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Real world systems are inherently nonlinear in nature. Over the last few decades, nonlinear 

systems are regarded as the most significant issue in control theory. In this work, a 

nonlinear full state feedback H-infinity controller is proposed for nonlinear systems. The 

black hole optimization method (BHO) is used as an effective optimization technique to 

find the optimal parameters for the proposed controller based on the proposed cost 

function. The suggested controller gain matrix is computed by solving the H-infinity 

algebraic Riccati equation. As case studies, two types of nonlinear systems are 

demonstrated to demonstrate the utility of the proposed controller. Finally, simulation 

findings show that the suggested nonlinear controller improves the stability and 

performance of nonlinear systems by compensating them and compelling their states to 

track the reference input asymptotically with a workable and feasible control action. 
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1. INTRODUCTION

Nonlinear systems are considered the most important topic 

in control theory over the last few decades. They are of great 

importance due to their applications in science and 

engineering [1]. Nonlinear phenomena typically represent a 

real-world system's behavior. Due to the significant 

uncertainty and nonlinearity of these systems, it is challenging 

to keep appropriate stability margins and required 

performance characteristics for closed-loop systems. So, a 

robust control methods are needed to design controllers for 

nonlinear systems that meeting the stabilization and required 

performance in facing the uncertainties and nonlinearities [2]. 

The most frequent and effective strategy in robust control 

theory for rejecting disturbances and compensating 

nonlinearities and uncertainties in the system is the H-infinity 

control. It provides a strong performance and stabilization [3-

6]. The development of robust feedback controllers is a key 

challenge in control theory. Tracking asymptotically and 

robustness despite system disturbances and uncertainties care 

tasks that such controllers may undertake [7]. The feedback 

control theory entails numerous feedback structure choices 

and multiple feedback loops. A state feedback control is a kind 

of feedback control in which all of the system states be 

available for feedback [8]. 

Previous research has focused on a variety of design 

strategies for robust feedback control, like the design of H-

infinity state feedback control depending on the model that is 

nearly linearized [9, 10], the robust feedback linearization for 

nonlinear processes control based on Lyapunove theory [11], 

H-infinity loop-shaping approach [12, 13], a robust control

method on the basis of linear and bilinear matrix inequalities,

(LMIs)&(BMIs) [14, 15].

All of the studies mentioned above presented relatively 

complex algorithm for designing a controller for nonlinear 

systems and are specific to the type of system, this is what 

prompted us to do this study, which suggests simple and more 

general algorithm. 

In this paper, a full state feedback H-infinity controller is 

designed to stabilize the nonlinear systems and satisfy a 

desirable performance. The Black Hole optimization (BHO) 

method is employed to obtain the optimum parameters for the 

suggested nonlinear controller. The proposed controller design 

in this paper can effectively compensate the nonlinear systems 

with constant coefficients.  

The structure of the paper is as follows: in “BLACK HOLE 

OPTIMIZATION (BHO)” section the optimization method 

(BHO) is explained. In “CONTROLLER DESIGN” section 

the formulation of the full state feedback H∞ nonlinear control 

problem for the nonlinear system is provided. In 

“CONTROLLER PARAMETERS TUNING” section the 

parameters of the proposed controller that will be tuned by the 

BHO to obtaining the optimal values for them were reviewed. 

In “ILLUSTRATIVE EXAMPLES” section two kinds of 

nonlinear systems are presented as case studies to demonstrate 

the effectiveness of the proposed controller. In 

“CONCLUSION” section concluding remarks are stated. 

2. BLACK HOLE OPTIMIZATION (BHO)

The BHO is one of the most recently developed 

optimization methods that is used to identify the best solution 

of a combinatorial optimization issue with great success [16]. 

It categorized as metaheuristic (population – based) 

optimization algorithm which use a specific trade-off between 

randomization and local search in order to obtain ideal or as 

near to optimal as possible solution [17]. Local search is a 

common strategy for detecting the high quality solutions to 

complicated or difficult combinatorial optimization problems 

in credible length of time. And it is an iterative search method 

to variegation of neighbour of solutions seeking to improve on 

present solutions [16, 18]. 

In this work, we will use this method to make tune some of 
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the important parameters in the process of designing the 

controller for a nonlinear system and thus to get the best values 

for those parameters that achieve the best stability and 

performance. 

In this algorithm, the population of potential solutions (stars) 

is created at random from the points located within the search 

space. After initialization, the population's fitness values are 

evaluated, and the best candidate (with the highest fitness 

value) is selected to be the black hole, while the other stars 

form the normal stars. Subsequently, the black hole starts 

attracting stars around it and they moving towards the black 

hole [16-19]. The movement formal of stars towards black 

hole is formulated as [17, 19]: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟𝑎𝑛𝑑 ∗ (𝑥𝐵𝐻−𝑥𝑖(𝑡)) 

i=1, 2, 3, …, N 
(1) 

 

where, xi(t+1) and xi(t) are the ith star’s locations at iteration 

(t+1) and (t) respectively. (rand) is a number generated at 

random between 0 and 1. XBH denotes the position of the black 

hole in the search space. (N) is the number of possible solution 

(stars). 

A star moving towards the black hole and takes new 

position, if its fitness value is better than the black hole value, 

the star is chosen to be the black hole. The process is then 

repeated with the black hole in its new position, and stars begin 

to move towards this new black hole. Furthermore, when 

traveling stars near a black hole, there is a chance that they will 

pass the event horizon. Any candidate solution (star) that 

crosses the black hole's event horizon will be swallowed by 

the black hole. Then a new star following the swallowed one 

is created and distributed randomly in the search space. The 

purpose of this creation is to keep a consistent number of 

candidate solutions. After all of the stars have been moved, the 

next iteration begins [17]. The event horizon radius (R) is 

formulated as follows [17-19]: 

 

𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

 (2) 

 

where, fBH is the black hole's fitness value and N is the number 

of possible solutions (stars) and fi is the fitness value of ith star. 

When the distance between a star and a black hole is smaller 

than a certain radius (R), the black hole has swallowed this star. 

There are two advantages to using the black hole 

optimization procedure. For starters, it features a 

straightforward structure that is simple to apply. Second, there 

are no complications with parameter adjustment. Finally, 

when the maximum number of iterations has been reached or 

a satisfactory solution has been found, the work is stopped [16]. 

 

 

3. CONTROLLER DESIGN 

 

In this section, the design procedure of the proposed 

controller for the systems that have the form [20, 21]: 

 

𝑥̇ = 𝐴𝑥 + 𝐵1𝑑(𝑡) + 𝐵2𝑢(𝑡) 

𝑒(𝑡) = 𝐶1𝑥 + 𝐷12𝑢(𝑡) 

𝑦 = 𝐶2𝑥 

(3) 

 

where, 𝑥 ∈ ℛ𝑛  is the system state, 𝑑(𝑡) ∈ ℛ𝑚  is the 

exogenous disturbance, 𝑢(𝑡) ∈ ℛ𝑙 is the control input, 𝑒(𝑡) ∈
ℛ𝑞  is the controlled output, 𝑦 ∈ ℛ𝑝  is the measured output, 

which is the state vector, assumed to be available for 

feedback,  𝐴 ∈ ℛ𝑛×𝑛 , 𝐵1  ∈  ℛ𝑛×𝑚  and 𝐵2 ∈ ℛ𝑛×𝑙 , 𝐶1 ∈
ℛ𝑞×𝑛  is a weight matrix of the system state control, 𝐷12 ∈
ℛ𝑞×𝑙 is a weight matrix of control input regulation, 𝐶2 ∈ ℛ𝑝×𝑛 

is the output weight matrix. 

The standard configuration of the full state feedback H-

infinity control is as shown in Figure 1, where M represents 

the augmented plant matrix [21]: 

 

𝑀 = [

𝐴 𝐵1 𝐵2

𝐶1 𝐷11 𝐷12

𝐶2 𝐷21 𝐷22

] (4) 

 

 
 

Figure 1. Full state feedback H-infinity control structure 

 

As we need to design a full state feedback H-infinity control, 

all system states must be available for feedback. This implies 

that C2=I.D11, D21 and D22=0. So the augmented plant matrix 

M becomes: 

 

𝑀 = [
𝐴 𝐵1 𝐵2

𝐶1 0 𝐷12

𝐼 0 0

] (5) 

 

The following assumptions are required for the proposed 

controller's design: 

(1) The pairs (A, B1) and (A, B2) are stabilizable. 

(2) The pair (C1, A) is detectable. 

(3) 𝐶1
𝑇𝐷12 = 0 and 𝐷12

𝑇 𝐷12 = 𝐼. 

It is worth to mention that to control a nonlinear system in 

this procedure, it should be converted to the configuration 

shown in Eq. (3) using a state variable transformation method. 

This transformation makes the nonlinear terms and 

uncertainties (bad terms) arranged in the same channel in 

which the control law 𝑢 affects (satisfying the matching 

condition). In this case the controller can compensate the bad 

terms. The appropriate transformation for this object is the 

diffeomorphism mapping: 𝑇 ∶  𝒟 → ℛ𝑛 which transforms the 

system from x-space to z-space [22]. 

 

z=T(𝑥) (6) 

 

The map T must be invertible, such that 

 

𝑥 = 𝑇−1(𝑧) (7) 

 

The transformed system’s origin point in z-space is the same 

as the original system [22]: 

 

T(0)=0 (8) 

 

This mapping converts the nonlinear system to the 

following structure [8]: 

 

𝑧̇ = 𝐴𝑧 + 𝐵1𝑑(𝑡) + 𝐵2𝑢(𝑡) (9) 
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The control problem is to find the optimal control law u*, 

which is a function of states, that makes the system internally 

stable by ensuring the infinite norm of the closed-loop transfer 

function (Ted) which should be less than a given value of γ as 

[20]: 

 

∥ 𝑇𝑒𝑑(𝑠) ∥∞< 𝛾 (10) 

 

where, γ represents the upper bound in the disturbance and 

uncertainty magnitude that can be exterminated by the control 

signal. The condition in Eq. (10) implies that [21]: 

 

  𝐽(𝑢, 𝑑) <  ∞𝑑  
𝑠𝑢𝑝

𝑢
𝑖𝑛𝑓

 (11) 

 

where 

 

𝐽(𝑢, 𝑑) = ∫(𝑒𝑇

∞

0

𝑒 − 𝛾2𝑑𝑇𝑑)𝑑𝑡 (12) 

 

The disturbance d(t) tries to maximize the cost function J(t) 

while the control signal u(t) tries to minimize it. Therefore, the 

physical meaning of this relation is that the control signal and 

the disturbance compete to each other within infimum (inf) and 

supremum (sup). 

Let the optimal control and worst-case disturbance have the 

following structure [19]: 

 

𝑑(𝑡) = 𝐾𝑑𝑥(𝑡) (13) 

 

and 

 

𝑢(𝑡) =  𝐾𝑐𝑥(𝑡) (14) 

 

Substituting Eq. (14) in Eq. (3), yields: 

 

𝑒(𝑡) = (𝐶1 + 𝐷12𝑘𝑐)𝑥(𝑡) (15) 

 

Using assumption 3 gives: 

 

𝑒𝑇𝑒 = 𝑿𝑇(𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐)𝑿 (16) 

 

Therefore, 

 

𝐽 = ∫ 𝑥𝑇

∞

0

(𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐 − 𝛾2𝐾𝑑
𝑇𝐾𝑑)𝑥𝑑𝑡 (17) 

 

Substituting Eq. (15) and Eq. (16) in Eq. (3), yields: 

 

𝑥̇ = (𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)𝑥 (18) 

 

With the performance index in Eq. (17), let: 

 

𝑄 = (𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐 − 𝛾2𝐾𝑑
𝑇𝐾𝑑) (19) 

 

where, Q must be positive definite matrix. The system in Eq. 

(18) is assumed to be stable by this optimal control law. Under 

this assumption, let us set: 

 

𝑉(𝑥) = 𝑥𝑇𝑃𝑥 (20) 

 

𝑉̇(𝑥) = −𝑥𝑇𝑄𝑥 (21) 

 

where, V(x) is positive definite Lyapunov quadratic function. 

To find the optimal cost function, Eq. (19) will be substituted 

in Eq. (21) to get: 

 

𝑉̇(𝑥) = −𝑥𝑇(𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐 − 𝛾2𝐾𝑑
𝑇𝐾𝑑)𝑥 (22) 

 

𝑥𝑇(𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐 − 𝛾2𝐾𝑑
𝑇𝐾𝑑)𝑥 = −

𝑑

𝑑𝑡
𝑥𝑇𝑃𝑥 (23) 

 

Integrating both sides of Eq. (23) from 0 to ∞ yields: 

 

∫ 𝑥𝑇

∞

0

(𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐 − 𝛾2𝐾𝑑
𝑇𝐾𝑑)𝑥𝑑𝑡

= ∫ −
𝑑

𝑑𝑡
𝑥𝑇𝑃𝑥

∞

0

𝑑𝑡 

(24) 

 

𝐽 = −𝑥(∞)𝑇𝑃𝑥(∞) − (−𝑥(0)𝑇𝑃𝑥(0)) (25) 

 

Since the system in Eq. (18) must be stable by the control 

law, 𝑥(∞) = 0. Therefore, the optimal cost function is: 

 

𝐽∗ = −𝑥(0)𝑇𝑃𝑥(0) (26) 

 

The positive definite matrix P represents the solution of the 

following Lyapunov equation: 

 

(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)𝑇𝑃 + 𝑃(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)
= −𝑄 

(27) 

 

(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)𝑇𝑃 + 𝑃(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)
= −(𝐶1

𝑇𝐶1 + 𝐾𝑐
𝑇𝐾𝑐 − 𝛾2𝐾𝑑

𝑇𝐾𝑑) 
(28) 

 

(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)𝑇𝑃 + 𝑃(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)
+ (𝐶1

𝑇𝐶1 + 𝐾𝑐
𝑇𝐾𝑐 − 𝛾2𝐾𝑑

𝑇𝐾𝑑) = 0 
(29) 

 

Now, to find the optimal control law we must derive Eq. (29) 

w.r.t. Kc and make 𝜕𝑃 𝜕𝐾𝑐𝑖𝑗
⁄ = 0, we get: 

 

𝐾𝑐 = −𝐵2
𝑇𝑃 (30) 

 

As a result, 

 

𝑢∗ = 𝐾𝑐𝑥 = −𝐵2
𝑇𝑃𝑥 (31) 

 

By the same way, we can find the applied worst-case 

disturbance by deriving the Lyapunov equation w.r.t. Kd and 

make 𝜕𝑃 𝜕𝐾𝑑𝑖𝑗
⁄ = 0, we get: 

 

𝐾𝑑 =
1

𝛾2
𝐵1

𝑇𝑃 (32) 

 

and 

 

𝑑∗ = 𝐾𝑑𝑥 =
1

𝛾2
𝐵1

𝑇𝑃𝑥 (33) 

 

The Lyapunov equation at the optimal control case and 

worst-case disturbance is: 

 

𝑃𝐴 + 𝐴𝑇𝑃 + 𝐶1
𝑇𝐶1 − 𝑃 (𝐵2𝐵2

𝑇 −
1

𝛾2
𝐵1𝐵1

𝑇) 𝑃 = 0 (34) 
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This equation is known as the H-infinity algebraic riccati 

equation. 

The condition ∥ 𝑇𝑒𝑑(𝑠) ∥∞< 𝛾 is satisfied and provided: 

(1) 𝑢∗ = 𝐾𝑐𝑥 = −𝐵2
𝑇𝑃𝑥. 

(2) P>0. 

The matrix A+B1Kd+B2Kc is stable and implies that the 

matrix A+B2Kc is asymptotically stable. 

 

 

4. CONTROLLER PARAMETERS TUNING 

 

The BHO approach is utilized offline, an offline algorithm 

is provided all of the problem data from the start and is needed 

to generate a solution that addresses the problem at hand, to 

obtain the required parameters of the proposed controller. The 

BHO method is simple and it has been used to find the optimal 

values of the elements in matrix C1 (Eq. (3)) and the optimal 

value of γ (Eq. (34)) that satisfy the desired robust stability and 

performance. The Integral Square Error (ISE) was used as a 

performance index to ensure a desirable time response 

specifications. Figure 2 shows the block diagram of the 

proposed controller with BHO algorithm. The BHO problem 

is to find the optimal controller from the search space that 

minimizes the objective function (ISE) and satisfy Eq. (34). 

The parameters listed below were used to carry out the robust 

controller design using BHO: 

(1) The members to be obtained are: c11, c12, …., cnn and γ; 

(2) Population size is set to 50; 

(3) Maximum iteration is set to 100. 

 

 
 

Figure 2. Block diagram of the proposed controller using 

BHO 

 

 

5. ILLUSTRATIVE EXAMPLES 

 

Two nonlinear system examples are offered in this section 

as case studies to demonstrate the usefulness of the proposed 

controller. The time responses of the nonlinear system without 

and with the proposed controller are presented to demonstrate 

the effectiveness of the proposed controller. In example 1, the 

matching condition is satisfied in the state equations of the 

nonlinear system (the nonlinear terms and the control law are 

located in the same channel). In example 2, the matching 

condition is not satisfied (the nonlinear terms and the control 

law are located in different channels). 

 

5.1 Example 1 

 

The nonlinear system to be controlled is: 

 

𝑥̇1 = 𝑥2 

𝑥̇2 = 𝑠𝑖𝑛𝑥1 − 𝑢𝑐𝑜𝑠𝑥1 

𝑦 = 𝑥1 

(35) 

Figures 3 and 4 show the nonlinear system's open-loop and 

closed-loop time response properties before applying the 

proposed controller. It is clear that the system is unstable in 

open-loop and critical stable in closed loop, so it is necessary 

to design a controller to stabilize the system and achieve the 

required performance. For this system, there is no need to 

utilize the diffeomorphism mapping because all nonlinear 

terms are located in the same channel of control u (matching 

condition is satisfied). It is noted from system’s equation Eq. 

(35) that the coefficient of u is variable and nonlinear term of 

the state x1. Therefore, to make the system’s equation (Eq. (35)) 

in the standard controllable form as Eq. (3), the following steps 

are required: 

 

𝜐 = −𝑢𝑐𝑜𝑠𝑥1 (36) 

 

 
 

Figure 3. Time response for closed-loop system 

 

 
 

Figure 4. Time response for open-loop system 

 

where, υ represents the virtual linear state feedback controller, 

which is: 

 

𝜐 = 𝐾𝐶𝑥 = 𝐾1𝑥1 + 𝐾2𝑥2 (37) 

 

Then the actual controller u is: 
 

𝑢 = −
𝜐

𝑐𝑜𝑠𝑥1

= −
𝐾𝑐𝑥

𝑐𝑜𝑠𝑥1

=
−𝐾1𝑥1 − 𝐾2𝑥2

𝑐𝑜𝑠𝑥1

 (38) 

 

The resulting system state equation is: 
 

𝑥̇(𝑡) = [
0 1
0 0

] 𝑥(𝑡) + [
0
1

] 𝑑(𝑡) + [
0
1

] 𝜐(𝑡) (39) 

 

where, 

 

𝑑(𝑡) = 𝑠𝑖𝑛𝑥1 (40) 
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The BHO algorithm was then utilized to find the optimal 

control law. Table 1 displays the optimization settings for the 

BHO algorithm. As well as, Table 2 displays the optimal 

values and bounds of the optimized parameters. 
 

Table 1. The settings of BHO algorithm (example 1) 

 
Optimization settings Value 

Dimension of problem (number 

of parameters) 

5 

Population size 50 

Number of iterations 100 

Number of runs 1 

 

Table 2. The optimized parameters' bounds and optimal 

values (example 1) 

 
Optimized 

parameter 

Lower 

bound 

Upper 

bound 

Optimum 

value 

𝛾 

𝑐11 

𝑐12 

𝑐21 

𝑐22 

1 

0 

0 

0 

0 

10 

100 

100 

100 

100 

1.1101 

98.911 

0.0001 

0.0001 

0.0001 

 

Subsequently, the H-infinity algebraic equation (Eq. (34)) 

will be solved with the obtained optimal values to obtain the 

stabilizing positive definite matrix P as follows: 

 

𝑃 = 103 [
2.1911 0.2400
0.2400 0.0526

] (41) 

 

Then, the gain matrix of the state feedback controller has 

been determined using Eq. (30) as seen below: 

 

𝐾𝑐 = [−240.0397 −52.5944] (42) 

 

Thus, the control law becomes: 

 

𝑢 =
240.0397𝑥1 + 52.5944𝑥2

𝑐𝑜𝑠𝑥1

 (43) 

 

Figures 5 and 6 show the time response of the nonlinear 

system after applying the proposed controller to the system 

and achieving the stabilization and tracking for a unit step 

reference input. Figure 7 shows the behavior of the control 

signal. It is shown that the proposed controller can effectively 

stabilize the nonlinear system with a desirable performance. 

 

 
 

Figure 5. Stabilization properties of nonlinear system states 

 
 

Figure 6. Tracking properties 

 

 
 

Figure 7. The resulting control action 

 

5.2 Example 2 

 

Consider the nonlinear system to be controlled: 

 

𝑥̇1 = 𝑡𝑎𝑛𝑥1 + 𝑥2 

𝑥̇2 = 𝑥1 + 𝑢 

𝑦 = 𝑥1 

(44) 

 

 
 

Figure 8. Time response for open-loop system 

 
 

Figure 9. Time response for closed-loop system 
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Figures 8 and 9 show the nonlinear system’s open-loop and 

closed-loop time response properties before applying the 

suggested controller. 

It is clear that the system is unstable in open-loop and closed 

loop, so it is necessary to design a controller to stabilize the 

system and achieve the required performance. It is noticed that 

the nonlinear term (tanx1) isn’t located in the same channel that 

control signal u effects (matching condition not satisfied), so 

the diffeomorphism mapping of Eq. (6) is necessary to 

transform the nonlinear system into the standard controllable 

form as in Eq. (9). To carry out the mapping, the following 

state variable transformation will apply: 

 

𝑧1(𝑡) = 𝑥1(𝑡), 𝑧2(𝑡) = 𝑧̇1(𝑡) = 𝑥̇1(𝑡) = 𝑡𝑎𝑛𝑥1 + 𝑥2 (45) 

 

Thus, the transformed state equation becomes: 

 

𝑧̇1(𝑡) = 𝑧2(𝑡) 

𝑧̇2(𝑡) = 𝑧1 + 𝑑(𝑡) + 𝑢(𝑡) 
(46) 

 

where, 𝑑(𝑡) = 𝑧2𝑠𝑒𝑐2𝑧1. 

Then the system in z-space becomes: 

 

[
𝑧̇1(𝑡)
𝑧̇2(𝑡)

] = [
0 1
1 0

] [
𝑧1(𝑡)
𝑧2(𝑡)

] + [
0
1

] 𝑑(𝑡) + [
0
1

] 𝑢(𝑡) (47) 

 

The BHO algorithm was then utilized to find the optimal 

control law. Table 3 shows the settings for optimization of the 

BHO algorithm. As well as, Table 4 shows the bounds of the 

optimized parameter and their optimal values. 

 

Table 3. The settings of BHO algorithm (example 2) 

 
Optimization settings Value 

Dimension of problem (number 

of parameters) 

Population size 

Number of iterations 

Number of runs 

5 

 

50 

200 

1 

 

Table 4. The optimized parameters' bounds and optimal 

values (example 2) 

 
Optimized 

parameter 
Lower bound 

Upper 

bound 

Optimum 

value 

𝛾 

𝑐11 

𝑐12 

𝑐21 

𝑐22 

1 

0 

0 

0 

0 

10 

100 

100 

100 

100 

1.001 

51.011 

0.0011 

0.00011 

0.00101 

 

Subsequently, the H-infinity algebraic equation (Eq. (34)) 

will be solved with the obtained optimal values to obtain the 

stabilizing positive definite matrix P as follows: 

 

𝑃 = 103 [
0.7943 0.1259
0.1259 0.038

] (48) 

 

Then, the gain matrix of the state feedback controller has 

been determined using Eq. (30) as seen below: 

 

𝐾𝑐 = [−125.9200 −38.0930] (49) 

 

Thus, the optimal control law in z-space becomes: 

 

𝑢 = −125.92𝑧1 − 38.093𝑧2 (50) 

 

Now, the control law will be converted from z-space to x-

space: 

 

𝑢 = −125.92𝑥1 − 38.093𝑡𝑎𝑛𝑥1 − 38.093𝑥2 (51) 

 

Figures 10 and 11 show that the proposed controller was 

succussed in achieving stabilization and tracking performance, 

with minimum tracking error and rapid convergence to the 

reference line, for the nonlinear system despite the presence of 

disturbance. Figure 12 shows the behavior of the implemented 

control action which is admissible. 

 

 
 

Figure 10. Stabilization properties of nonlinear system states 

 

 
 

Figure 11. Tracking properties 

 

 
 

Figure 12. The resulting control action 

 

 

6. CONCLUSIONS 

 

In this study, a new optimal nonlinear controller based on 

H-infinity technique is proposed for two types of nonlinear 

systems; the first one meet the matching condition between the 

control law and nonlinear terms (disturbances), and the second 

one did not meet this condition. The proposed controller 
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design has proven the stability and the optimal tracking 

performance for the two cases. After using the proposed 

controller, the systems were asymptotically stable. The black 

hole optimization method was employed to obtain the optimal 

values of controller parameters. The contribution of this study 

is introducing a simple algorithm for design procedure of the 

proposed controller for a wide range of nonlinear systems, that 

means it is general algorithm, while the previous studies 

present a complex algorithm for the design and specific to type 

of nonlinear system. Finally, another controller design will be 

needed when the system coefficients are uncertain. 
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