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In the cloud environment, the process of task scheduling and resource allocation plays a 

vital role in cloud resource management. The unpredictable and uncertain behaviour of the 

task arrival rate poses significant challenges in the effective allocation of resources. An 

efficient scheduling technique is essential to avoid under or overutilization of resources. In 

order to increase the performance of scheduling and allocation, this paper presents multi-

objective optimization method for optimal resource allocation and task scheduling based 

on a three-stage strategy. In the first stage, a description of tasks and virtual machines is 

prepared. At stage two, tasks are classified and labelled based on the resource demand and 

execution time. Finally, the modified-Grey Wolf optimization algorithm is used for the 

allocation and scheduling of tasks for a disparate scenario. The experimental results proved 

that the proposed method reduced the makespan time and cost with an improved utilization 

rate.  
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1. INTRODUCTION

Cloud computing has become very popular in the area of 

leasing or renting cloud resources. The pay-as-you-go model 

of the cloud attracts the organizations and individual users to 

execute their applications on the cloud. Applications may vary 

in size, resource requirement (compute/memory/storage) and 

execution time (long/short). These applications at the cloud 

end are divided into separate executables called as jobs, tasks 

and instances. Based on the attributes of the task, the cloud 

service providers (CSP) must be capable of handling the varied 

requests of their clients by creating virtual machines (VM) in 

cloud. The main aim of the CSP is to minimize, the cost, 

Service Level Agreements (SLA) violations, while 

maximizing resource utilization and ultimately maintaining 

good Quality of Service (QoS) [1].  

Cloud users submit their application through internet portal 

and these applications in-turn divided as tasks. Every task has 

its own characteristics and must complete its execution in a 

given stipulated amount of time. The variable and uncertain 

behaviour of task arrival rate hinders service providers to 

execute the task in the given time which leads to performance 

degradation and the purpose of the cloud usage is not met. This 

situation creates significant issue to the service providers and 

it is essential to provide a feasible solution to improve 

performance and QoS of the cloud system. The skilful solution 

to overcome task failure is the need for implementing a 

challenging scheduling and allocation strategies. Various 

scheduling policies have been implemented to overcome task 

failures and made an attempt to minimize the execution time, 

energy consumption, cost, SLA violation rate etc. [2-4]. Many 

researchers proposed multi-objective task scheduling using 

nature inspired algorithms and few developed novel 

approaches for task scheduling and optimal resource allocation 

[5]. Another efficient way of task scheduling is achieved by 

classifying the tasks based on historical data and similarly 

creating different types of VM’s so as to cater the task demand. 

Major shortfalls found during scheduling and allocation are 

the assignment of the tasks to VM’s. Suppose if larger tasks 

are allocated to the VM’s having less processing capability 

will apparently consume long processing time to complete its 

execution and at times not before the tasks’ deadline. In the 

same scenario, short-range tasks have to wait until the 

completion of the previously allocated task, thereby reducing 

the overall performance of the clouds. One such solution to 

overcome such imbalance is to create and group VM’s of 

various sizes and assign the tasks to the appropriate VM’s with 

appropriate resources [6, 7]. By doing so, the virtual machine 

creation and task waiting time can be reduced eventually 

avoiding task failures. 

To overcome the existing shortcomings, we propose three-

stage strategy for task scheduling and resource allocation 

model using Modified Grey Wolf algorithm (mGWO). The 

main objective of the proposed method is to minimize 

makespan and cost while maximizing utilization of cloud 

resources. The entire work is divided into three stages. In the 

first stage, the model determines the characteristics of the task 

and the VM’s. In the second stage, the tasks are labelled based 

on the historical task data and also on the observations made 

in earlier research works using real world datasets [8-10]. 

These tasks are classified and grouped as small, large, compute 

and memory intensive tasks. Each group of tasks are stored 

and maintained as a separate queue. Likewise, corresponding 

VM’s are created beforehand that are most suitable for 

handling task scheduling. In the final stage, nature inspired 

algorithm is applied for task scheduling and resource 

allocation. The proposed task scheduling algorithm uses 

modified grey wolf optimization algorithm to minimize 

makespan, cost and to improve cloud resource utilization. 

The key contribution of the proposed work is summarized 
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as follows. 

1. The proposed model classifies the tasks based on their

characteristics and similarly VM’s, which aids in

assigning tasks to the most suitable VM’s.

2. An efficient optimal resource allocation and

management method is proposed using a modified

grey wolf optimization algorithm.

3. The performance of the proposed model is tested

against other existing algorithms considering different

scenarios by varying tasks numbers.

The rest of the paper is organized as follows: Related works 

on task scheduling in the cloud are given in section 2; Problem 

formulation and mathematical models are explained in section 

3; Section 4 focusses on the methodology; The experimental 

setup, results and analysis are discussed in Section 5; Finally, 

the work is summarized with future scope. 

2. RELATED WORKS

The review of related works in the field of resource 

allocation and task scheduling in the cloud is discussed in this 

section. With recent developments, task scheduling in cloud 

computing has emerged as a multi-objective optimization 

problem with different optimization goals. 

Pang et al. [11] proposed a hybrid algorithm for scheduling 

based on estimation of distribution and genetic algorithm 

(EDA-GA). The algorithm has attained fast convergence 

speed and strong searching ability. The proposed work mainly 

focused on load balancing and task completion time. The 

experimental results effectively reduced the completion time 

and improve the load balancing ability. Li et al. [12] solve task 

scheduling problems using a hybrid discrete artificial bee 

colony algorithm (ABC). Here both single and multi-objective 

are considered. To enhance searching capabilities an improved 

perturbation structure is embedded in the proposed algorithm. 

An efficient selection and update method is used for further 

improvement in exploration and exploitation ability. The work 

mainly focuses on minimizing the makespan and minimizing 

the device and total workloads of all the devices. The results 

proved to be efficient and more robust when tested on different 

scale problems along with different problem structures. 

Sanaj and Pratap [13] developed a chaotic squirrel search 

algorithm (CSSA) for scheduling tasks in IaaS cloud 

environment. Authors have considered energy, cost, task 

completion time, resource utilization and SLA violation as 

performance metrics for evaluation. The findings demonstrate 

that the proposed model can identify a better cost-effective 

solution when compared with other existing methods. 

Jacob et al. [14] suggested a hybrid task scheduling 

approach by combining cuckoo search and particle swarm 

optimization (CPSO) to optimize and improve the scheduling 

performance and costs. The main advantage of the CPSO 

algorithm is its quick convergence thus making the scheduling 

approach to get a near-optimal solution. The algorithm aims to 

reduce makespan, deadline violation rate and all cost factors 

which include user and performance cost. 

The literature review extends to focus on different variants 

of the grey wolf optimization algorithm for solving multi-

objective task scheduling problems. For reducing issues 

related to scheduling, Natesan and Chokkalingam [15] have 

proposed a modified mean grey wolf optimization algorithm 

which mainly focuses on minimizing execution time and 

energy consumption. Both encircling and hunting equations 

are modified in this method. Hence the modified algorithm 

aids in maximizing the efficiency of the motion and finding a 

suitable path for the wolf in the search area. The experiment 

has been conducted on both normal and uniform datasets 

workloads. The obtained results prove that the proposed 

algorithm achieves improvement in makespan and energy 

consumption when compared with standard GWO and other 

existing algorithms. Natesan and Chokkalingam [16] also 

proposed an improved GWO algorithm called performance-

cost grey wolf optimization algorithm (PCGWO) to achieve 

optimization in the scheduling and allocation process in cloud 

computing. The main aim of the algorithm is to minimize the 

processing time and cost so that the maximum number of tasks 

are executed within the task deadline. The performance 

analysis results show an excellent reduction in the time and 

cost when compared with traditional algorithms but the results 

are not compared with other existing meta-heuristic methods. 

Sheetal and Ravindranath [17] established a model for 

allocating resources in the cloud using the democratic grey 

wolf optimization (DGWO) algorithm. The benefit of using 

DGWO is its high-speed convergence, easy implementation 

and improved searching optimum time. The performance of 

the proposed work is evaluated using parameters like 

makespan, energy consumption and time-based evaluation. 

The research proved to achieve better results in terms of 

turnaround time, throughput and time-based evaluation when 

compared with HABCSS, krill herd and SFLA-CS. 

The improved chaotic binary grey wolf optimization 

[IGWO] algorithm proposed by Mohammadzadeh et al. [18] 

focuses on increasing the convergence speed of the algorithm 

and preventing falling into local optimum. The Chaos theory 

and hill-climbing methods are used by the improved GWO 

algorithm. The binary version of the proposed algorithm deals 

with workflow scheduling algorithm using various S function 

and V functions. In this paper, the authors aimed to minimize 

the execution cost, power and makespan of the system. The 

experiment was conducted on scientific workflows of various 

sizes and the proposed method proved to achieve better results 

when compared with other metaheuristic algorithms. 

To solve multi-objective task scheduling problems in the 

cloud environment Sreenu and Malempati [19] proposed 

Fractional Greywolf Multi-objective optimization-based Task 

Scheduling strategy (FGMTS) an enhanced grey wolf 

optimization algorithm by integrating the existing fractional 

theory. The resources are allocated to tasks, considering QoS 

constraints through minimizing execution time, 

communication time, energy consumption and better resource 

utilization. The experiment was performed over two cloud 

setups by varying the number of physical machines, virtual 

machines and tasks. Sreenu and Malempati [20] also proposed 

xMFGMTS algorithm, a modified variety of FGMTS. The 

proposed method uses an epsilon-constraint and penalty-cost 

function for computing execution time, communication time, 

execution cost, communication cost, resource utilization and 

energy. The algorithm uses an additional term to update the 

position in combination with alpha and beta solutions in order 

to select better solutions. The performance of the proposed 

methods was evaluated over existing scheduling methods: 

PSO, GWO and GA. The results proved to be effective and 

produced a stable and acceptable solution in the process of task 

scheduling. 

The authors [21-23] have developed a scheduling approach 

based on task classification. In the proposed methods, tasks are 

classified according to the resource demand. Similar types of 
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tasks are merged and scheduled to minimize task execution 

cost, energy and maximize resource utilization. Task 

classification aids in the creation of the actual number and type 

of virtual machines required for allocating the resource. 

Overall observation summarizes that better performance can 

be obtained by jointly combining optimization using 

metaheuristic techniques during the process of task allocation 

and scheduling. 
 

3. MATHEMATICAL MODEL FOR SCHEDULING 
 

This section provides the description of makespan, cost and 

utilization which are considered as multi-objective functions 

for optimal task scheduling in the proposed work. The fitness 

value is calculated using Eq. (1), Eq. (6) and Eq. (8). The 

mathematical notations, symbols used in this paper and 

corresponding explanations are listed in Table 1. 

Table 1. Notations and explanations 

 
T= {𝑻𝟏, 𝑻𝟐, 𝑻𝟑,……. 𝑻𝒏} Set of Tasks  

V= {𝑽𝟏, 𝑽𝟐, 𝑽𝟑 ….... 𝑽𝒎 } Set of Virtual machines 

 𝑻𝒋 jth Task 

𝑽𝒊 ith Virtual machine 

𝑻𝒋𝒊 Task j on virtual machine i 

𝑪𝒊, 𝑴𝒊 CPU and memory of virtual machine Vi 

𝑪𝒋, 𝑴𝒋, 𝑬𝒋 CPU, memory and Execution time of task Tj 

𝑫𝒋 Deadline of task Tj 

𝑺𝒋 Start time of task Tj 

𝑾𝒋 Weight of the task Tj 

𝑸𝑽𝑺, 𝑸𝑽𝑪, 𝑸𝑽𝑴, 𝑸𝑽𝑳 Queues of S, CI, MI and L VM 

𝑸𝑻𝑺, 𝑸𝑻𝑪, 𝑸𝑻𝑴, 𝑸𝑻𝑳 Queues of S, CI, MI and L tasks 

𝑻𝒋
𝒔, 𝑻𝒋

𝒄, 𝑻𝒋
𝒎, 𝑻𝒋

𝒍 Task Tj in the queue after classification as S, CI, MI and L tasks 

 

A Multi-objective optimization: To solve the problem of 

task scheduling and allocation, the work considers more than 

one objective. The three important objectives which are 

considered in the proposed work are the makespan, cost and 

utilization. When solving multi-objective problems, multiple 

optimal solutions are available for the problem and need to 

choose one among them. 

General multi-objective optimization problem is given as 

follows:  

 

f(x) = [f1(x), f2(x)…..fm(x)] 

x = [x1,x2,x3…….xn] 
 

 

‘m’ denotes the number of objectives, for any multi-

objective optimization, m  2, in this case m=3. 

The feasible solutions are indicated by x1, x2, x3… xn, such 

that X ϵ x, where X is a feasible solution set. 

 

3.1 Makespan 

 

Assuming that every task is allocated to a single VM and 

the tasks are not pre-empted during the execution, makespan 

is the maximum time taken by the virtual machine to complete 

the execution of all tasks as in Eq. (1). 

 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑥) =  max∑𝐶𝑇𝑖𝑗

𝑛

𝑗=1

 (1) 

 

where,  𝐶𝑇𝑖𝑗  implies the total completion time of set of 𝑗𝑡ℎ 

tasks on 𝑖𝑡ℎ virtual machine and n is the total number of tasks 

[24].  
 

3.2 Cost model 

 

Every task submitted by the user is different in nature, some 

of the tasks may either require more memory or more CPU. In 

addition, there is a difference in the costs for resources. Thus, 

based on the resource requirement, task costs also vary. The 

work considers minimizing the cost function. The total 

resource cost is calculated by adding the CPU and memory 

cost function of the virtual machine [25, 26]. The cost 

functions of CPU and memory of virtual machine are 

calculated as in Eq. (2) and Eq. (3). 

 

𝐶(𝑥) = ∑𝐶𝑐𝑜𝑠𝑡

𝑚

𝑖=1

(𝑖) (2) 

 

𝑀(𝑥) = ∑𝑀𝑐𝑜𝑠𝑡

𝑚

𝑖=1

(𝑖) (3) 

 

where, 𝐶𝑐𝑜𝑠𝑡(𝑖) and 𝑀𝑐𝑜𝑠𝑡(𝑖) are the cost of CPU and memory 

of 𝑖𝑡ℎ virtual machine (𝑉𝑖).  

The following Eq. (4) is used to calculate the cost associated 

to CPU: 

 

𝐶𝑐𝑜𝑠𝑡(𝑖) = 𝐶𝑏 × 𝐶𝑖 × 𝑡𝑖𝑗 + 𝐶𝑡 (4) 

 

where, 𝐶𝑏  represents the base cost, 𝐶𝑖  is the CPU of virtual 

machine 𝑉𝑖, 𝑡𝑖𝑗 denotes the run time duration of task 𝑡𝑗. The 

transmission cost of CPU is given by 𝐶𝑡. Here 𝐶𝑏 and 𝐶𝑡  are 

constants where Cbase = 0.17/hr and CTrans = 0.005 [25]. 

Similarly, the memory cost is defined using Eq. (5). 

 

𝑀𝑐𝑜𝑠𝑡(𝑖) = 𝑀𝑏 × 𝑀𝑖 × 𝑡𝑖𝑗 + 𝑀𝑡 (5) 

 

Here, the base cost of memory is given by 𝑀𝑏, 𝑀𝑖 indicates 

the memory of the virtual machine 𝑉𝑖 . 𝑡𝑖𝑗  signifies the 

processing time of 𝑗𝑡ℎ  task on 𝑖𝑡ℎ  virtual machine and 𝑀𝑡 

represents the transmission cost of memory. The values of 𝑀𝑏 

and 𝑀𝑡 are fixed where 𝑀𝑏=0.05/GB/hour and 𝑀𝑡 =0.50 [25]. 

The overall cost function Cost(x) is calculated as in Eq. (6) 

using Eq. (2) and Eq. (3). 

 

𝐶𝑜𝑠𝑡(𝑥) = 𝐶(𝑥) + 𝑀(𝑥) (6) 
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3.3 Utilization 

 

In cloud systems, every resource is valued with a certain 

cost as perceived from the above cost model. Therefore to 

minimize the cost an efficient utilization of the total available 

resource is essential [27]. The utilization of a virtual machine 

is the fraction of the overall makespan and calculated as in Eq. 

(7). 

 

𝑈[𝑣𝑚] =
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛[𝑣𝑚]

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
, 1 ≤ 𝑣𝑚 ≤ 𝑚 (7) 

 

The utilization value of the VM is placed between 0 and 1. 

The average VM utilization 𝑈𝐴𝑣𝑔 is the proportion of 

summation of all makespan and the value of total VM’s 

multiplied with makespan and is calculated using Eq. (8).  

 

𝑈𝐴𝑣𝑔 = 
1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ∗ 𝑚
∑𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛[𝑚]

𝑚

𝑖=1

 (8) 

 

The average utilization values are found in the range 0 to 1. 

If the value of 𝑈𝐴𝑣𝑔 = 1 indicates fully loaded VM’s. 

 

3.4 Fitness function calculation 

 

Every search agent in the population produces a feasible 

solution. The quality of the obtained solutions are evaluated 

using the fitness function. Since this work intends to minimize 

makespan, cost and maximize utilization the fitness function 

is defined as in Eq. (9). 

 

𝐹 = [ 𝜑1(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛) + 𝜑2(𝐶𝑜𝑠𝑡)
+ 𝜑3(𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)] 

𝜑1 + 𝜑2 + 𝜑3 = 1; (0 ≤ 𝜑1, 𝜑2, 𝜑3 ≤ 1) 

(9) 

 

Here 𝜑1 , 𝜑2  and 𝜑3  denotes weight coefficients of 

makespan, cost and utilization. The values are set to 0.5, 0.3 

and 0.2 which means the first objective makespan is given the 

highest importance than cost and utilization [12]. 

 

 

4. MODEL DESCRIPTION 

 

 
 

Figure 1. Task scheduling and resource allocation model 

This section describes the proposed resource allocation and 

task scheduling model for the cloud data center. In the cloud 

environment, the applications are submitted by the users to the 

cloud service providers for its execution. These applications 

are further divided into tasks or jobs. Every task is 

heterogeneous in nature in terms of resource demand, 

execution time, deadline and task length. In the task queue, all 

the incoming tasks are pooled and wait for their turn to execute. 

Based on the resource requirement and execution time, the 

tasks are classified and sent to the task buffer queue. Here four 

queues are formed for four different types of tasks such as 

small(S), compute-intensive (CI), memory-intensive (MI), and 

large (L). Here classified tasks are maintained as separate 

queues and are sorted in ascending order based on the weight 

value calculated using deadline and execution time. At the 

other end, four types of VM’s are created and the resource 

manager (RM) provides information about the available 

virtual machines with their CPU and memory capacity. Based 

on the resource availability, the list of VM’s is also sorted and 

maintained as separate queues in the task-resource avail list 

table. The scheduler checks the task-resource avail list table 

and based on the task’s resource requirement an optimal 

allocation strategy is applied to select appropriate VM’s and 

tasks are scheduled accordingly. After the successful 

execution of the task, the resources are released and the task-

resource avail list table is updated. The entire working 

principles of the proposed system is depicted in Figure 1 in 

three stages. The following sections describe each stage in 

detail. 

 

4.1 Stage 1: Description of task and virtual machines  

 

Let us assume that there are N finite set of incoming tasks, 

T= {𝑇1 ,𝑇2 , 𝑇3 ,……. 𝑇𝑛 } submitted by different users with 

specific resource demand. Let attributes of Task 𝑇𝑗= (𝑪𝒋, 𝑀𝑗, 

𝐿𝑗 , 𝑆𝑗 ,  𝐸𝑗 , 𝐷𝑗 ). The symbol 𝐶𝑗  denotes CPU usage, 𝑀𝑗 

represents memory requirement, 𝐿𝑗  signifies the task length, 

𝑆𝑗 ,  𝐸𝑗  and 𝐷𝑗  indicates the start time, execution time and 

deadline of the task 𝑇𝑗 respectively. Based on the application, 

the task requests for different type of resources for its 

successful execution. Characteristics of the Virtual machines 

are described as follows:  

Let there exists M number of virtual machines, V= {𝑉1, 𝑉2, 

𝑉3  ….... 𝑉𝑚  }, hosted by physical machines residing in the 

datacenter. Each VM in the cloud are defined with a set of 

parameters.  

Let 𝑉𝑖  = ( 𝐶𝑖 ,  𝑀𝑖 , 𝐵𝑖 ,  𝑆𝑖 ) representing CPU, memory, 

bandwidth and storage of the 𝑉𝑖
th VM respectively. 

 

4.2 Stage 2: Task labelling and classification 

 

Cloud users submit the tasks which demands variety of 

resources for its successful execution. Some tasks demand for 

more CPU than memory and few tasks may require large 

amount of memory and some case tasks may demand for both 

the resource but varying with the execution time. Considering 

the task’s characteristics task classifier categorizes tasks as 

process intensive, memory intensive, short and long running 

tasks [21-23]. 

In this work criteria for classification of tasks considers both 

the resource demand and execution time of the task. By 

examining the characteristics of the incoming tasks, the tasks 

are classified and buffered into separate queue. The 

classification of the tasks is performed as mentioned in Figure 
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2. For instance, if any task requests for more CPU cores, then 

the classifier directs such tasks to reside in compute-intensive 

queue. In reality, it is found that majority of the tasks are found 

to have short execution duration [28]. Finally, the list of 

classified tasks are sorted and maintained in the task-resource 

avail list table for further task scheduling purpose. 

 

4.2.1 Task Queue 

Assuming that CPU-avg is the average CPU requirement of 

any task for successful execution, mem-avg is the average 

memory used by any task and ET-avg is the average task 

execution time, task is classified as in the Figure 2. As per the 

algorithm, let us consider that there are K set of tasks, where 

K = {w, x, y, z} that are classified into four different queues 

namely: 𝑄𝑇𝑆 ,  𝑄𝑇𝐶 ,  𝑄𝑇𝑀 ,  𝑄𝑇𝐿 of small, compute-intensive, 

memory-intensive and large tasks respectively. 

 

𝑄𝑇𝑆 = { 𝑇1
𝑠

, 𝑇2
𝑠

,……… 𝑇𝑗
𝑠 … . 𝑇𝑤

𝑠  } 

𝑄𝑇𝐶  = { 𝑇1
𝑐

, 𝑇2
𝑐

,……… 𝑇𝑗
𝑐 … . 𝑇𝑥

𝑐  } 

𝑄𝑇𝑀  = { 𝑇1
𝑚

, 𝑇2
𝑚

,……… 𝑇𝑗
𝑚 … . 𝑇𝑦

𝑚} 

QTL = { 𝑇1
𝑙
, 𝑇2

𝑙
,……… 𝑇𝑗

𝑙 … . 𝑇𝑧 
𝑙 } 

 

 

For instance, if task’s CPU usage 𝐶𝑗 ≥ 𝑇𝐶𝑃𝑈_𝑎𝑣𝑔  then, that 

task is sent to QTC queue and the task is referred as  𝑇𝑗
𝑐

. 

Similarly, as per the classification algorithm, all the tasks are 

classified and stored as separate queues. The total number of 

tasks at any instant is the sum of all the tasks in each queue. 

 

4.2.2 Virtual machine queue 

In the cloud, achieving maximum resource utilization and 

maintaining good QoS can be achieved through an efficient 

resource allocation method. The resource manager in the cloud 

maintains the list of available resources which are ready to use 

for allocating the task. The knowledge about the task 

description helps in creating VM’s of different types and sizes 

meeting the requirements of the task. Based on the size of the 

VM, the resource manager sorts all the available VM’s and 

forms four queues of VMs as follows: 

 

QVS = {𝑉1
𝑠,𝑉2

𝑠
, ….𝑉𝑖

𝑠……𝑉𝑛
𝑠} 

QVC = {𝑉1
𝑐,𝑉2

𝑐
, …𝑉𝑖

𝑐……𝑉𝑛
𝑐} 

QVM = {𝑉1
𝑚,𝑉2

𝑚
, …𝑉𝑖

𝑚.…𝑉𝑛
𝑚} 

QVL = {𝑉1
𝑙,𝑉2

𝑙
, …𝑉𝑖

𝑙…...…𝑉𝑛
𝑙} 

 

 

The VM queues QVS, QVC, QVM and QVL represents 

small, compute-intensive, memory-intensive and large tasks 

executable capacity VMs respectively. The VM categorization 

formed on the CPU speed and RAM size is provided in Table 

2 of section 5.  

 

4.2.3 Task-Resource Avail List Table 

Classified tasks from each queue is then mapped to the 

respective queue maintained in the task-resource avail list 

table. In each queue, for every task 𝑇𝑗, weight 𝑊𝑗 is calculated 

as in Eq. (10): 

 

𝑊𝑗 =
𝐷𝑗 − 𝑆𝑗

𝐸𝑗

 (10) 

 

where, 𝐷𝑗  - Deadline of task, 𝑆𝑗  - Start time of task Tj, 𝐸𝑗  - 

Execution time of task Tj .  

Using Eq. (10), the weights of all the tasks in the particular 

queue are calculated. The value of the weight helps in 

scheduling the earliest deadline first task. For example, if the 

weights of the tasks are 1,2,3…etc., then the task having 

lowest value will be queued first for the execution. Each queue 

is sorted based on the weights and are ready for mapping to 

the appropriate VM’s for execution. The task-resource avail 

list table also maintains the list of available virtual machines 

received from resource manager. The scheduler fetches the 

information of both waiting task and the list of available 

appropriate VM’s for allocating tasks to VM’s. After the 

allocation and execution process of task 𝑇𝑗  on virtual machine 

𝑉𝑖, the allocated resources are released and added to the virtual 

resource pool. Understanding the characteristics of the tasks 

helps in better virtual resource management. For example, 

assigning a long running task to a VM having large CPU and 

Memory capacity and short running tasks to VM with lower 

processing capability, thus improving makespan and overall 

throughput of the system.  

 

4.3 Stage 3: Task scheduling and resource allocation 

 

The main aim of the proposed multi-objective scheduling 

problem is to assign the task to VM of the proper size to 

minimize makespan, cost and resource utilization. As 

understood from the previous sections the user’s task demands 

a certain amount of resources and timely allocation of the 

requested resources is a challenging task in scheduling. 

Assuming that there are n individual tasks of different types 

and are assigned to the appropriate size VM’s while attaining 

multiple objectives. The process of task classification and 

resource allocation algorithm is depicted in Figure 2. Flow 

diagram of the task scheduling and resource allocation is 

represented in Figure 3. 

 

 
 

Figure 2. Proposed task scheduling and resource allocation 

algorithm 
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Figure 3. Flow diagram of task scheduling and resource 

allocation 

 

4.4 Overview of modified grey wolf optimizer algorithm 

(mGWO) 

 

This section describes the mathematical model of social 

hierarchy, encircling prey, hunting and attacking prey are 

provided. End of this section outlines pseudocode of the 

algorithm [29, 30]. 

 

4.4.1 Social hierarchy and searching for the prey (exploration) 

Typical Grey Wolf Optimizer (GWO) mimics the social 

hierarchy and hunting mechanism of grey wolves in nature. 

The dominating or the fittest solution is considered as alpha 

(α). Apart from α, the second and third best fit solution are 

called beta (β) and delta (δ). The remaining lowest ranking 

solutions are assumed as omega (ω) in the hierarchy. The 

GWO algorithm contemplates only α, β and δ for optimization 

purpose. Wolves wander in search of the location of the prey. 

They disperse away during the searching of the prey and 

gather while attacking the prey. 

 

4.4.2 Encircling prey 

During the process of hunting grey wolves encircle the prey. 

Following equations gives the mathematical model of the 

encircling behavior is as in Eq. (11) and Eq. (12): 

 

𝑋 ⃗⃗  ⃗(𝑡 + 1) =  𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝐴 ⃗⃗  ⃗. 𝐷⃗⃗  (11) 

 

𝐷⃗⃗ = | 𝐶 ⃗⃗  ⃗ . 𝑋𝑝
⃗⃗ ⃗⃗   (𝑡) − 𝑋 ⃗⃗  ⃗(𝑡)| (12) 

 

where, 𝑋 (𝑡) and 𝑋 (𝑡 + 1) are the current and the next location 

of the wolf. 𝐴  and 𝐶  are the coefficient vectors, t indicates the 

current iteration, 𝑋𝑝
⃗⃗ ⃗⃗   and 𝑋  corresponds the position vector of 

the prey and the grey wolf. The values of vector 𝐷⃗⃗  depends on 

the position 𝑋𝑝
⃗⃗ ⃗⃗   of the prey. The coefficient vectors 𝐴  and 

𝐶  are calculated as in Eq. (13) and Eq. (14): 

 

𝐴 ⃗⃗  ⃗ = 2𝑎  . 𝑟1⃗⃗⃗  −  𝑎  (13) 

 

𝐶 ⃗⃗  ⃗ = 2 . 𝑟2⃗⃗  ⃗ (14) 

 

where, 𝑟1 and 𝑟2 are random vectors in the interval [0, 1] and 

the component of vector 𝑎  values are linearly decreased from 

2 to 0 over the course of iterations. 

 

4.4.3 Hunting  

Grey wolves have the capability to identify the location of 

the prey. Habitually the alpha guides the hunt. The beta and 

delta will participate occasionally. Thus alpha, beta and delta 

will have better knowledge about the prospective location of 

the prey. The objective of the algorithm is to find minimum in 

the search landscape. The algorithm assumes that the positions 

of alpha as the best candidate solution, beta and delta as the 

next best solutions in the entire population. The remaining 

solutions like omega update their positions according to these 

three best positions. This hunting behavior is modelled as in 

Eq. (15), Eq. (16) and Eq. (17):  

 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = | 𝐶1

⃗⃗⃗⃗ . 𝑋𝛼
⃗⃗ ⃗⃗   −  𝑋⃗⃗  ⃗|,  𝐷𝛽

⃗⃗⃗⃗⃗⃗ = | 𝐶2
⃗⃗⃗⃗ . 𝑋𝛽

⃗⃗ ⃗⃗   –  𝑋⃗⃗  ⃗|, 

 𝐷𝛿
⃗⃗ ⃗⃗  = | 𝐶3

⃗⃗⃗⃗ . 𝑋𝛿
⃗⃗ ⃗⃗   −  𝑋⃗⃗  ⃗| 

(15) 

 

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗   . (𝐷𝛼

⃗⃗⃗⃗  ⃗), 𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − 𝐴2
⃗⃗ ⃗⃗   . (𝐷𝛽

⃗⃗ ⃗⃗  ), 

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − 𝐴3
⃗⃗ ⃗⃗   . (𝐷𝛿

⃗⃗ ⃗⃗  ) 
(16) 

 

 𝑋⃗⃗  ⃗(𝑡 + 1) =
𝑋1
⃗⃗⃗⃗ + 𝑋2

⃗⃗⃗⃗ + 𝑋3
⃗⃗⃗⃗ 

3
 (17) 

 

4.4.4 Attacking the prey (exploitation) 

Grey wolves complete its hunting process by attacking the 

prey. The mathematical model for attacking the prey is by 

decreasing the value of 𝑎  in various iterations. The value of 

the parameter 𝐴 ⃗⃗  ⃗is based on 𝑎  , which linearly reduces from 2 

to 0. Due to randomness, the values of 𝐴 ⃗⃗  ⃗are placed in the 

interval [-2a, 2a]. 

When the values of 𝐴 ⃗⃗  ⃗ are: 1< 𝐴  < ̶ 1 promotes exploration, 

whereas exploitation is emphasized when   ̶ 1 < 𝐴 ⃗⃗  ⃗< 1. 

To find an accurate global optimum there is a need of good 

balance between exploration and exploitation. It is found that 

higher the exploration results greater randomness. In addition, 

too much exploitation results too little randomness. Balance 

between exploitation and exploration is achieved by updating 

mechanism. As emphasized above, GWO algorithm devotes 

half of the iterations to exploration and the remaining half of 

the iterations for exploitation. But mGWO employs 

exponential function to reduce the value of 𝑎  during the course 

of iterations using the update Eq. (18).  

 

𝑎 = 2(1 −
𝑡2

𝑇2
) (18) 

 

where, t indicates the current iteration and T specifies the 

maximum number of iterations. In mGWO 70% of the 

iterations are used for exploration and 30% of the iterations for 
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exploitation. The pseudocode for the mGWO algorithm is 

given in Figure 4. 

 

 
 

Figure 4. Pseudo code of mGWO algorithm 
 

 

5. RESULT DISCUSSION 

 

5.1 Experimental details 

 

The performance of the proposed system was evaluated 

using the CloudSim toolkit simulator [31]. The experiments 

are conducted on windows10 with an 8GB memory machine. 

For the experiment, four types of VM’s and four types of tasks 

are considered. The number of VM’s are fixed to 20 of each 

type and the task length is randomly generated within the 

specified range as shown in Table 2. The task parameter 

settings are shown in Table 3. The experiment is evaluated by 

varying the number of tasks from 100 to 500 and compared 

with existing algorithms: PSO, CSO and GWO [15, 19, 20]. 

To simulate as that of real cloud computing, the experiment is 

conducted by considering two scenarios: 

Scenario-1: Few large quantities of 𝑇𝑗
𝑠 tasks with relatively 

less quantity of 𝑇𝑗
𝑐 , 𝑇𝑗

𝑚, 𝑇𝑗
𝑙 tasks.  

Scenario-2: 𝑇𝑗
𝑠 , 𝑇𝑗

𝑐 , 𝑇𝑗
𝑚and 𝑇𝑗

𝑙  tasks are randomly 

determined. 

 

Table 2. Virtual machines with speed & memory 

 
VM 

Type 

Type 1 

Small 

Type 2 

MI 

Type 3 

CI 

Type 4 

Large 

MIPS 1000 2000 8000 8000 

RAM 

(GB) 
1 8 2 8 

 

Table 3. Parameter settings of tasks 

 
Task Type S MI CI L 

Length (MI) 100-1000 1000-4000 8000-10000 4000-10000 

 

The simulator uses random number generator for generating 

tasks of different types in the specified range. In scenario-1, 

70% of the tasks were of 𝑇𝑗
𝑠 type, and 10% each of 𝑇𝑗

𝑐 , 𝑇𝑗
𝑚, 𝑇𝑗

𝑙 

type tasks are considered. In Scenario-2, the quantity of each 

task type  𝑇𝑗
𝑠 , 𝑇𝑗

𝑐 , 𝑇𝑗
𝑚and 𝑇𝑗

𝑙  are not fixed but are randomly 

chosen. To simulate the proposed method, few assumptions 

are made as follows: 

1. Tasks are independent and each task is allocated to one 

VM, tasks and VM’s are heterogeneous in nature. 

2. Assuming that every task is allocated to a single VM and 

the tasks are not pre-empted during the execution. 

3. Task resource requirement is always less than the 

available resource. 

 

5.2 Performance of the proposed model 

 

This section evaluates and compares the simulation results 

obtained for the metrics like makespan, cost and resource 

utilization. The tasks are executed in the order of 100 to 500 

in both scenarios. The main goal of the proposed work is to 

minimize the task execution time and cost while maximizing 

resource utilization. The x-axis represents the makespan in 

milliseconds and the y-axis the number of tasks. It is observed 

that both the proposed and GWO schedules the tasks 

efficiently when compared with PSO and CSO algorithms.  

The overall makespan values obtained after scenario-1 and 

scenario-2 are depicted in Figure 5 and Figure 6 respectively. 

 

 
 

Figure 5. Makespan value comparisons for Scenario-1 

 

 
 

Figure 6. Makespan value comparisons for Scenario-2 

 

As observed in scenario-2, the obtained makespan values 

are not linear due to the random pattern of task arrival with 

varied task lengths.  

As the number of tasks increases the makespan time 

calculated by the proposed method is always lower than the 

other three algorithms. The rate of improvement in the 

performance of the proposed work when compared with PSO, 

CSO and GWO for scenario-1 show 39.72%,25.59% and 

9.74% improvements in makespan time whereas, 44.34%, 

37.52% and 6.56% for scenario-2. 
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Figure 7. Cost value comparisons for Scenario-1 

 

 
 

Figure 8. Cost value comparisons for Scenario-2 

 
 

Figure 9. Resource Utilization for Scenario-1 

 

 
 

Figure 10. Resource Utilization for Scenario-2 

 

Table 4. Utilization of vm’s in scenario-1 and scenario-2 

 
Resource Utilization by different type of VM’s in Scenario-1 

VM Type / No. of Tasks 100 200  300 400 500 

Small 0.68396 0.75208 0.85214 0.87669 0.90049 

Compute-Intensive 0.65185 0.91983 0.69956 0.93648 0.87541 

Memory-Intensive 0.71144 0.66388 0.79736 0.74067 0.76532 

Large 0.69729 0.78395 0.77882 0.76652 0.89506 

Resource Utilization by different type of VM’s in Scenario-2 

Small 0.61897 0.78679 0.82087 0.92912 0.93826 

Compute-Intensive 0.88156 0.65593 0.77636 0.89264 0.87748 

Memory-Intensive 0.63704 0.51257 0.67431 0.87833 0.85422 

Large 0.76561 0.72560 0.74518 0.96722 0.79506 

Figure 7 and Figure 8 represents the cost value comparison 

with the proposed method. The cost is calculated as in Eq. (6). 

In scenario-1 and scenario-2, the cost value for the proposed 

method varies from 10.59 to 53.11 and 9.52 to 50.63 

respectively. The rate of cost value improvement of the 

proposed system when compared with PSO, CSO and GWO 

in scenario-1 and scenario-2 are 62.67%, 58.68%, 14.45% and 

60.82%, 57.03%, 36.32% respectively. 

In scenario-2, it is observed that the cost value increases 

correspondingly with the increase in the number of tasks. 

Through experiments it is found that the cost of the resource 

increases specifically with the increase in number of tasks. 

The results of the experiment prove to minimize the expense 

of cloud users while using cloud resources. The proposed 

approach efficiently utilizes the available resources impacting 

in reducing the cost. Figure 9 and Figure 10 depict the average 

resource utilization values which occupy the values between 0 

to 1, and are calculated using the Eq. (8). 

The simulation is performed for both scenarios by varying 

task numbers from the range 100-500. The results of the 

proposed method is compared with PSO, CSO and GWO 

algorithms.  

As mentioned, the goal of the proposed work is to maximize 

resource utilization in the cloud. Through the experiment, it is 

found that in case of scenario-1, the utilization increases with 

an increase in the number of tasks but it is not the same during 

the random arrival of tasks as seen in scenario-2. It is perceived 

through simulation that in both the scenarios, the utilization 

value obtained by the proposed method is always higher than 

the other three algorithms. When compared with PSO, CSO 

and GWO, the proposed method produces 10.26%, 7.63%, 

2.61% of upgradation in the utilization rate in scenario-1, 

likewise 8.76%, 6.14%, and 2.45% in case of scenario-2. The 

result proves to benefit the cloud providers by maximizing the 

revenue in the cloud environment. Overall the experimental 

results and analysis prove that the proposed method achieves 

the goal of minimizing makespan and cost while maximizing 

the utilization of resources. 

Table 4 shows the resource utilization by the different types 

of VM’s in both scenario-1 and scenario-2. The results depict 
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the actual usage of four different types of VM’s for varying 

task numbers from 100-500.  

 The obtained results help the service providers to create the 

actual number of VM’s required for task execution. Having 

prior knowledge of the type of tasks in the queue combined 

with the outcome of the proposed work offers the service 

providers the knowledge of the type of VM’s required for the 

execution of tasks. 

 

 

6. CONCLUSION 

 

In this paper, a three-stage strategy for solving multi-

objective optimal task scheduling and resource allocation 

problems in the cloud is proposed. The proposed algorithm 

reduces makespan time and cost while increasing resource 

utilization. 

The work categorizes incoming tasks into various 

categories based on resource demand and execution time. The 

tasks that have been classified are then queued separately. 

Similarly, VMs with varying resource capacities are created 

and queued distinctly. Using the proposed optimization task 

scheduling and allocation algorithm, the classified tasks are 

then mapped to the most appropriate VM type. The results of 

the experiments show that the proposed method outperforms 

the existing methods. More effort might be focused on testing 

with real datasets and the study could be broadened to 

investigate in an actual cloud system to evaluate its 

performance. 
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