
Multi-Objective Optimization Method for Task Scheduling and Resource Allocation in

Cloud Environment

Anupama K Channappa*, Nagaraja Ramaiah, Shivakumar B Rajanna

Department of ISE, Bangalore Institute of Technology, Krishna Rajendra Road, Visveswara Puram, Bangalore 560004, India

Corresponding Author Email: anupamakc@bit-bangalore.edu.in

https://doi.org/10.18280/ria.360206 ABSTRACT

Received: 9 January 2022

Accepted: 16 March 2022

In the cloud environment, the process of task scheduling and resource allocation plays a

vital role in cloud resource management. The unpredictable and uncertain behaviour of the

task arrival rate poses significant challenges in the effective allocation of resources. An

efficient scheduling technique is essential to avoid under or overutilization of resources. In

order to increase the performance of scheduling and allocation, this paper presents multi-

objective optimization method for optimal resource allocation and task scheduling based

on a three-stage strategy. In the first stage, a description of tasks and virtual machines is

prepared. At stage two, tasks are classified and labelled based on the resource demand and

execution time. Finally, the modified-Grey Wolf optimization algorithm is used for the

allocation and scheduling of tasks for a disparate scenario. The experimental results proved

that the proposed method reduced the makespan time and cost with an improved utilization

rate.

Keywords:

cloud computing, scheduling, resource

allocation, multi-objective optimization,

modified-grey wolf optimization algorithm

1. INTRODUCTION

Cloud computing has become very popular in the area of

leasing or renting cloud resources. The pay-as-you-go model

of the cloud attracts the organizations and individual users to

execute their applications on the cloud. Applications may vary

in size, resource requirement (compute/memory/storage) and

execution time (long/short). These applications at the cloud

end are divided into separate executables called as jobs, tasks

and instances. Based on the attributes of the task, the cloud

service providers (CSP) must be capable of handling the varied

requests of their clients by creating virtual machines (VM) in

cloud. The main aim of the CSP is to minimize, the cost,

Service Level Agreements (SLA) violations, while

maximizing resource utilization and ultimately maintaining

good Quality of Service (QoS) [1].

Cloud users submit their application through internet portal

and these applications in-turn divided as tasks. Every task has

its own characteristics and must complete its execution in a

given stipulated amount of time. The variable and uncertain

behaviour of task arrival rate hinders service providers to

execute the task in the given time which leads to performance

degradation and the purpose of the cloud usage is not met. This

situation creates significant issue to the service providers and

it is essential to provide a feasible solution to improve

performance and QoS of the cloud system. The skilful solution

to overcome task failure is the need for implementing a

challenging scheduling and allocation strategies. Various

scheduling policies have been implemented to overcome task

failures and made an attempt to minimize the execution time,

energy consumption, cost, SLA violation rate etc. [2-4]. Many

researchers proposed multi-objective task scheduling using

nature inspired algorithms and few developed novel

approaches for task scheduling and optimal resource allocation

[5]. Another efficient way of task scheduling is achieved by

classifying the tasks based on historical data and similarly

creating different types of VM’s so as to cater the task demand.

Major shortfalls found during scheduling and allocation are

the assignment of the tasks to VM’s. Suppose if larger tasks

are allocated to the VM’s having less processing capability

will apparently consume long processing time to complete its

execution and at times not before the tasks’ deadline. In the

same scenario, short-range tasks have to wait until the

completion of the previously allocated task, thereby reducing

the overall performance of the clouds. One such solution to

overcome such imbalance is to create and group VM’s of

various sizes and assign the tasks to the appropriate VM’s with

appropriate resources [6, 7]. By doing so, the virtual machine

creation and task waiting time can be reduced eventually

avoiding task failures.

To overcome the existing shortcomings, we propose three-

stage strategy for task scheduling and resource allocation

model using Modified Grey Wolf algorithm (mGWO). The

main objective of the proposed method is to minimize

makespan and cost while maximizing utilization of cloud

resources. The entire work is divided into three stages. In the

first stage, the model determines the characteristics of the task

and the VM’s. In the second stage, the tasks are labelled based

on the historical task data and also on the observations made

in earlier research works using real world datasets [8-10].

These tasks are classified and grouped as small, large, compute

and memory intensive tasks. Each group of tasks are stored

and maintained as a separate queue. Likewise, corresponding

VM’s are created beforehand that are most suitable for

handling task scheduling. In the final stage, nature inspired

algorithm is applied for task scheduling and resource

allocation. The proposed task scheduling algorithm uses

modified grey wolf optimization algorithm to minimize

makespan, cost and to improve cloud resource utilization.

The key contribution of the proposed work is summarized

Revue d'Intelligence Artificielle
Vol. 36, No. 2, April, 2022, pp. 223-232

Journal homepage: http://iieta.org/journals/ria

223

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360206&domain=pdf

as follows.

1. The proposed model classifies the tasks based on their

characteristics and similarly VM’s, which aids in

assigning tasks to the most suitable VM’s.

2. An efficient optimal resource allocation and

management method is proposed using a modified

grey wolf optimization algorithm.

3. The performance of the proposed model is tested

against other existing algorithms considering different

scenarios by varying tasks numbers.

The rest of the paper is organized as follows: Related works

on task scheduling in the cloud are given in section 2; Problem

formulation and mathematical models are explained in section

3; Section 4 focusses on the methodology; The experimental

setup, results and analysis are discussed in Section 5; Finally,

the work is summarized with future scope.

2. RELATED WORKS

The review of related works in the field of resource

allocation and task scheduling in the cloud is discussed in this

section. With recent developments, task scheduling in cloud

computing has emerged as a multi-objective optimization

problem with different optimization goals.

Pang et al. [11] proposed a hybrid algorithm for scheduling

based on estimation of distribution and genetic algorithm

(EDA-GA). The algorithm has attained fast convergence

speed and strong searching ability. The proposed work mainly

focused on load balancing and task completion time. The

experimental results effectively reduced the completion time

and improve the load balancing ability. Li et al. [12] solve task

scheduling problems using a hybrid discrete artificial bee

colony algorithm (ABC). Here both single and multi-objective

are considered. To enhance searching capabilities an improved

perturbation structure is embedded in the proposed algorithm.

An efficient selection and update method is used for further

improvement in exploration and exploitation ability. The work

mainly focuses on minimizing the makespan and minimizing

the device and total workloads of all the devices. The results

proved to be efficient and more robust when tested on different

scale problems along with different problem structures.

Sanaj and Pratap [13] developed a chaotic squirrel search

algorithm (CSSA) for scheduling tasks in IaaS cloud

environment. Authors have considered energy, cost, task

completion time, resource utilization and SLA violation as

performance metrics for evaluation. The findings demonstrate

that the proposed model can identify a better cost-effective

solution when compared with other existing methods.

Jacob et al. [14] suggested a hybrid task scheduling

approach by combining cuckoo search and particle swarm

optimization (CPSO) to optimize and improve the scheduling

performance and costs. The main advantage of the CPSO

algorithm is its quick convergence thus making the scheduling

approach to get a near-optimal solution. The algorithm aims to

reduce makespan, deadline violation rate and all cost factors

which include user and performance cost.

The literature review extends to focus on different variants

of the grey wolf optimization algorithm for solving multi-

objective task scheduling problems. For reducing issues

related to scheduling, Natesan and Chokkalingam [15] have

proposed a modified mean grey wolf optimization algorithm

which mainly focuses on minimizing execution time and

energy consumption. Both encircling and hunting equations

are modified in this method. Hence the modified algorithm

aids in maximizing the efficiency of the motion and finding a

suitable path for the wolf in the search area. The experiment

has been conducted on both normal and uniform datasets

workloads. The obtained results prove that the proposed

algorithm achieves improvement in makespan and energy

consumption when compared with standard GWO and other

existing algorithms. Natesan and Chokkalingam [16] also

proposed an improved GWO algorithm called performance-

cost grey wolf optimization algorithm (PCGWO) to achieve

optimization in the scheduling and allocation process in cloud

computing. The main aim of the algorithm is to minimize the

processing time and cost so that the maximum number of tasks

are executed within the task deadline. The performance

analysis results show an excellent reduction in the time and

cost when compared with traditional algorithms but the results

are not compared with other existing meta-heuristic methods.

Sheetal and Ravindranath [17] established a model for

allocating resources in the cloud using the democratic grey

wolf optimization (DGWO) algorithm. The benefit of using

DGWO is its high-speed convergence, easy implementation

and improved searching optimum time. The performance of

the proposed work is evaluated using parameters like

makespan, energy consumption and time-based evaluation.

The research proved to achieve better results in terms of

turnaround time, throughput and time-based evaluation when

compared with HABCSS, krill herd and SFLA-CS.

The improved chaotic binary grey wolf optimization

[IGWO] algorithm proposed by Mohammadzadeh et al. [18]

focuses on increasing the convergence speed of the algorithm

and preventing falling into local optimum. The Chaos theory

and hill-climbing methods are used by the improved GWO

algorithm. The binary version of the proposed algorithm deals

with workflow scheduling algorithm using various S function

and V functions. In this paper, the authors aimed to minimize

the execution cost, power and makespan of the system. The

experiment was conducted on scientific workflows of various

sizes and the proposed method proved to achieve better results

when compared with other metaheuristic algorithms.

To solve multi-objective task scheduling problems in the

cloud environment Sreenu and Malempati [19] proposed

Fractional Greywolf Multi-objective optimization-based Task

Scheduling strategy (FGMTS) an enhanced grey wolf

optimization algorithm by integrating the existing fractional

theory. The resources are allocated to tasks, considering QoS

constraints through minimizing execution time,

communication time, energy consumption and better resource

utilization. The experiment was performed over two cloud

setups by varying the number of physical machines, virtual

machines and tasks. Sreenu and Malempati [20] also proposed

xMFGMTS algorithm, a modified variety of FGMTS. The

proposed method uses an epsilon-constraint and penalty-cost

function for computing execution time, communication time,

execution cost, communication cost, resource utilization and

energy. The algorithm uses an additional term to update the

position in combination with alpha and beta solutions in order

to select better solutions. The performance of the proposed

methods was evaluated over existing scheduling methods:

PSO, GWO and GA. The results proved to be effective and

produced a stable and acceptable solution in the process of task

scheduling.

The authors [21-23] have developed a scheduling approach

based on task classification. In the proposed methods, tasks are

classified according to the resource demand. Similar types of

224

tasks are merged and scheduled to minimize task execution

cost, energy and maximize resource utilization. Task

classification aids in the creation of the actual number and type

of virtual machines required for allocating the resource.

Overall observation summarizes that better performance can

be obtained by jointly combining optimization using

metaheuristic techniques during the process of task allocation

and scheduling.

3. MATHEMATICAL MODEL FOR SCHEDULING

This section provides the description of makespan, cost and

utilization which are considered as multi-objective functions

for optimal task scheduling in the proposed work. The fitness

value is calculated using Eq. (1), Eq. (6) and Eq. (8). The

mathematical notations, symbols used in this paper and

corresponding explanations are listed in Table 1.

Table 1. Notations and explanations

T= {𝑻𝟏, 𝑻𝟐, 𝑻𝟑,……. 𝑻𝒏} Set of Tasks

V= {𝑽𝟏, 𝑽𝟐, 𝑽𝟑 ….... 𝑽𝒎 } Set of Virtual machines

 𝑻𝒋 jth Task

𝑽𝒊 ith Virtual machine

𝑻𝒋𝒊 Task j on virtual machine i

𝑪𝒊, 𝑴𝒊 CPU and memory of virtual machine Vi

𝑪𝒋, 𝑴𝒋, 𝑬𝒋 CPU, memory and Execution time of task Tj

𝑫𝒋 Deadline of task Tj

𝑺𝒋 Start time of task Tj

𝑾𝒋 Weight of the task Tj

𝑸𝑽𝑺, 𝑸𝑽𝑪, 𝑸𝑽𝑴, 𝑸𝑽𝑳 Queues of S, CI, MI and L VM

𝑸𝑻𝑺, 𝑸𝑻𝑪, 𝑸𝑻𝑴, 𝑸𝑻𝑳 Queues of S, CI, MI and L tasks

𝑻𝒋
𝒔, 𝑻𝒋

𝒄, 𝑻𝒋
𝒎, 𝑻𝒋

𝒍 Task Tj in the queue after classification as S, CI, MI and L tasks

A Multi-objective optimization: To solve the problem of

task scheduling and allocation, the work considers more than

one objective. The three important objectives which are

considered in the proposed work are the makespan, cost and

utilization. When solving multi-objective problems, multiple

optimal solutions are available for the problem and need to

choose one among them.

General multi-objective optimization problem is given as

follows:

f(x) = [f1(x), f2(x)…..fm(x)]

x = [x1,x2,x3…….xn]

‘m’ denotes the number of objectives, for any multi-

objective optimization, m  2, in this case m=3.

The feasible solutions are indicated by x1, x2, x3… xn, such

that X ϵ x, where X is a feasible solution set.

3.1 Makespan

Assuming that every task is allocated to a single VM and

the tasks are not pre-empted during the execution, makespan

is the maximum time taken by the virtual machine to complete

the execution of all tasks as in Eq. (1).

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑥) = max∑𝐶𝑇𝑖𝑗

𝑛

𝑗=1

 (1)

where, 𝐶𝑇𝑖𝑗 implies the total completion time of set of 𝑗𝑡ℎ

tasks on 𝑖𝑡ℎ virtual machine and n is the total number of tasks

[24].

3.2 Cost model

Every task submitted by the user is different in nature, some

of the tasks may either require more memory or more CPU. In

addition, there is a difference in the costs for resources. Thus,

based on the resource requirement, task costs also vary. The

work considers minimizing the cost function. The total

resource cost is calculated by adding the CPU and memory

cost function of the virtual machine [25, 26]. The cost

functions of CPU and memory of virtual machine are

calculated as in Eq. (2) and Eq. (3).

𝐶(𝑥) = ∑𝐶𝑐𝑜𝑠𝑡

𝑚

𝑖=1

(𝑖) (2)

𝑀(𝑥) = ∑𝑀𝑐𝑜𝑠𝑡

𝑚

𝑖=1

(𝑖) (3)

where, 𝐶𝑐𝑜𝑠𝑡(𝑖) and 𝑀𝑐𝑜𝑠𝑡(𝑖) are the cost of CPU and memory

of 𝑖𝑡ℎ virtual machine (𝑉𝑖).

The following Eq. (4) is used to calculate the cost associated

to CPU:

𝐶𝑐𝑜𝑠𝑡(𝑖) = 𝐶𝑏 × 𝐶𝑖 × 𝑡𝑖𝑗 + 𝐶𝑡 (4)

where, 𝐶𝑏 represents the base cost, 𝐶𝑖 is the CPU of virtual

machine 𝑉𝑖, 𝑡𝑖𝑗 denotes the run time duration of task 𝑡𝑗. The

transmission cost of CPU is given by 𝐶𝑡. Here 𝐶𝑏 and 𝐶𝑡 are

constants where Cbase = 0.17/hr and CTrans = 0.005 [25].

Similarly, the memory cost is defined using Eq. (5).

𝑀𝑐𝑜𝑠𝑡(𝑖) = 𝑀𝑏 × 𝑀𝑖 × 𝑡𝑖𝑗 + 𝑀𝑡 (5)

Here, the base cost of memory is given by 𝑀𝑏, 𝑀𝑖 indicates

the memory of the virtual machine 𝑉𝑖 . 𝑡𝑖𝑗 signifies the

processing time of 𝑗𝑡ℎ task on 𝑖𝑡ℎ virtual machine and 𝑀𝑡

represents the transmission cost of memory. The values of 𝑀𝑏

and 𝑀𝑡 are fixed where 𝑀𝑏=0.05/GB/hour and 𝑀𝑡 =0.50 [25].

The overall cost function Cost(x) is calculated as in Eq. (6)

using Eq. (2) and Eq. (3).

𝐶𝑜𝑠𝑡(𝑥) = 𝐶(𝑥) + 𝑀(𝑥) (6)

225

3.3 Utilization

In cloud systems, every resource is valued with a certain

cost as perceived from the above cost model. Therefore to

minimize the cost an efficient utilization of the total available

resource is essential [27]. The utilization of a virtual machine

is the fraction of the overall makespan and calculated as in Eq.

(7).

𝑈[𝑣𝑚] =
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛[𝑣𝑚]

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
, 1 ≤ 𝑣𝑚 ≤ 𝑚 (7)

The utilization value of the VM is placed between 0 and 1.

The average VM utilization 𝑈𝐴𝑣𝑔 is the proportion of

summation of all makespan and the value of total VM’s

multiplied with makespan and is calculated using Eq. (8).

𝑈𝐴𝑣𝑔 =
1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ∗ 𝑚
∑𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛[𝑚]

𝑚

𝑖=1

 (8)

The average utilization values are found in the range 0 to 1.

If the value of 𝑈𝐴𝑣𝑔 = 1 indicates fully loaded VM’s.

3.4 Fitness function calculation

Every search agent in the population produces a feasible

solution. The quality of the obtained solutions are evaluated

using the fitness function. Since this work intends to minimize

makespan, cost and maximize utilization the fitness function

is defined as in Eq. (9).

𝐹 = [𝜑1(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛) + 𝜑2(𝐶𝑜𝑠𝑡)
+ 𝜑3(𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)]

𝜑1 + 𝜑2 + 𝜑3 = 1; (0 ≤ 𝜑1, 𝜑2, 𝜑3 ≤ 1)

(9)

Here 𝜑1 , 𝜑2 and 𝜑3 denotes weight coefficients of

makespan, cost and utilization. The values are set to 0.5, 0.3

and 0.2 which means the first objective makespan is given the

highest importance than cost and utilization [12].

4. MODEL DESCRIPTION

Figure 1. Task scheduling and resource allocation model

This section describes the proposed resource allocation and

task scheduling model for the cloud data center. In the cloud

environment, the applications are submitted by the users to the

cloud service providers for its execution. These applications

are further divided into tasks or jobs. Every task is

heterogeneous in nature in terms of resource demand,

execution time, deadline and task length. In the task queue, all

the incoming tasks are pooled and wait for their turn to execute.

Based on the resource requirement and execution time, the

tasks are classified and sent to the task buffer queue. Here four

queues are formed for four different types of tasks such as

small(S), compute-intensive (CI), memory-intensive (MI), and

large (L). Here classified tasks are maintained as separate

queues and are sorted in ascending order based on the weight

value calculated using deadline and execution time. At the

other end, four types of VM’s are created and the resource

manager (RM) provides information about the available

virtual machines with their CPU and memory capacity. Based

on the resource availability, the list of VM’s is also sorted and

maintained as separate queues in the task-resource avail list

table. The scheduler checks the task-resource avail list table

and based on the task’s resource requirement an optimal

allocation strategy is applied to select appropriate VM’s and

tasks are scheduled accordingly. After the successful

execution of the task, the resources are released and the task-

resource avail list table is updated. The entire working

principles of the proposed system is depicted in Figure 1 in

three stages. The following sections describe each stage in

detail.

4.1 Stage 1: Description of task and virtual machines

Let us assume that there are N finite set of incoming tasks,

T= {𝑇1 ,𝑇2 , 𝑇3 ,……. 𝑇𝑛 } submitted by different users with

specific resource demand. Let attributes of Task 𝑇𝑗= (𝑪𝒋, 𝑀𝑗,

𝐿𝑗 , 𝑆𝑗 , 𝐸𝑗 , 𝐷𝑗). The symbol 𝐶𝑗 denotes CPU usage, 𝑀𝑗

represents memory requirement, 𝐿𝑗 signifies the task length,

𝑆𝑗 , 𝐸𝑗 and 𝐷𝑗 indicates the start time, execution time and

deadline of the task 𝑇𝑗 respectively. Based on the application,

the task requests for different type of resources for its

successful execution. Characteristics of the Virtual machines

are described as follows:

Let there exists M number of virtual machines, V= {𝑉1, 𝑉2,

𝑉3 ….... 𝑉𝑚 }, hosted by physical machines residing in the

datacenter. Each VM in the cloud are defined with a set of

parameters.

Let 𝑉𝑖 = (𝐶𝑖 , 𝑀𝑖 , 𝐵𝑖 , 𝑆𝑖) representing CPU, memory,

bandwidth and storage of the 𝑉𝑖
th VM respectively.

4.2 Stage 2: Task labelling and classification

Cloud users submit the tasks which demands variety of

resources for its successful execution. Some tasks demand for

more CPU than memory and few tasks may require large

amount of memory and some case tasks may demand for both

the resource but varying with the execution time. Considering

the task’s characteristics task classifier categorizes tasks as

process intensive, memory intensive, short and long running

tasks [21-23].

In this work criteria for classification of tasks considers both

the resource demand and execution time of the task. By

examining the characteristics of the incoming tasks, the tasks

are classified and buffered into separate queue. The

classification of the tasks is performed as mentioned in Figure

226

2. For instance, if any task requests for more CPU cores, then

the classifier directs such tasks to reside in compute-intensive

queue. In reality, it is found that majority of the tasks are found

to have short execution duration [28]. Finally, the list of

classified tasks are sorted and maintained in the task-resource

avail list table for further task scheduling purpose.

4.2.1 Task Queue

Assuming that CPU-avg is the average CPU requirement of

any task for successful execution, mem-avg is the average

memory used by any task and ET-avg is the average task

execution time, task is classified as in the Figure 2. As per the

algorithm, let us consider that there are K set of tasks, where

K = {w, x, y, z} that are classified into four different queues

namely: 𝑄𝑇𝑆 , 𝑄𝑇𝐶 , 𝑄𝑇𝑀 , 𝑄𝑇𝐿 of small, compute-intensive,

memory-intensive and large tasks respectively.

𝑄𝑇𝑆 = { 𝑇1
𝑠

, 𝑇2
𝑠

,……… 𝑇𝑗
𝑠 … . 𝑇𝑤

𝑠 }

𝑄𝑇𝐶 = { 𝑇1
𝑐

, 𝑇2
𝑐

,……… 𝑇𝑗
𝑐 … . 𝑇𝑥

𝑐 }

𝑄𝑇𝑀 = { 𝑇1
𝑚

, 𝑇2
𝑚

,……… 𝑇𝑗
𝑚 … . 𝑇𝑦

𝑚}

QTL = { 𝑇1
𝑙
, 𝑇2

𝑙
,……… 𝑇𝑗

𝑙 … . 𝑇𝑧
𝑙 }

For instance, if task’s CPU usage 𝐶𝑗 ≥ 𝑇𝐶𝑃𝑈_𝑎𝑣𝑔 then, that

task is sent to QTC queue and the task is referred as 𝑇𝑗
𝑐

.

Similarly, as per the classification algorithm, all the tasks are

classified and stored as separate queues. The total number of

tasks at any instant is the sum of all the tasks in each queue.

4.2.2 Virtual machine queue

In the cloud, achieving maximum resource utilization and

maintaining good QoS can be achieved through an efficient

resource allocation method. The resource manager in the cloud

maintains the list of available resources which are ready to use

for allocating the task. The knowledge about the task

description helps in creating VM’s of different types and sizes

meeting the requirements of the task. Based on the size of the

VM, the resource manager sorts all the available VM’s and

forms four queues of VMs as follows:

QVS = {𝑉1
𝑠,𝑉2

𝑠
, ….𝑉𝑖

𝑠……𝑉𝑛
𝑠}

QVC = {𝑉1
𝑐,𝑉2

𝑐
, …𝑉𝑖

𝑐……𝑉𝑛
𝑐}

QVM = {𝑉1
𝑚,𝑉2

𝑚
, …𝑉𝑖

𝑚.…𝑉𝑛
𝑚}

QVL = {𝑉1
𝑙,𝑉2

𝑙
, …𝑉𝑖

𝑙…...…𝑉𝑛
𝑙}

The VM queues QVS, QVC, QVM and QVL represents

small, compute-intensive, memory-intensive and large tasks

executable capacity VMs respectively. The VM categorization

formed on the CPU speed and RAM size is provided in Table

2 of section 5.

4.2.3 Task-Resource Avail List Table

Classified tasks from each queue is then mapped to the

respective queue maintained in the task-resource avail list

table. In each queue, for every task 𝑇𝑗, weight 𝑊𝑗 is calculated

as in Eq. (10):

𝑊𝑗 =
𝐷𝑗 − 𝑆𝑗

𝐸𝑗

 (10)

where, 𝐷𝑗 - Deadline of task, 𝑆𝑗 - Start time of task Tj, 𝐸𝑗 -

Execution time of task Tj .

Using Eq. (10), the weights of all the tasks in the particular

queue are calculated. The value of the weight helps in

scheduling the earliest deadline first task. For example, if the

weights of the tasks are 1,2,3…etc., then the task having

lowest value will be queued first for the execution. Each queue

is sorted based on the weights and are ready for mapping to

the appropriate VM’s for execution. The task-resource avail

list table also maintains the list of available virtual machines

received from resource manager. The scheduler fetches the

information of both waiting task and the list of available

appropriate VM’s for allocating tasks to VM’s. After the

allocation and execution process of task 𝑇𝑗 on virtual machine

𝑉𝑖, the allocated resources are released and added to the virtual

resource pool. Understanding the characteristics of the tasks

helps in better virtual resource management. For example,

assigning a long running task to a VM having large CPU and

Memory capacity and short running tasks to VM with lower

processing capability, thus improving makespan and overall

throughput of the system.

4.3 Stage 3: Task scheduling and resource allocation

The main aim of the proposed multi-objective scheduling

problem is to assign the task to VM of the proper size to

minimize makespan, cost and resource utilization. As

understood from the previous sections the user’s task demands

a certain amount of resources and timely allocation of the

requested resources is a challenging task in scheduling.

Assuming that there are n individual tasks of different types

and are assigned to the appropriate size VM’s while attaining

multiple objectives. The process of task classification and

resource allocation algorithm is depicted in Figure 2. Flow

diagram of the task scheduling and resource allocation is

represented in Figure 3.

Figure 2. Proposed task scheduling and resource allocation

algorithm

227

Figure 3. Flow diagram of task scheduling and resource

allocation

4.4 Overview of modified grey wolf optimizer algorithm

(mGWO)

This section describes the mathematical model of social

hierarchy, encircling prey, hunting and attacking prey are

provided. End of this section outlines pseudocode of the

algorithm [29, 30].

4.4.1 Social hierarchy and searching for the prey (exploration)

Typical Grey Wolf Optimizer (GWO) mimics the social

hierarchy and hunting mechanism of grey wolves in nature.

The dominating or the fittest solution is considered as alpha

(α). Apart from α, the second and third best fit solution are

called beta (β) and delta (δ). The remaining lowest ranking

solutions are assumed as omega (ω) in the hierarchy. The

GWO algorithm contemplates only α, β and δ for optimization

purpose. Wolves wander in search of the location of the prey.

They disperse away during the searching of the prey and

gather while attacking the prey.

4.4.2 Encircling prey

During the process of hunting grey wolves encircle the prey.

Following equations gives the mathematical model of the

encircling behavior is as in Eq. (11) and Eq. (12):

𝑋 ⃗⃗ ⃗(𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝐴 ⃗⃗ ⃗. 𝐷⃗⃗ (11)

𝐷⃗⃗ = | 𝐶 ⃗⃗ ⃗ . 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝑋 ⃗⃗ ⃗(𝑡)| (12)

where, 𝑋 (𝑡) and 𝑋 (𝑡 + 1) are the current and the next location

of the wolf. 𝐴 and 𝐶 are the coefficient vectors, t indicates the

current iteration, 𝑋𝑝
⃗⃗ ⃗⃗ and 𝑋 corresponds the position vector of

the prey and the grey wolf. The values of vector 𝐷⃗⃗ depends on

the position 𝑋𝑝
⃗⃗ ⃗⃗ of the prey. The coefficient vectors 𝐴 and

𝐶 are calculated as in Eq. (13) and Eq. (14):

𝐴 ⃗⃗ ⃗ = 2𝑎 . 𝑟1⃗⃗⃗ − 𝑎 (13)

𝐶 ⃗⃗ ⃗ = 2 . 𝑟2⃗⃗ ⃗ (14)

where, 𝑟1 and 𝑟2 are random vectors in the interval [0, 1] and

the component of vector 𝑎 values are linearly decreased from

2 to 0 over the course of iterations.

4.4.3 Hunting

Grey wolves have the capability to identify the location of

the prey. Habitually the alpha guides the hunt. The beta and

delta will participate occasionally. Thus alpha, beta and delta

will have better knowledge about the prospective location of

the prey. The objective of the algorithm is to find minimum in

the search landscape. The algorithm assumes that the positions

of alpha as the best candidate solution, beta and delta as the

next best solutions in the entire population. The remaining

solutions like omega update their positions according to these

three best positions. This hunting behavior is modelled as in

Eq. (15), Eq. (16) and Eq. (17):

𝐷𝛼
⃗⃗⃗⃗ ⃗ = | 𝐶1

⃗⃗⃗⃗ . 𝑋𝛼
⃗⃗ ⃗⃗ − 𝑋⃗⃗ ⃗|, 𝐷𝛽

⃗⃗⃗⃗⃗⃗ = | 𝐶2
⃗⃗⃗⃗ . 𝑋𝛽

⃗⃗ ⃗⃗ – 𝑋⃗⃗ ⃗|,

 𝐷𝛿
⃗⃗ ⃗⃗ = | 𝐶3

⃗⃗⃗⃗ . 𝑋𝛿
⃗⃗ ⃗⃗ − 𝑋⃗⃗ ⃗|

(15)

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗ − 𝐴1
⃗⃗⃗⃗ . (𝐷𝛼

⃗⃗⃗⃗ ⃗), 𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗ − 𝐴2
⃗⃗ ⃗⃗ . (𝐷𝛽

⃗⃗ ⃗⃗),

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗ − 𝐴3
⃗⃗ ⃗⃗ . (𝐷𝛿

⃗⃗ ⃗⃗)
(16)

 𝑋⃗⃗ ⃗(𝑡 + 1) =
𝑋1
⃗⃗⃗⃗ + 𝑋2

⃗⃗⃗⃗ + 𝑋3
⃗⃗⃗⃗

3
 (17)

4.4.4 Attacking the prey (exploitation)

Grey wolves complete its hunting process by attacking the

prey. The mathematical model for attacking the prey is by

decreasing the value of 𝑎 in various iterations. The value of

the parameter 𝐴 ⃗⃗ ⃗is based on 𝑎 , which linearly reduces from 2

to 0. Due to randomness, the values of 𝐴 ⃗⃗ ⃗are placed in the

interval [-2a, 2a].

When the values of 𝐴 ⃗⃗ ⃗ are: 1< 𝐴 < ̶ 1 promotes exploration,

whereas exploitation is emphasized when ̶ 1 < 𝐴 ⃗⃗ ⃗< 1.

To find an accurate global optimum there is a need of good

balance between exploration and exploitation. It is found that

higher the exploration results greater randomness. In addition,

too much exploitation results too little randomness. Balance

between exploitation and exploration is achieved by updating

mechanism. As emphasized above, GWO algorithm devotes

half of the iterations to exploration and the remaining half of

the iterations for exploitation. But mGWO employs

exponential function to reduce the value of 𝑎 during the course

of iterations using the update Eq. (18).

𝑎 = 2(1 −
𝑡2

𝑇2
) (18)

where, t indicates the current iteration and T specifies the

maximum number of iterations. In mGWO 70% of the

iterations are used for exploration and 30% of the iterations for

228

exploitation. The pseudocode for the mGWO algorithm is

given in Figure 4.

Figure 4. Pseudo code of mGWO algorithm

5. RESULT DISCUSSION

5.1 Experimental details

The performance of the proposed system was evaluated

using the CloudSim toolkit simulator [31]. The experiments

are conducted on windows10 with an 8GB memory machine.

For the experiment, four types of VM’s and four types of tasks

are considered. The number of VM’s are fixed to 20 of each

type and the task length is randomly generated within the

specified range as shown in Table 2. The task parameter

settings are shown in Table 3. The experiment is evaluated by

varying the number of tasks from 100 to 500 and compared

with existing algorithms: PSO, CSO and GWO [15, 19, 20].

To simulate as that of real cloud computing, the experiment is

conducted by considering two scenarios:

Scenario-1: Few large quantities of 𝑇𝑗
𝑠 tasks with relatively

less quantity of 𝑇𝑗
𝑐 , 𝑇𝑗

𝑚, 𝑇𝑗
𝑙 tasks.

Scenario-2: 𝑇𝑗
𝑠 , 𝑇𝑗

𝑐 , 𝑇𝑗
𝑚and 𝑇𝑗

𝑙 tasks are randomly

determined.

Table 2. Virtual machines with speed & memory

VM

Type

Type 1

Small

Type 2

MI

Type 3

CI

Type 4

Large

MIPS 1000 2000 8000 8000

RAM

(GB)
1 8 2 8

Table 3. Parameter settings of tasks

Task Type S MI CI L

Length (MI) 100-1000 1000-4000 8000-10000 4000-10000

The simulator uses random number generator for generating

tasks of different types in the specified range. In scenario-1,

70% of the tasks were of 𝑇𝑗
𝑠 type, and 10% each of 𝑇𝑗

𝑐 , 𝑇𝑗
𝑚, 𝑇𝑗

𝑙

type tasks are considered. In Scenario-2, the quantity of each

task type 𝑇𝑗
𝑠 , 𝑇𝑗

𝑐 , 𝑇𝑗
𝑚and 𝑇𝑗

𝑙 are not fixed but are randomly

chosen. To simulate the proposed method, few assumptions

are made as follows:

1. Tasks are independent and each task is allocated to one

VM, tasks and VM’s are heterogeneous in nature.

2. Assuming that every task is allocated to a single VM and

the tasks are not pre-empted during the execution.

3. Task resource requirement is always less than the

available resource.

5.2 Performance of the proposed model

This section evaluates and compares the simulation results

obtained for the metrics like makespan, cost and resource

utilization. The tasks are executed in the order of 100 to 500

in both scenarios. The main goal of the proposed work is to

minimize the task execution time and cost while maximizing

resource utilization. The x-axis represents the makespan in

milliseconds and the y-axis the number of tasks. It is observed

that both the proposed and GWO schedules the tasks

efficiently when compared with PSO and CSO algorithms.

The overall makespan values obtained after scenario-1 and

scenario-2 are depicted in Figure 5 and Figure 6 respectively.

Figure 5. Makespan value comparisons for Scenario-1

Figure 6. Makespan value comparisons for Scenario-2

As observed in scenario-2, the obtained makespan values

are not linear due to the random pattern of task arrival with

varied task lengths.

As the number of tasks increases the makespan time

calculated by the proposed method is always lower than the

other three algorithms. The rate of improvement in the

performance of the proposed work when compared with PSO,

CSO and GWO for scenario-1 show 39.72%,25.59% and

9.74% improvements in makespan time whereas, 44.34%,

37.52% and 6.56% for scenario-2.

229

Figure 7. Cost value comparisons for Scenario-1

Figure 8. Cost value comparisons for Scenario-2

Figure 9. Resource Utilization for Scenario-1

Figure 10. Resource Utilization for Scenario-2

Table 4. Utilization of vm’s in scenario-1 and scenario-2

Resource Utilization by different type of VM’s in Scenario-1

VM Type / No. of Tasks 100 200 300 400 500

Small 0.68396 0.75208 0.85214 0.87669 0.90049

Compute-Intensive 0.65185 0.91983 0.69956 0.93648 0.87541

Memory-Intensive 0.71144 0.66388 0.79736 0.74067 0.76532

Large 0.69729 0.78395 0.77882 0.76652 0.89506

Resource Utilization by different type of VM’s in Scenario-2

Small 0.61897 0.78679 0.82087 0.92912 0.93826

Compute-Intensive 0.88156 0.65593 0.77636 0.89264 0.87748

Memory-Intensive 0.63704 0.51257 0.67431 0.87833 0.85422

Large 0.76561 0.72560 0.74518 0.96722 0.79506

Figure 7 and Figure 8 represents the cost value comparison

with the proposed method. The cost is calculated as in Eq. (6).

In scenario-1 and scenario-2, the cost value for the proposed

method varies from 10.59 to 53.11 and 9.52 to 50.63

respectively. The rate of cost value improvement of the

proposed system when compared with PSO, CSO and GWO

in scenario-1 and scenario-2 are 62.67%, 58.68%, 14.45% and

60.82%, 57.03%, 36.32% respectively.

In scenario-2, it is observed that the cost value increases

correspondingly with the increase in the number of tasks.

Through experiments it is found that the cost of the resource

increases specifically with the increase in number of tasks.

The results of the experiment prove to minimize the expense

of cloud users while using cloud resources. The proposed

approach efficiently utilizes the available resources impacting

in reducing the cost. Figure 9 and Figure 10 depict the average

resource utilization values which occupy the values between 0

to 1, and are calculated using the Eq. (8).

The simulation is performed for both scenarios by varying

task numbers from the range 100-500. The results of the

proposed method is compared with PSO, CSO and GWO

algorithms.

As mentioned, the goal of the proposed work is to maximize

resource utilization in the cloud. Through the experiment, it is

found that in case of scenario-1, the utilization increases with

an increase in the number of tasks but it is not the same during

the random arrival of tasks as seen in scenario-2. It is perceived

through simulation that in both the scenarios, the utilization

value obtained by the proposed method is always higher than

the other three algorithms. When compared with PSO, CSO

and GWO, the proposed method produces 10.26%, 7.63%,

2.61% of upgradation in the utilization rate in scenario-1,

likewise 8.76%, 6.14%, and 2.45% in case of scenario-2. The

result proves to benefit the cloud providers by maximizing the

revenue in the cloud environment. Overall the experimental

results and analysis prove that the proposed method achieves

the goal of minimizing makespan and cost while maximizing

the utilization of resources.

Table 4 shows the resource utilization by the different types

of VM’s in both scenario-1 and scenario-2. The results depict

230

the actual usage of four different types of VM’s for varying

task numbers from 100-500.

 The obtained results help the service providers to create the

actual number of VM’s required for task execution. Having

prior knowledge of the type of tasks in the queue combined

with the outcome of the proposed work offers the service

providers the knowledge of the type of VM’s required for the

execution of tasks.

6. CONCLUSION

In this paper, a three-stage strategy for solving multi-

objective optimal task scheduling and resource allocation

problems in the cloud is proposed. The proposed algorithm

reduces makespan time and cost while increasing resource

utilization.

The work categorizes incoming tasks into various

categories based on resource demand and execution time. The

tasks that have been classified are then queued separately.

Similarly, VMs with varying resource capacities are created

and queued distinctly. Using the proposed optimization task

scheduling and allocation algorithm, the classified tasks are

then mapped to the most appropriate VM type. The results of

the experiments show that the proposed method outperforms

the existing methods. More effort might be focused on testing

with real datasets and the study could be broadened to

investigate in an actual cloud system to evaluate its

performance.

REFERENCES

[1] Manvi, S.S., Shyam, G.K. (2014). Resource management

for Infrastructure as a Service (IaaS) in cloud computing:

A survey. Journal of Network and Computer

Applications, 41: 424-440.

https://doi.org/10.1016/j.jnca.2013.10.004

[2] Yousafzai, A., Gani, A., Noor, R.M., Sookhak, M.,

Talebian, H., Shiraz, M., Khan, M.K. (2017). Cloud

resource allocation schemes: Review, taxonomy, and

opportunities. Knowledge and Information Systems,

50(2): 347-381. https://doi.org/10.1007/s10115-016-

0951-y

[3] Masdari, M., Gharehpasha, S., Ghobaei-Arani, M.,

Ghasemi, V. (2020). Bio-inspired virtual machine

placement schemes in cloud computing environment:

taxonomy, review, and future research directions. Cluster

Computing, 23(4): 2533-2563.

https://doi.org/10.1007/s10586-019-03026-9

[4] Anupama, K.C., Nagaraja, R., Jaiganesh, M. (2019). A

perspective view of resource-based capacity planning in

cloud computing. In 2019 1st International Conference

on Advances in Information Technology (ICAIT), pp.

358-363.

https://doi.org/10.1109/ICAIT47043.2019.8987357

[5] Domanal, S.G., Guddeti, R.M.R., Buyya, R. (2017). A

hybrid bio-inspired algorithm for scheduling and

resource management in cloud environment. IEEE

Transactions on Services Computing, 13(1): 3-15.

https://doi.org/10.1109/TSC.2017.2679738

[6] Ding, Z., Tian, Y.C., Tang, M., Li, Y., Wang, Y.G., Zhou,

C. (2019). Profile-guided three-phase virtual resource

management for energy efficiency of data centers. IEEE

Transactions on Industrial Electronics, 67(3): 2460-2468.

https://doi.org/10.1109/TIE.2019.2902786

[7] Albert, P., Nanjappan, M. (2020). An efficient kernel

FCM and artificial fish swarm optimization-based

optimal resource allocation in cloud. Journal of Circuits,

Systems and Computers, 29(16): 2050253.

https://doi.org/10.1142/S0218126620502539

[8] Jiang, C., Duan, Y., Yao, J. (2019). Resource-utilization-

aware task scheduling in cloud platform using three-way

clustering. Journal of Intelligent & Fuzzy Systems, 37(4):

5297-5305. https://doi.org/10.3233/JIFS-190459

[9] Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R.

(2010). Towards characterizing cloud backend

workloads: insights from google compute clusters. ACM

SIGMETRICS Performance Evaluation Review, 37(4):

34-41. https://doi.org/10.1145/1773394.1773400

[10] Anupama, K.C., Shivakumar, B.R., Nagaraja, R. (2021).

Resource utilization prediction in cloud computing using

hybrid model. International Journal of Advanced

Computer Science and Applications.

https://doi.org/10.14569/issn.2156-5570

[11] Pang, S., Li, W., He, H., Shan, Z., Wang, X. (2019). An

EDA-GA hybrid algorithm for multi-objective task

scheduling in cloud computing. IEEE Access, 7: 146379-

146389.

https://doi.org/10.1109/ACCESS.2019.2946216

[12] Li, J.Q., Han, Y.Q. (2020). A hybrid multi-objective

artificial bee colony algorithm for flexible task

scheduling problems in cloud computing system. Cluster

Computing, 23(4): 2483-2499.

https://doi.org/10.1007/s10586-019-03022-z

[13] Sanaj, M.S., Prathap, P.J. (2020). Nature inspired chaotic

squirrel search algorithm (CSSA) for multi objective task

scheduling in an IAAS cloud computing atmosphere.

Engineering Science and Technology, an International

Journal, 23(4): 891-902.

https://doi.org/10.1016/j.jestch.2019.11.002

[14] Jacob, T.P., Pradeep, K. (2019). A multi-objective

optimal task scheduling in cloud environment using

cuckoo particle swarm optimization. Wireless Personal

Communications, 109(1): 315-331.

https://doi.org/10.1007/s11277-019-06566-w

[15] Natesan, G., Chokkalingam, A. (2019). Optimal task

scheduling in the cloud environment using a mean grey

wolf optimization algorithm. International Journal of

Technology, 10(1): 126-136.

https://doi.org/10.14716/ijtech.v10i1.1972

[16] Natesan, G., Chokkalingam, A. (2020). An improved

grey wolf optimization algorithm based task scheduling

in cloud computing environment. Int. Arab J. Inf.

Technol., 17(1): 73-81.

https://doi.org/10.34028/iajit/17/1/9

[17] Sheetal, A.P., Ravindranath, K. (2019). Priority based

resource allocation and scheduling using artificial bee

colony (ABC) optimization for cloud computing systems.

International Journal of Innovative Technology and

Exploring Engineering, 8(6): 39-44.

https://doi.org/10.35940/ijitee

[18] Mohammadzadeh, A., Masdari, M., Gharehchopogh, F.

S., Jafarian, A. (2021). Improved chaotic binary grey

wolf optimization algorithm for workflow scheduling in

green cloud computing. Evolutionary Intelligence, 14(4):

1997-2025. https://doi.org/10.1007/s12065-020-00479-5

[19] Sreenu, K., Malempati, S. (2018). FGMTS: fractional

231

grey wolf optimizer for multi-objective task scheduling

strategy in cloud computing. Journal of Intelligent &

Fuzzy Systems, 35(1): 831-844.

https://doi.org/10.3233/JIFS-17148

[20] Sreenu, K., Malempati, S. (2019). MFGMTS: Epsilon

constraint-based modified fractional grey wolf optimizer

for multi-objective task scheduling in cloud computing.

IETE Journal of Research, 65(2): 201-215.

https://doi.org/10.1080/03772063.2017.1409087

[21] Marahatta, A., Pirbhulal, S., Zhang, F., Parizi, R.M.,

Choo, K.K.R., Liu, Z. (2019). Classification-based and

energy-efficient dynamic task scheduling scheme for

virtualized cloud data center. IEEE Transactions on

Cloud Computing, 9(4): 1376-1390.

https://doi.org/10.1109/TCC.2019.2918226

[22] Zhang, P., Zhou, M. (2017). Dynamic cloud task

scheduling based on a two-stage strategy. IEEE

Transactions on Automation Science and Engineering,

15(2): 772-783.

https://doi.org/10.1109/TASE.2017.2693688

[23] Zuo, L., Dong, S., Shu, L., Zhu, C., Han, G. (2016). A

multiqueue interlacing peak scheduling method based on

tasks’ classification in cloud computing. IEEE Systems

Journal, 12(2): 1518-1530.

https://doi.org/10.1109/JSYST.2016.2542251

[24] Bezdan, T., Zivkovic, M., Bacanin, N., Strumberger, I.,

Tuba, E., Tuba, M. (2022). Multi-objective task

scheduling in cloud computing environment by

hybridized bat algorithm. Journal of Intelligent & Fuzzy

Systems, 42(1): 411-423. https://doi.org/10.3233/JIFS-

219200

[25] Zuo, L., Shu, L., Dong, S., Zhu, C., Hara, T. (2015). A

multi-objective optimization scheduling method based

on the ant colony algorithm in cloud computing. IEEE

Access, 3: 2687-2699.

https://doi.org/10.1109/ACCESS.2015.2508940

[26] Masadeh, R., Sharieh, A., Mahafzah, B. (2019).

Humpback whale optimization algorithm based on vocal

behavior for task scheduling in cloud computing.

International Journal of Advanced Science and

Technology, 13(3): 121-140.

[27] Lavanya, M., Shanthi, B., Saravanan, S. (2020). Multi

objective task scheduling algorithm based on SLA and

processing time suitable for cloud environment.

Computer Communications, 151: 183-195.

https://doi.org/10.1016/j.comcom.2019.12.050

[28] Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H.,

Kozuch, M.A. (2012). Heterogeneity and dynamicity of

clouds at scale: Google trace analysis. In Proceedings of

the Third ACM Symposium on Cloud Computing, pp. 1-

13. https://doi.org/10.1145/2391229.2391236

[29] Mirjalili, S., Mirjalili, S.M., Lewis, A. (2014). Grey wolf

optimizer. Advances in Engineering Software, 69: 46-61.

https://doi.org/10.1016/j.advengsoft.2013.12.007

[30] Mittal, N., Singh, U., Sohi, B.S. (2016). Modified grey

wolf optimizer for global engineering optimization.

Applied Computational Intelligence and Soft Computing.

https://doi.org/10.1155/2016/7950348

[31] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.

A., Buyya, R. (2011). CloudSim: A toolkit for modeling

and simulation of cloud computing environments and

evaluation of resource provisioning algorithms. Software:

Practice and Experience, 41(1): 23-50.

https://doi.org/10.1002/spe.995

232

