE). Integrating intuitionistic fuzzy filtering with fusion 

operators was introduced by Deng et al. [26] to improve the 

normal and abnormal structure areas. Kaur and Rani [27] 

recommended CLAHE after comparing their results with the 

other histogram equalization methods for image enhancement. 

Viswanath [28] proposed a combination of color enhancement 

by scaling and power-law transformations. They adjusted local 

background illumination, and then they applied power law 

transformation. Min and Kyu [29] introduced median and 

Wiener filters for denoising. Subramani and Veluchamy [30] 

suggested a Brightness Preserving Adaptive Fuzzy Histogram 

Equalization. Mzoughi et al. [31] recommended an adaptive 

histogram equalization. Singh et al. [32] proposed a technique 

where they used a Wiener filter for denoising. Then local 

transformation-based histogram equalization was used to 

enhance the image quality. Bhateja et al. [33] proposed a 

human visual system-based particle swarm optimization 

technique. Acharya and Kumar [34] introduced particle swarm 

optimized texture-based histogram. Vidyasaraswathi and 

Hanumantharaju [35] presented a Gray Wolf Optimization 

Histogram Equalization-based mean intensity replacement 

approach. Ullah et al. [36] presented a mathematical 

morphological algorithm and histogram equalization for 

contrast enhancement. Sabitha et al. [37] developed a binary 

flower pollination technique and binary Particle Swarm 

Optimization to enhance brain tumor MR images. 

It has been observed from the literature that researchers 

have mostly used histogram equalization methods. The 

parameter optimization of a histogram-based method results in 

a better performance. It has been observed from the literature 

that metaheuristic techniques are used widely for the 

enhancement of MR images of brain tumors. There is still a 

need to improve the augmentation of brain tumor areas in MR 

images so that abnormalities are appropriately recognized and 

categorized for improved brain tumor diagnosis. 

 

 

3. MATERIAL AND METHOD 

 

An approach for enhancing MR images has been described 

in this paper. Compared to other techniques, the output of Bi-

Histogram Equalization with Adaptive Sigmoid Function 

(BEASF) is superior without sacrificing image information 

[38]. But the problem with BEASF is the selection of an 

optimal value of the smoothening factor. So an improved 

metaheuristic technique is required for this purpose. A 

comprehensive learning strategy is employed to improve the 

performance of EHO, and this improved EHO is used for 

optimizing the value of smoothening factor in the BEASF. 

 

3.1 Bi-Histogram equalization with adaptive sigmoid 

function 

 

B EASF gives more visual quality than original images and 

ignores brightness preservation. Its qualitative parameters 

indicate that it preserves brightness [39]. BEASF, contains 

three steps i.e. histogram splitting, creation of sigmoid 

function, and mapping [40]. 

 

3.1.1 Histogram splitting 

The original image (I1) with the size M×N has the possible 

intensity levels (£). The mean intensity of the image is: 

 

𝑀𝑒𝑎𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑚) =
∑ ∑ 𝐼1(𝑖, 𝑗)𝑁−1

𝑗=0
𝑀−1
𝑖=0

𝑀 × 𝑁
 (1) 

 

Using the mean intensity as a splitting point, the original 

image histogram H is separated into two sub-histograms, H1 

and H2, 𝐻 = 𝐻1 ∪ 𝐻2 , where 𝐻1 = {ℎ0, ℎ1, … ℎ𝑚}  and 𝐻2 =
{ℎ𝑚+1, ℎ𝑚+2, … ℎ£−1}. 

The value of the probability density function of two sub 

histograms is evaluated after splitting. The probability density 

function is: 

 

𝑝1(𝑘) =
𝐻1(𝑘)

∑ 𝐻1(𝑛)𝑚
𝑛=0

 (2) 

 

𝑝2(𝑘) =
𝐻2 (𝑘)

∑ 𝐻2(𝑛)£−1
𝑛=𝑚+1

 (3) 

 

where, 𝑘 ∈ {0,1,2 … £ − 1} is an intensity level. 

The cumulative distribution functions for H1 and H2 are: 

 

𝑐1(𝑘) = ∑ 𝑝1(𝑛)
𝑘

𝑛=0
 (4) 
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𝑐2(𝑘) = ∑ 𝑝2(𝑛)
𝑘

𝑛=𝑚+1
 (5) 

 

Then µ1 and µ2 are the medians of sub histogram H1 and H2 

can be found when the following conditions are satisfied. 

𝑐1(𝜇1) = 0.5 and 𝑐2(𝜇2) = 0.5. 

 

3.1.2 Sigmoid function creation 

In this process, two parametric nonlinear sigmoid functions 

(Eq. (8) and (9)) are created by taking the origins of the 

sigmoid functions at the medians defined in sub-histograms. 

The value of k is normalized using the following Eq. (6) and 

(7): 

 

𝑧1(𝑘) =
5(𝑘−𝜇1)

𝑚
, k ≤ m (6) 

 

𝑧2(𝑘) =
5(𝑘−𝜇2)

£−1−𝑚
, k > m (7) 

 

Here ‘z1(k)’ and ‘z1(k)’ are the input values used for the 

calculation of the sigmoid function, ‘k’ is the intensity level, 

‘m’ is the mean intensity, µ1 and µ2 are the medians of sub-

histogram H1 and H2, £ is the possible intensity levels. 

 

𝑠1(𝑘) =
1

1+𝑒−𝛾𝑧1(𝑘), k ≤ m (8) 

 

𝑠2(𝑘) =
1

1+𝑒−𝛾𝑧2(𝑘), k > m (9) 

 

Here, s1(k) and s2(k) are non-linear parametric sigmoid 

functions, ‘k’ is the intensity level, and γ is the smoothness 

factor. 

After the normalization of the sub histogram, it will fit the 

desired boundaries of the sigmoid function, 𝑧1(𝑘), 𝑧2(𝑘) ∈
[−5,5], the convenient range for sigmoid function, the values 

of smoothening factor across this range will be either 0 or 1. 

For the above sigmoid function, the range will be [0, m] and 

[m, £-1]. The smoothness factor of the sigmoid function is γ. 

A smoother sigmoid function is created by a lower value of γ, 

which affects the value of contrast in the enhanced image. 

 

3.1.3 Mapping 

The sigmoid function calculated in the previous steps is 

utilized for finding the values of histogram equalization and 

stretching. The formulation of the histogram equalization is as 

follows: 

 

𝑢1(𝑘) = 𝐿0 + (𝑚 − 𝐿0) 𝑠1(𝑘) (10) 

 

𝑢2(𝑘) = 𝑚 + (𝐿1 − 𝑚) 𝑠2(𝑘) (11) 

 

L1 and L0 are the desirable upper and lower limit of the 

dynamic range in enhanced images, here L0=0 and L1=£-1. 

After mapping, the histogram stretching has been performed 

by using the equation below: 

 

𝑆𝑇𝐹 = {
𝐿0 + 𝛼1(𝑢1(𝑘) − min(𝑢1)) 𝑤ℎ𝑒𝑛 𝑘 ≤ 𝑚

𝑚 + 𝛼2(𝑢2(𝑘) − min(𝑢2)) 𝑤ℎ𝑒𝑛 𝑘 > 𝑚
 (12) 

 

where, 𝛼1 =  
𝑚−𝐿0

max (𝑢1)−min (𝑢1)
 𝑎𝑛𝑑 𝛼2 =  

𝐿1−𝑚

max(𝑢2)−min (𝑢2)
. 

The mappings calculated in this step are applied to every 

pixel of the input image for image enhancement. 

 

3.2 Elephant herding optimization 

 

The EHO method was introduced by Wang et al. [41]. The 

process of EHO depends on the herding behavior of elephants. 

After growing up, the male elephants leave their families to 

form their self-groups. The elephants are divided into distinct 

clans and live together under the direction of a matriarch. The 

two behaviors described above are represented using two 

operators. The clan updating operator and the separation 

operator are idealized to construct a simple global 

optimization approach. 

 

3.2.1 Clan updating operator 

When the elephants are moving surrounding the matriarch, 

the positions of individual elephants in the clan are marked by 

the matriarch after every movement of individuals. Then the 

newest position of the elephant is considered as: 

 

𝐸𝑛𝑒𝑤,𝑄𝑛 ,𝑘 =  𝐸𝑄𝑛,𝑘 + 𝛿 × (𝐸𝑏𝑒𝑠𝑡,𝑄𝑛,𝑘 − 𝐸𝑄𝑛,𝑘) × 𝑡 (13) 

 

where, 𝐸𝑛𝑒𝑤,𝑄𝑛,𝑘 is the elephant’s latest position in the clan. 

𝐸𝑄𝑛,𝑘 is the 𝑘𝑡ℎ elephant’s old position in the clan 𝑄𝑛. 𝐸𝑏𝑒𝑠𝑡,𝑄𝑛
 

is the fittest elephant in clan 𝑄𝑛 , 𝑡 ∈ [0,1] , is a uniformly 

distributed random number. 𝛿 ∈ [0,1]  is a factor by which 

𝐸𝑄𝑛,𝑘 affected by matriarch 𝑄𝑛. It is also known as the scaling 

factor. The fittest elephants in the clan are represented as: 

 
𝐸𝑛𝑒𝑤,𝑄𝑛,𝑘 =  𝛾 × 𝐸𝑐𝑒𝑛𝑡𝑟𝑒,𝑄𝑛

 (14) 

 

𝐸𝑛𝑒𝑤,𝑄𝑛 ,𝑘 is getting the data of all elephants present in the 

clan. 𝛾 ∈ [0,1] , factor by which influence of 𝐸𝑐𝑒𝑛𝑡𝑟𝑒,𝑄𝑛
 on 

𝐸𝑛𝑒𝑤,𝑄𝑛 ,𝑘  is determined. 𝐸𝑐𝑒𝑛𝑡𝑟𝑒,𝑄𝑛,𝑑  is the center of the clan 

𝑄𝑛 for the 𝑑𝑡ℎ dimension and can be obtained by the following 

equation: 

 

𝐸𝑐𝑒𝑛𝑡𝑟𝑒,𝑄𝑛,𝑑 =  
1

𝜃𝑄𝑛

× ∑ 𝐸𝑄𝑛,𝑘,𝑑

𝜃𝑄𝑛

𝑘=1

 (15) 

 

where, 1 ≤ d ≤ D shows the 𝑑𝑡ℎ dimension in which D is the 

total dimension. 

 

3.2.2 Separating operator 

When male elephants complete their grown-up stage in the 

clan, they leave the family group. Enhancement of EHO 

algorithm searching capability within a condition when for 

every generation, the separating operator is completed by all 

individual elephants with worst fitness is described as follows: 

 

𝐸𝑤𝑜𝑟𝑠𝑡,𝑄𝑛
= 𝐸𝑚𝑖𝑛 + (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛 + 1) × 𝑟𝑎𝑛𝑑 (16) 

 

where, 𝐸𝑤𝑜𝑟𝑠𝑡, 𝑄𝑛
 is, the worst's elephant in the clan, rand 

represents the stochastic and uniform distribution having 

range between [0, 1]. Emax and Emin are the individual elephant's 

upper and lower bound positions. 

 

3.3 Comprehensive learning-based EHO (CLEHO) 

 

The standard EHO has some drawbacks. Due to the 

updating operator, the exploration is influenced by 

unreasonable convergence towards the origin and unbalanced 

exploration [42]. The clan-updating operator may only update 

clans inside its own [43]. Therefore, comprehensive learning 
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[44] is introduced in this work to improve the drawbacks of 

standard EHO. In comprehensive learning, three different 

learning strategies have been introduced to update the 

positions of elephants that are described below: 

 

3.3.1 Learning strategy I 

For improving the exploration of the algorithm, Eq. (17) is 

used, and it gives better results. It depends on the worst and 

best clan individuals of the current clan to enhance the 

searchability of EHO. 

 

𝐸𝑛𝑒𝑤,𝑄𝑛,,𝑘 =  𝐸𝑄𝑛,𝑘 + (𝜑1 × 𝐸𝑏𝑒𝑠𝑡,𝑄𝑛,𝑘 − |𝐸𝑄𝑛,𝑘|)

− 𝜑2(𝐸𝑤𝑜𝑟𝑠𝑡,𝑄𝑛,𝑘 − |𝐸𝑄𝑛,𝑘|),  

𝑖𝑓 0 ≤ 𝑇𝑠𝑤𝑖𝑡𝑐ℎ  ≤ 1/3 

(17) 

 

φ1 and φ2 are the two random numbers, and Tswitch is switch 

probability and distributed uniformly between 0 to 1. 

 

3.3.2 Learning strategy II 

In this strategy, the mean and best clan individuals are used 

to update the positions of the current clan individual. It is 

expressed as: 

 

𝐸𝑛𝑒𝑤,𝑄𝑛,𝑘 =  𝐸𝑄𝑛,𝑘 + (𝜑3 × 𝐸𝑏𝑒𝑠𝑡,𝑄𝑛,𝑘 − |𝐸𝑄𝑛,𝑘|)

− 𝜑4(𝑋̅ − |𝐸𝑄𝑛,𝑘|), 

𝑖𝑓
1

3
< 𝑇𝑠𝑤𝑖𝑡𝑐ℎ  ≤  2/3 

(18) 

 

where, 𝑋̅ is the mean position of the clan. φ3 and φ4 are the two 

random numbers subjected to normal distribution. 

 

3.3.3 Learning strategy III 

This strategy utilizes the position of the worst clan 

individual and two randomly selected clan individuals to 

update the position of the current clan individual. This strategy 

is mathematically modeled as: 

 

𝐸𝑛𝑒𝑤,𝑄𝑛,𝑘 =  𝐸𝑄𝑛,𝑘 + (𝜑5 × 𝐸𝑏𝑒𝑠𝑡,𝑄𝑛,𝑘 − 𝐸𝑄𝑛,𝑘)

− 𝜑6(𝐸𝑝 − 𝐸𝑞), 

𝑖𝑓
2

3
< 𝑇𝑠𝑤𝑖𝑡𝑐ℎ  ≤ 1 

(19) 

 

where, p and q are two integer ranges between one to 𝜃𝑄𝑛
 and 

not equal to each other, at any instance. φ5 and φ6 are the two 

random numbers between zero and one. 

 

3.4 Proposed methodology 

 

In the proposed work, a Comprehensive Learning-based 

Elephant Herding Optimization (CLEHO) is proposed to 

enhance MR images of brain tumors, taking 1577 images from 

the Figshare [45] data set publicly available. The proposed 

CLEHO algorithm is used for optimizing the value of the 

smoothness factor (γ) of the sigmoid function of BEASF. The 

proposed CLEHO optimizes the smoothness factor by 

initiating random solutions and further improves them by 

selecting a learning strategy based on the switching probability 

(Tswitch). In this manner, CLEHO gives the best value for the 

smoothness factor. 

 

 

4. DATABASE 

 

The dataset used for this work is taken from Figshare [45]. 

The dataset contains 3064 T1 contrast-enhanced MR images of 

brain tumors of 233 patients. The dataset contains three widely 

classified primary brain tumors glioma, meningioma, and 

pituitary. The dataset includes 89 patients with glioma with 

1436 images, 82 patients with meningioma with 708 images, 

and 62 patients with pituitary having 930 images. MR images 

of brain tumors are available in three different positional views 

of the brain coronal, sagittal, and axial. The images are 

available as .mat files, including the tumor mask's details, 

patient ID, and tumor label. For each image, the region of 

suspicion, cropped manually, is considered for further 

processing. 

 

 

5. RESULTS AND DISCUSSION 

 

 
 

Figure 1. Visual analysis of original and enhanced images 

 

A methodology using Comprehensive Learning-based 
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Elephant Herding Optimization (CLEHO) is employed to 

optimize the smoothing factor of BEASF, which is used to 

enhance the image quality of MR images. For the proposed 

CLEHO-based approach, the population is 50, and 500 

iterations are taken to optimize the value of the smoothness 

factor (γ) of the Bi-Histogram equalization with adaptive 

sigmoid function. The experimental results are performed on 

an Intel I3 7th generation processor system using Windows 10 

Pro operating system having 8 GB RAM. The proposed 

methodology has been implemented in MATLAB2021a.  

The proposed methodology has processed glioma, 

meningioma, and pituitary tumor images. The region of 

suspicion is extracted by cropping the area of interest, and 

images collected from the Figshare database have been taken 

for testing. The performance has been evaluated for direct 

visual inspection and quantitative analysis of glioma, 

meningioma, and pituitary tumors.  

 

 
Glioma Tumor 

 
Meningioma Tumor 

 
Pituitary Tumor 

 

Figure 2. Histogram comparison of original and enhanced 

images 

 

5.1 Visual inspection 

 

A total of 1577 images are taken for visual inspection in 

which it has been seen that the region of interest is enhanced. 

The histograms showing the number of pixels for each tonal 

value are plotted. It describes the tonal distribution of an image. 

The proposed method is compared with CLAHE with Median 

filter [46], CLAHE with Wiener filter [25], Decorrelation [47], 

Enhancement Gravitational Search Algorithm (EnhGSA) [48], 

Median Mean based Sub Image Clipped Histogram 

Equalization (MMSICHE) [49], Variational based Fusion 

model for Gray Scale image Enhancement (VFGLE) [50], and 

Bi-Histogram Equalization with Adaptive Sigmoid Function 

(BEASF) [40]. The visual comparison of the proposed method 

with other state-of-the-art methods by taking an image from 

three different type of tumors, shown in Figure 1. 

Figure 1 shows that the proposed technique successfully 

enhances the MR images of all three tumor types. The 

enhanced images give a better outcome than the other method 

without losing their originality. A comparison of histograms 

for the original and enhanced image is shown in Figure 2. 

Through visual inspection, it is observed that the contrast 

and intensity of the enhanced images are stretched only up to 

that limit where the enhanced images do not lose their visual 

properties. The enhanced images (Glioma tumor -832, 

Meningioma tumor- 677, pituitary tumor – 1756) shown have 

not sacrificed any significant image information. 

 

5.2 Quantitative evaluation 

 

Improving the visual quality of a digital image, often known 

as image enhancement, is a subjective process. The 

identification of one method that provides a better quality 

image may vary from person to person. So, metrics to compare 

the effects of image enhancement algorithms on image quality 

are required for proper analysis. Mean Square Error (MSE), 

Peak Signal to Noise Ratio (PSNR), Mean Absolute Error 

(MAE), Structural Similarity Index Metric (SSIM), Features 

Similarity Index Metric (FSIM), Riesz transformed based 

Feature Similarity Index Metric (RFSIM), Spectral Residual 

base Similarity Index Metric (SRSIM) and Absolute Mean 

Brightness Error (AMBE) are used for quantitative evaluation 

of the proposed work. For the quantitative assessment, four 

images of each type are taken. 901, 796, 1899, and 2300 are of 

glioma type, while 99, 500, 245, and 281 meningioma type. 

1689, 1546, 1332, and 1389 are taken from the pituitary tumor 

type.  

 

5.2.1 Mean Square Error (MSE) 

It is the cumulative squared error between enhanced and 

original images, and its values are always positive [51]. MSE 

is calculating the difference between the original and 

processed images. Mathematically, it is written as: 

 

𝑀𝑆𝐸 =  
1

𝑀 × 𝑁
∑ ∑(𝐼2(𝑖, 𝑗) − 𝐼1(𝑖, 𝑗))

2
𝑁−1

𝑗=0

𝑀−1

𝑖=0

 (20) 

 

where, I2 is the enhanced image of an original image I1 with 

dimensions M×N. Table 1 compares the results of MSE when 

four images of each tumor type are included. It has been 

observed that the values of MSE for all three types of brain 

tumors MR images are the lowest for the proposed 

methodology. In Table 1, the next best MSE value given by 

BEASF indicates the large performance gap with the proposed 

method. MMSICHE and EnhGSA are the least performers in 

Table 1 with regard to the performance of MSE. 
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Table 1. Mean square error value 

 

Method 
Glioma Tumor Meningioma Tumor Pituitary Tumor 

901 796 1899 2300 99 500 245 281 1689 1546 1332 1389 

CLAHE with Median 

Filter 
0.0094 0.0246 0.0103 0.0171 0.0218 0.0177 0.0201 0.0142 0.0325 0.0234 0.0132 0.0113 

CLAHE with Wiener 

Filter 
0.0086 0.0221 0.0092 0.0147 0.0246 0.0280 0.0265 0.0182 0.0337 0.0266 0.0148 0.0142 

Decorrelation Stretching 0.0125 0.0440 0.0185 0.0274 0.0303 0.0238 0.0660 0.0296 0.0770 0.0305 0.0486 0.0134 

EnhGSA 1992.2 714.17 1777.6 2702.2 1686.3 1556.4 2213.1 464.77 2432.7 1619.6 1949.5 4399.9 

MMSICHE 561.14 850.24 723.68 842.46 587.44 686.54 417.33 581.98 1001.7 864.62 1241.2 376.65 

VFGLE 0.0160 0.0771 0.0251 0.0345 0.0302 0.0417 0.0243 0.0298 0.0753 0.0638 0.0673 0.0228 

BEASF 0.0022 0.0033 0.0029 0.0040 0.0021 0.0029 0.0022 0.0017 0.0028 0.0028 0.0020 0.0036 

Proposed Method 0.00002 0.00003 0.00003 0.00003 0.00002 0.00002 0.00003 0.00003 0.00002 0.00002 0.00003 0.00003 

 

Table 2. Peak signal to noise ratio value 

 

Method 
Glioma Tumor Meningioma Tumor Pituitary Tumor 

901 796 1899 2300 99 500 245 281 1689 1546 1332 1389 

CLAHE with Median Filter 20.22 16.07 19.86 17.65 16.60 17.51 16.96 18.46 14.86 16.29 18.78 19.43 

CLAHE with Wiener Filter 20.63 16.54 20.32 18.32 16.08 15.52 15.76 17.37 14.72 15.74 18.28 18.46 

Decorrelation Stretching 19.00 13.56 17.30 15.61 15.18 16.23 11.79 15.28 11.13 15.15 13.12 18.70 

EnhGSA 15.13 19.59 15.63 13.81 15.86 16.20 14.68 21.45 14.26 16.03 15.23 11.69 

MMSICHE 20.64 18.83 19.53 18.87 20.44 19.76 21.92 20.48 18.12 18.76 17.19 22.37 

VFGLE 17.93 11.12 15.99 14.62 15.19 13.79 16.13 15.25 11.22 11.95 11.71 16.41 

BEASF 26.56 24.79 25.35 23.95 26.61 25.36 26.38 27.52 25.41 25.49 26.82 24.37 

Proposed Method 45.23 45.16 44.29 44.10 45.49 45.35 45.11 45.11 45.90 45.32 44.97 44.82 

 

Table 3. Mean absolute error value 

 

Method 
Glioma Tumor Meningioma Tumor Pituitary Tumor 

901 796 1899 2300 99 500 245 281 1689 1546 1332 1389 

CLAHE with Median Filter 0.0781 0.1389 0.0810 0.1068 0.1271 0.1048 0.1136 0.0966 0.1526 0.1341 0.0993 0.0881 

CLAHE with Wiener Filter 0.0745 0.1316 0.0752 0.1002 0.1332 0.1435 0.1345 0.1091 0.1554 0.1436 0.1061 0.0972 

Decorrelation Stretching 0.0984 0.1691 0.1205 0.1332 0.14951 0.1344 0.2198 0.1593 0.2478 0.1298 0.1721 0.0977 

EnhGSA 0.0036 1.639 1.105 .0925 3.769 0.0974 0.5637 3.616 0.2630 0.1634 0.0461 0.0231 

MMSICHE 3.452 3.487 2.494 5.730 0.8339 0.8113 0.9423 2.2051 0.5177 1.2518 2.5070 0.4661 

VFGLE 0.1069 0.2368 0.1283 0.1491 0.1526 0.1777 0.1331 0.1444 0.2413 0.2253 0.2321 0.1340 

BEASF 0.0320 0.0422 0.0347 0.0340 0.0407 0.0449 0.0413 0.0344 0.0461 0.0416 0.0402 0.0450 

Proposed Method 0.0043 0.0040 0.0048 0.0049 0.0043 0.0043 0.0044 0.0044 0.0041 0.0043 0.0043 0.0045 

 

5.2.2 Peak signal to noise ratio (PSNR) 

It is the ratio between the maximum possible power of an 

image and the power of corrupting noise [52]. It was 

previously used to determine image reconstruction quality [24], 

[53]. Mathematically it is expressed as: 

 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10

(2𝑛 − 1)2

𝑀𝑆𝐸
 (21) 

 

where, 𝑛 is the number of bits in one pixel of the image. 

A higher PSNR value and a lower MSE value indicate a 

superior Signal-to-Noise Ratio (SNR). The proposed approach 

is compared to the PSNR values of images obtained with seven 

different methods, and the results of 12 images are given in 

Table 2. 

The proposed method has a higher value of PSNR than other 

state-of-the-art methods. A large margin between the proposed 

and next performer (BEASF) is indicated in Table 2. VFGLE 

performs the worst with a minimum average value of PSNR. 

 

5.2.3 Mean absolute error (MAE) 

It is a metric for comparing errors between paired 

observations that describe the same occurrence. The difference 

between the average intensity of the original image and that of 

the enhanced image is the mean absolute error in medical 

image processing [54]. MAE is calculated as: 

𝑀𝐴𝐸 =
∑ ∑ |𝐼1(𝑖, 𝑗) − 𝐼2(𝑖, 𝑗)|𝑁−1

𝑗=0
𝑀−1
𝑖=0

𝑀 × 𝑁
 (22) 

 

where, I1 is the original image and I2 is the enhanced image. 
The lowest value of mean absolute error shows better quality 

features [55]. The MAE values are very low in the proposed 

method compared to other state-of-the-art methods (Table 3). 

The gaps between the proposed and the next techniques 

indicate the significance of the proposed work. 

 

5.2.4 Structural similarity index metric (SSIM) 

SSIM is a non-cognitive parameter that indicates how image 

quality deteriorates during image processing. A larger SSIM 

value is necessary for the more remarkable preservation of 

contrast, structural content, and brightness. Its maximum value 

is close to one [56]. Mathematically it is expressed as: 

 

𝑆𝑆𝐼𝑀 = (
𝜎𝐼1𝐼2

𝜎𝐼1
𝜎𝐼2

) (
2𝐼1𝐼2

̅̅ ̅̅ ̅

(𝐼1̅
2

) + (𝐼2̅
2

)
) (

2 𝜎𝐼1
𝜎𝐼2

(𝜎𝐼1
)

2
+ (𝜎𝐼2

)
2) (23) 

 

The variance of the original image is 𝜎𝐼1
2 , while the variance 

of the enhanced image is 𝜎𝐼2
2 . The SSIM value is calculated for 

each image. The results of the comparison of 12 images are 

presented in Table 4.  

In this proposed method, SSIM is the fittest value for 
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optimizing the smoothness factor of BEASF. In Table 4, the 

SSIM value is higher than the other methods and is 

approaching 0.99. The proposed method's average SSIM value 

indicates improved enhancement outcomes of brain tumor MR 

images [57]. 
 

5.2.5 Features Similarity Index Metric (FSIM) 

It determines how similar the original and enhanced images 

are in terms of features. The maximum value of 1 shows a 

better overall morphology after the contrast enhancement [30]. 

It is expressed as: 
 

𝐹𝑆𝐼𝑀 =
∑ 𝑆𝐿(𝑥)𝑃𝐶𝑚(𝑥)𝑥∈¥

∑ 𝑃𝐶𝑚(𝑥)𝑥∈¥

 (24) 

 

where, ¥ is the whole image spatial domain of the image, SL(x) 

is the similarity measures of that phase component and 

gradient magnitude of the original and enhanced image, and 

PCm(x) is the phase component of the original and enhanced 

image. Table 5 shows the performance of FSIM computed 

with other state-of-the-art image enhancement methods. From 

Table 5, the higher values of FSIM of the proposed method 

show a better-enhanced quality of enhanced MR images. The 

value of FSIM is about 0.99 for all types of tumor images.  
 

5.2.6 Riesz Transformed based Feature Similarity Index 

Metric (RFSIM) 

It is calculated by comparing the two image feature maps at 

key points. The Riesz transform coefficient is used as a feature 

directly. Here I1 and I2 are original and enhanced images. 

Let  𝐼11
, 𝐼12,𝐼13,𝐼14, 𝑎𝑛𝑑 𝐼15

 are represented as Rx{I1}, Ry{I1}, 

Rx{Rx{I1}}, Rx{Ry{I1}} and Ry{Ry{I1}}. Similarly 

𝐼21
, 𝐼22,𝐼23,𝐼24,𝐼25

 are represented as Rx{I2}, Ry{I2}, Rx{Rx{I2}}, 

Rx{Ry{I2}} and Ry{Ry{I2}}. Here Rx{I1}, Ry{I1}, are first-order 

coefficient and Rx{Rx{I2}}, Rx{Ry{I2}} and Ry{Ry{I2}} represent 

the second order coefficient. So the similarity between two 

features map I1i and I2i (i~5) at the respective location (x, y) is 

defined as [58]: 
 

𝑑𝑖(𝑥, 𝑦) =
2𝐼1𝑖

(𝑥, 𝑦)𝐼2𝑖
(𝑥, 𝑦) + 𝐶

𝐼1𝑖
2(𝑥, 𝑦) + 𝐼2𝑖

2(𝑥, 𝑦) + 𝐶
 (25) 

 

where, C is a very small constant, the features map's similarity 

is high, 𝐼1𝑖
 and 𝐼2𝑖

 are expressed as: 

 

𝐷𝑖 =
∑ ∑ 𝑑𝑖(𝑥, 𝑦) × 𝑀(𝑥, 𝑦)

∑ ∑ 𝑀(𝑥, 𝑦)
 (26) 

 

Then, as shown below, we calculate the RFSIM between 

two images I1 and I2: 
 

𝑅𝐹𝑆𝐼𝑀 = ∏ 𝐷𝑖

5

𝑖=1

 (27) 

 

A higher value of RFSIM, close to 1, shows better 

enhancement [59]. As per the results shown in Table 6, the 

value of RFSIM is much better in the proposed method than 

for the other state-of-the-art methods. 

 

Table 4. Structural similarity index metric value 
 

Method 
Glioma Tumor Meningioma Tumor Pituitary Tumor 

901 796 1899 2300 99 500 245 281 1689 1546 1332 1389 

CLAHE with Median Filter 0.7311 0.6336 0.7009 0.4215 0.7394 0.7350 0.6678 0.6698 0.6470 0.5699 0.7284 0.7703 

CLAHE with Wiener Filter 0.7767 0.6929 0.7525 0.4907 0.7160 0.6993 0.6890 0.7114 0.6501 0.5695 0.7296 0.7535 

Decorrelation Stretching 0.8103 0.5136 0.7009 0.6682 0.8826 0.8867 0.7156 0.8831 0.6964 0.8126 0.7228 0.9168 

EnhGSA 0.7253 0.8426 0.7244 0.5794 0.6532 0.8034 0.7124 0.7289 0.7399 0.7248 0.7124 0.6890 

MMSICHE 0.8545 0.7044 0.7885 0.6448 0.8882 0.8330 0.9064 0.8061 0.7914 0.8731 0.7631 0.8877 

VFGLE 0.6774 0.3915 0.4804 0.4044 0.7397 0.7002 0.6838 0.6031 0.5431 0.4316 0.5442 0.1340 

BEASF 0.946 0.9153 0.9345 0.9042 0.9568 0.9379 0.9470 0.9642 0.9421 0.9507 0.9474 0.9218 

Proposed Method 0.9880 0.9885 0.9838 0.9800 0.9911 0.9841 0.9922 0.9894 0.9876 0.9871 0.9910 0.9907 
 

Table 5. Features similarity index metric value 
 

Method 
Glioma Tumor Meningioma Tumor Pituitary Tumor 

901 796 1899 2300 99 500 245 281 1689 1546 1332 1389 

CLAHE with Median Filter 0.9836 0.9843 0.9767 0.9168 0.9850 0.9786 0.9673 0.9728 0.9831 0.9534 0.9813 0.9920 

CLAHE with Wiener Filter 0.9843 0.9849 0.9683 0.9409 0.9808 0.9773 0.9830 0.9809 0.9816 0.9573 0.9799 0.9912 

Decorrelation Stretching 0.9998 0.9994 0.9996 0.9995 0.9998 0.9999 0.9998 0.9999 0.9998 0.9998 0.9994 0.9998 

EnhGSA 0.8705 0.9231 0.832 0.8048 0.7775 0.8867 0.8601 0.8317 0.8770 0.8719 0.8492 0.8674 

MMSICHE 0.8782 0.7299 0.7767 0.7125 0.9184 0.8415 0.9154 0.8421 0.8263 0.8716 0.7947 0.9269 

VFGLE 0.9924 0.9934 0.9871 0.9981 0.9925 0.9939 0.9817 0.9807 0.9919 0.9579 0.9897 0.9956 

BEASF 0.9996 0.9995 0.9997 0.9983 0.9998 0.9985 0.9996 0.9997 0.9989 0.9995 0.9995 0.9995 

Proposed Method 0.9997 0.9989 0.9993 0.9987 0.9998 0.9992 0.9999 0.9998 0.9997 0.9997 0.9996 0.9999 
 

Table 6. Riesz transformed based feature similarity index metric value 
 

Method 
Glioma Tumor Meningioma Tumor Pituitary Tumor 

901 796 1899 2300 99 500 245 281 1689 1546 1332 1389 

CLAHE with Median Filter 0.9913 0.9903 0.9907 0.9857 0.9873 0.9858 0.9826 0.9876 0.9836 0.9899 0.9939 0.9921 

CLAHE with Wiener Filter 0.9924 0.9917 0.9918 0.9889 0.9851 0.9874 0.9842 0.9866 0.9833 0.9849 0.9937 0.9901 

Decorrelation Stretching 0.9760 0.9610 0.9631 0.9594 0.9848 0.9881 0.9580 0.9886 0.9714 0.9696 0.9606 0.9717 

EnhGSA 0.2648 0.4330 0.2075 0.0325 0.0925 0.3074 0.2116 0.1718 0.3149 0.1068 0.2074 0.1849 

MMSICHE 0.2997 0.0332 0.1066 0.0312 0.3500 0.0991 0.4317 0.1900 0.1052 0.2101 0.1365 0.2922 

VFGLE 0.9807 0.9637 0.9723 0.9657 0.9874 0.9797 0.9872 0.9814 0.9727 0.9778 0.9764 0.9918 

BEASF 0.9940 0.9933 0.9923 0.9924 0.9957 0.9938 0.9956 0.9968 0.9926 0.9926 0.9957 0.9927 

Proposed Method 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
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Table 7. Spectral residual base similarity index metric value 

 

Method 
Glioma Tumor Meningioma Tumor Pituitary Tumor 

901 796 1899 2300 99 500 245 281 1689 1546 1332 1389 

CLAHE with Median Filter 0.9865 0.9926 0.9927 0.9972 0.9852 0.9782 0.9893 0.9743 0.9857 0.9885 0.9917 0.9860 

CLAHE with Wiener Filter 0.9871 0.9923 0.9932 0.9983 0.9864 0.9774 0.9731 0.9683 0.9863 0.9826 0.9938 0.9917 

Decorrelation Stretching 0.9993 0.9906 0.9998 0.9960 0.9967 0.9996 0.9998 0.9991 0.9993 0.9997 0.9988 0.9999 

EnhGSA 0.9489 0.9660 0.9531 0.9077 0.8447 0.9069 0.9155 0.9139 0.9464 0.9546 0.9441 0.9383 

MMSICHE 0.9339 0.8364 0.8844 0.8464 0.9346 0.8698 0.9062 0.8925 0.8509 0.9105 0.8557 0.9426 

VFGLE 0.9806 0.9648 0.9610 0.9949 0.9938 0.9755 0.9950 0.9805 0.9950 0.9786 0.9823 0.9932 

BEASF 0.9998 0.9976 0.9989 0.9993 0.9947 0.9954 0.9972 0.9995 0.9962 0.9979 0.9974 0.9988 

Proposed Method 0.9998 0.9981 0.9998 0.9996 0.9999 0.9996 0.9997 0.9999 0.9998 0.9997 0.9998 0.9999 

 

Table 8. Absolute mean brightness error value 

 

Method 
Glioma Tumor Meningioma Tumor Pituitary Tumor 

901 796 1899 2300 99 500 245 281 1689 1546 1332 1389 

CLAHE with Median Filter 16.99 35.16 18.95 23.96 30.89 25.66 24.59 21.28 38.59 33.80 24.92 21.36 

CLAHE with Wiener Filter 16.49 33.44 17.82 22.74 32.19 25.90 26.94 22.98 39.18 36.37 26.68 23.64 

Decorrelation Stretching 9.771 36.11 18.34 10.48 37.97 67.61 31.61 40.66 63.02 31.73 41.57 24.13 

EnhGSA 38.13 25.50 38.61 23.17 15.31 35.31 20.06 5.73 43.21 20.34 36.50 50.79 

MMSICHE 6.33 7.20 7.71 3.00 10.50 9.75 8.10 8.50 13.17 10.95 14.22 7.42 

VFGLE 16.77 59.47 24.24 28.56 38.69 45.22 32.98 35.11 61.47 57.20 59.13 34.16 

BEASF 0.422 0.562 0.583 0.122 2.15 3.99 3.55 3.18 5.74 1.37 1.21 8.76 

Proposed Method 0.141 0.143 .625 0.255 0.059 0.332 0.195 0.325 7.44 0.350 0.006 0.215 

 

Table 9. Average values of performance evaluation metrics 

 

Performance 

Evaluation 

Metrics 

Types of 

Tumors 

CLAHE 

with 

Median 

Filter 

CLAHE 

with 

Wiener 

Filter 

Decorrelation 

Stretching 
EnhGSA MMSICHE VFGLE BEASF Proposed 

MSE 

Glioma 0.01535 0.01365 0.02560 1796.54 744.380 0.03817 0.00310 0.00002 

Meningioma 0.01845 0.02432 0.03742 1480.14 568.322 0.03150 0.00222 0.00002 

Pituitary 0.01977 0.02272 0.04138 2376.36 810.498 0.05214 0.00268 0.00002 

PSNR 

Glioma 18.4500 18.9525 16.3675 16.0400 19.4675 14.9150 25.1625 44.6950 

Meningioma 17.3820 16.1825 14.6200 17.0475 20.6500 15.0900 26.4675 45.2650 

Pituitary 17.3400 16.8000 14.5250 14.3025 19.1100 12.8225 25.5225 45.2525 

MAE 

Glioma 0.10120 0.09537 0.13030 0.71002 3.79075 0.15527 0.03572 0.00450 

Meningioma 0.11052 0.13007 0.16575 2.01152 1.19815 0.15195 0.04032 0.00435 

Pituitary 0.11852 0.12557 0.16185 0.12390 1.18565 0.20817 0.04322 0.00430 

SSIM 

Glioma 0.62177 0.67820 0.67325 0.71792 0.74805 0.48842 0.92500 0.98507 

Meningioma 0.70300 0.70392 0.84200 0.72447 0.85842 0.68170 0.95147 0.98920 

Pituitary 0.67890 0.67567 0.78715 0.71652 0.82882 0.41322 0.94050 0.98910 

FSIM 

Glioma 0.96535 0.96960 0.99957 0.85760 0.77432 0.99275 0.99927 0.99915 

Meningioma 0.97592 0.98050 0.99985 0.83900 0.87935 0.98720 0.99940 0.99967 

Pituitary 0.97745 0.97750 0.99970 0.86637 0.85487 0.98377 0.99935 0.99972 

RFSIM 

Glioma 0.98950 0.99120 0.96487 0.23445 0.11767 0.97060 0.99300 0.99990 

Meningioma 0.98582 0.98582 0.97987 0.19582 0.26770 0.98392 0.99547 0.99990 

Pituitary 0.98987 0.98800 0.96832 0.20350 0.18600 0.97967 0.99340 0.99990 

SRSIM 

Glioma 0.99225 0.99272 0.99642 0.94392 0.87527 0.97532 0.99890 0.99932 

Meningioma 0.98175 0.97630 0.99880 0.89525 0.90077 0.98620 0.99670 0.99977 

Pituitary 0.98797 0.98860 0.99942 0.94585 0.88992 0.98727 0.99757 0.99980 

AMBE 

Glioma 23.7650 22.6225 18.6752 31.3525 6.06000 32.2600 0.42225 0.29100 

Meningioma 25.6050 27.0025 44.4625 19.1025 9.21250 38.0000 3.21750 0.22775 

Pituitary 29.6675 31.4675 40.1125 37.7100 11.4400 52.9900 4.27000 2.00275 

 

Table 10. Friedman's mean rank test value 

 

Method 
CLAHE with 

Median Filter 

CLAHE with 

Wiener Filter 

Decorrelation 

Stretching 
EnhGSA MMSICHE VFGLE BEASF 

Proposed 

Method 

Friedman's 

Rank 
4.5833 4.4167 4.1667 6.8333 6.7282 5.6111 2.4456 1.1667 
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5.2.7 Spectral Residual base Similarity Index Metric (SRSIM) 

It is based on spectral residual visual saliency mapping 

approaches. It plays two roles, the first one for characterizing 

the local quality of an image and the second while assessing 

the overall quality ratings, demonstrating the relevance of a 

particular location to the human visual system [60]. SRSIM 

value range is zero to one. A higher value shows the better 

quality of the enhanced image. SRSIM between two images is 

defined as: 

 

𝑆𝑅𝑆𝐼𝑀 =
∑ 𝑆𝐿(𝑥)𝑥∈∆ 𝑅𝑚(𝑥)

∑ 𝑅𝑚(𝑥)𝑥∈∆

 (28) 

 

where, Δ means the entire image special domain, SL (x) is the 

similarity, and Rm(x) is the weight importance of 𝑆𝐿(𝑥) . 

SRSIM value is improved in the proposed method and 

approaches the maximum value that is one. The performance 

of SRSIM shown in Table 7 strongly recommends the 

proposed method to enhance brain tumor MR images. 

 

5.2.8 Absolute Mean Brightness Error (AMBE) 

It was proposed by Chen et al. in the year 2003 to determine 

the performance in preserving the originality of an image [61]. 

It is the difference between the original image and the 

enhanced image's mean intensity values. It is expressed as: 

 
𝐴𝑀𝐵𝐸 = |𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 (𝐼1)

− 𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 (𝐼2)| 
(29) 

 

The small value of AMBE indicates better enhancement 

[31]. For the proposed method, values of AMBE are shown in 

Table 8. 

The performance gap with other-state-of-the-art method 

indicates that better enhancement of brain tumor MR images 

with the proposed method  

The proposed enhancement methodology has been checked 

on 1577 images in this paper. The results of 12 images (4 of 

each type) for the evaluation metrics are shown in Tables (1 to 

8). An average of each performance evaluation metric has 

been computed for each tumor type, and the results are 

indicated in Table 9. 

For the proposed method, the minimum value of the MSE 

average is 0.00002 is much better than BEASF. The worst 

value is achieved with MMSICHE. The average value of 

PSNR is around 45, while that of BEASF is 25. MAE is lowest 

at about 0.004. The average value of SSIM is 0.9877, which is 

near one means better enhancement. The average value of 

FSIM is 0.9995, which is higher as compared with other 

methods. The average value of RFSIM is nearly one (0.9999), 

and the SRSIM average value is 0.9996. The average value of 

AMBE is 0.8198 lowest compared with other methods. 

 

5.3 Statistical test 

 

Friedman's mean rank test [62, 63] is used to check the 

statistical difference between proposed and other state-of-the-

art methods. The statistical findings of Friedman's mean rank 

test for performance evaluation metrics are shown in Table 10. 

According to the statistical data, the suggested approach is in 

the first place and surpassed the state-of-the-art methods. The 

p-value of Friedman's mean rank test is 2.0179×10-14, which is 

very low compared to α = 0.05. 

 

 

6. CONCLUSIONS 

 

This work has proposed a methodology for enhancing MR 

images for better diagnosis and treatment of the patients. The 

enhancement analysis has been made with visual inspection 

and image quality metrics. A comprehensive learning strategy 

is used to modify the EHO to get the optimal value of the 

smoothness factor of the sigmoid function. This optimal value 

of the sigmoid function gives enhancement of the MR image 

quality. The proposed methodology tested on brain tumor MR 

images taken from Figshare. For validation of the method, the 

value of MSE, PSNR, MAE, SSIM, FSIM, RFSIM, SRSIM, 

and AMBE have been computed and analyzed. Compared to 

state-of-the-art approaches, the proposed work has greatly 

improved the image quality performance metrics. The 

enhanced image will give better textural, intensity, and shape 

features used to help accurately detect the brain tumor. The 

ranking of this method has also been checked using Friedman's 

mean rank test. The proposed method achieves the first rank, 

which shows its practical applicability. The enhancement of 

MR images will improve the detection accuracy of brain 

tumors and helps in the observation of tumor progress during 

the treatment. 
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