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This paper describes the design and the simulation of a non-linear controller for a two-

mass system (TMS) based on the backstepping-sliding mode control combined with a load 

torque neural network observer. The aim is to control the actual angular speed matching 

with the angular reference speed. The backstepping-sliding mode controller is designed 

based on the Lyapunov standard. The proposed neural network can torque estimate to 

approximate an appropriate value for unknown factors even when it is affected by the 

bounded disturbance. 
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1. INTRODUCTION

In most of the electrical servo, robot arms drive, wind 

turbine systems, and paper manufacturing, roll mill drive have 

a two-mass drive structure flexible. In this TMS the main 

problem to be considered is the resonance oscillation at the 

shaft between motor and load. Thus, it can be led to loss of 

stability for the drive system in case of the motor operation at 

low and unsatisfactory speed and torque response [1, 2]. 

Therefore, it is necessary to have a control method or 

mechanical solution to reduce or supper the resonance 

oscillation. Currently, there are some different control 

methods to speed control for TMS such as PID, PI-D, sliding 

mode, flatness based, backstepping, fuzzy. In the conventional 

control [3], PID controller is common applied in the industrial, 

because of its simplicity and less dependent on the drive 

parameter. This PID control method is to design a transfer 

function balanced with standard function to calculate control 

coefficients such as Kp, Ki, KD. However, the two-mass system 

is a nonlinear drive system, so this PID controller for high 

efficiency when is not affected by noise. In the other study [4], 

the m-IPD speed controller gains for TMS with Kp, Ki, KD, and 

TD coefficients are determined by calculating and choosing the 

appropriate coefficients for m-IPD speed controller, thus, the 

drive system responds to the desired load speed. This 

controller for positive results gives better than PID controller, 

however unresolved problem resonance oscillation at coupling 

axis. In addition, follow [5-7] presented the flatness-based 

control is employed to solve the flux and speed control 

problem of the system. The system can operate at field 

weakening region. The simulation results show that high 

dynamic and suppression of the mechanical oscillation of the 

drive system can be achieved. And follow [8, 9], backstepping 

control is used to control the flux and speed of the system. The 

simulation results show that the drive's mechanical oscillation 

has been suppressed, however, response speed delays when 

there is a change in engine parameters. In addition, this paper 

[10] had given a design method of vibration suppression

controller for 3 mass resonance system using a fuzzy controller

for speed load. This controller is reduced resonance oscillation 

in the shaft. However, the controller has not been studied and 

evaluated for its robustness when the drive system is affected 

by interference. In the other study [11], slide mode control 

(SMC) is an efficient simple method of nonlinear control. 

However, this controller needs to know the parameters of the 

object model as well as the upper limits of the components on 

the uncertainty of the model. SMC takes the form of a sgn (.) 

function and there is a chattering of states around the slip 

surface 0. In addition, the design of controls for TMS often 

assumes that all the state variables that are feedback back to 

the controller are taken by the sensors [12]. 

To simplify the control structure and increase the 

performance of the control system, thus estimation of state 

variables of the two-mas system such as moving horizon 

estimation (MHE), Luenberger, Kalman filter, and Neural 

network are actively studied. The main reason is that the state 

variable is difficult to determine accurately during the 

operation of this drive system. Chaitanya et al. [12] presents 

the issues of applying tools to estimate the horizon moving to 

reconstruct the state variables in improving the control 

structure of a two-mass system of MHE. Additionally, 

Shahgholian et al. [13] required dynamic states are recognized 

based on the error between the reference and estimator outputs, 

the additional differences between electromagnetic and shaft 

torque, and its derivatives by a modified fuzzy Luenberger 

Observer. Depending on these signals, fuzzy systems 

determine the location of the observer poles [14]. Moreover, 

the advantages of the Kaman filter with time-varying 

parameters can be regarded as system noise and can be taken 

into account for the design. Hence, this filter can be more 

powerful in principle for parameters identification than 

Luenberger observers. Moreover, they seem well suited when 

physical parameters and states have to be estimated 

simultaneously, which requires an adaptation of feedback gain 

[15]. Currently, the ability of neural networks (NNs) in 

controlling nonlinear systems has been studied by Holten et al. 

[16, 17]. In fact, the adaptation operation of neural networks 

makes them powerful tools to observe system states without 
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any a priori knowledge about the system dynamics. This paper 

presented estimates the load moment by radial basis function 

neural network observer (RBF-NN). In the paper [18-22] 

nonlinear-in-parameters neural network is employed in 

flexible joint manipulators. The observer exhibits its 

advantages in dealing with highly nonlinear system without 

prior knowledge on system dynamics. In the paper, the load 

moment is estimated by radial basis function neural network 

observer (RBFNN). This state variable is difficult to determine 

accurately during the operation of this drive system. 

The content of the paper will be presented as follow sections. 

First, the model of a two-mass system, then the speed control 

loop is designed by backstepping-sliding mode control, and 

the load torque observer is done by RBFNN. Next, the 

efficiency of the control method is proven by 

MATLAB/Simulation. Finally, some conclusions and 

perspectives are presented. 

 

 

2. TWO-MASS MODEL SYSTEM 
 

Typical configuration of a TMS shows as Figure 1 and 

Figure 2 [12]: 
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Figure 1. Structure of a two-mass system 
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Figure 2. Structure of the mathematical model of a TMS 

 

The system can be described by the following linear 

dynamical Eq. (1). It is state model of motor speed, and load. 

In addition, it is state model of shaft torque. 
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where: M L
ω ,ω

 are motor speed, load speed; 
; ;

e L s
T T T

 are 

motor, load and shaft torque; sB
 is shaft damping coefficient; 

sK  is shaft stiffness.; L
J

 is inertia load torque; State variables 

are M L
ω ,ω

; Control variables are 
,

L L
T

. 

 

 

3. BACKSTEPPING-SLIDING MODE CONTROL AND 

LOAD TORQUE RBFNN OBSERVER DESIGN 
 

The design of the backstepping-sliding mode control and 

load torque RBFNN observer can be summarized as following: 

Step 1: Determining reference shaft torque 

Based on Lyapunov standard with V function is shown: 

 

2

1

1

2
LV e=  (2) 

 

L L Lde  = −  (3) 

 

where, ;L Ld   are actual and reference angular load speed. 

The derivative of candidate Lyapunov function can be 

defined as following Eq. (4): 
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From Eq. (4), taking as the virtual control, it is suggested 

that the reference shaft torque is designed as: 

 

ˆ
sd L L Ld 1 LT =T - (-ω +c e )J  (5) 

 

where, ˆLT  is load torque estimation which 
1c  is provided by 

the RBF neural network; is a positive coefficient. 

Step 2: Determining reference load angular 

Since the load speed model (1), the shaft torque is defined 

by Eq. (6): 

 

s Ts sdT e T= +  (6) 

 

where, 
Tse  is tracking errors for actual and reference shaft 

torque. 

The derivative of candidate Lyapunov function can be 

defined as following Eq. (7): 
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Next the derivative of candidate Lyapunov function with 

tracking errors for shaft torque can be shown by Eq. (8): 
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where, TW  is weight value of RBF, ˆ TW  denotes weight 

value estimation; h is radial-basis function vector in the hidden 

layer of RBF;   is an error. 

Gaussian function value for neural net i in hidden layer is 

shown as: 

 

2
exp( )

L i

i

W c
h

b

−
=  (9) 

 

where, ic  denotes value of center point of the Gaussian 

function of neural net i  for the thi  input, ib  represent the 

width value of Gaussian function for neural net i . The hidden 

layer has one layer in the neural word. The role of the hidden 

layer is estimable denotes weight value by Gaussian function 

to find torque estimate suite for this two-mass system. 
In this case, assuming that   is ignored leading to 

ˆW W W= − . Eq. (8) can be rewritten as follow: 
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Choose 
sd 2 Ts

Md LL

s L s

T -c e 1
= - e

K J K
ω +ω , the Eq. (9) is result 

in: 
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Step 3: In this final procedure, actual control input 
eT  is 

designed via the selection of the following surface to increase 

the robustness of the system. We choose the sliding surface as 

 
( )M Mds   = −  (12) 

 

where, ;M Md   are actual and reference motor angular speed. 

The Lyapunov candidate function with sliding surface 

combined with RBF neural network observer is defined as 

follows: 
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Then derivative of Eq. (13) with respect to time given 
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Consequently, the motor torque control law of the two-mass 

system is chosen as: 

M

e M Md s 3 4= ω +T - (c sgn(s)+c s)
α

J
T J  (15) 

 

Then Eq. (13) is expressed as follows:  
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where,   is a coefficient of the sliding mode control to reach 

a fast steady-state. The adaptive law of RBF-NN observer is 

given as: 
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Then, the derivative of the Lyapunov candidate function (13) 

results in: 

 
2 2 2

1 1 2 2 3 3 4 3V=-c e -c e -c sign(e )-c e  (18) 

 

where, 
1 2 3
; ;c c c  are the positive constant design that is 

determine the closed-loop dynamics. 

 

 

4. RESULT AND ANALYSIS 

 

The backstepping-sliding structure for speed control 

incorporates an RBP-NN observer for a two-mas system, as 

shown in Figure 3. 

In this section, the proposed adaptive controller is simulated 

in the Matlab/Simulink environment in comparison to the 

model-based technique to verify the accuracy and availability 

of the method. The Matlab/Simulink with parameters and 

coefficients: 

 
2 20.1 ; 0.01M LJ kgm J kgm= = ; 20 /sK Nm rad=

1 2 3 42; 15; 60; 30; 25c c c c = = = = =  

 

Furthermore, the RBF neural network’s parameters are 

chosen as Neural number. 

 

3 3

25; ; ( 30,30, ); 0.25

3 3
n n

n c linspace n b



 
 

=  = = − =
 
  

 

 

The simulation is conducted with a scenario when the load 

moment is an uncertain factor affected by an external noise of 

the system vibration. Therefore, the load moment is unknown 

for the model-based controller using backstepping aggregated 

with sliding mode control (BSMC). On the other hand, with an 

adaptive law designed based on the Lyapunov standard, the 

proposed RBF neural network can approximate an appropriate 

value for unknown factors even when it is affected by the 

bounded disturbance. Therefore, the higher control 

performance can be seen in the results of the BSMC combined 

with RBFNN (BSMC neural) in the following Figure 4 and 

Figure 5. 
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Figure 3. Structure backstepping- sliding speed-controlled incorporating neural network observer of a two-mass system 

 

 
 

Figure 4. Angular load speed 

 

 
 

Figure 5. Angular motor speed 

 

Figure 4 shows the responses of the two controllers 

compared to the reference value. It can be seen that BSMC 

neural controller generated an angular load speed that is 

considerably close to the desired value. However, the 

unknown factor combined with the disturbance exists in the 

system. Otherwise, these adverse elements significantly affect 

the BSMC performance when its load speed is quite different 

from the reference. Likewise, the angular motor speed results 

show the corresponding performance in Figure 5. 

The load speed errors are shown in Figure 6, with the 

maximum value of about 0.9 rad/s of the BSMC method. 

Moreover, the BSMC’s number fluctuates according to the 

unknown load moment, while that of the neural-based 

controller constantly oscillates in an acceptable range around 

zero. Besides, motor and shaft torque responses are given in 

Figure 7 and Figure 8. 

  

 
 

Figure 6. Angular load speed error 
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Figure 7. Motor torque 

 

 
 

Figure 8. Shaft torque 

 

Figure 9 shows the approximated performance of the RBF 

neural network. In general, the output value keeps tracking the 

actual value throughout the considered period. Therefore, 

proper values of the load moment are continuously generated 

for the controller so that it can guarantee system stability. 

 

 
 

Figure 9. Neural network output in comparison to the actual 

value 

 

 

5. CONCLUSION 

 

In this paper, the two-mass system with flexible couplings 

comprises an induction motor, and a load is considered. 

Backstepping-sliding mode control combined with RBFNN 

observer is employed to solve the speed control problem of the 

system. This control method controls the actual angular speed 

matching the angular reference speed of the motor and load. 

The simulation results show that high dynamic and 

suppression of the mechanical oscillation of the drive system 

can be achieved. The advantage over other methods is without 

the mathematical mode of two mass systems. Therefore, this 

torque observer design is more straightforward than the 

method design-based state mode of the system. 
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