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Distributed Denial of Service (DDoS) is a server-side infrastructure type security attack 

that aims to prevent legitimate users from accessing server system resources. Huge 

financial losses, reputation damage and data theft are some of the serious circumstances 

of DDoS attacks. Available DDoS attack detection methods reduce the severity of the 

attack's consequences, but they require more data computation, which is more expensive. 

This research proposed two feature selection methods in order to reduce the data 

computation for TCP-based DDoS attack detection with Support Vector Machine (SVM) 

classification algorithm. The first feature selection proposal of this study is to use Pearson, 

Spearman, and Kendall correlation approaches to select the PSK common uncorrelated 

feature subset. Use these PSK common uncorrelated feature subsets with SVM classifier 

with different kernels on TCP-based DDoS attacks and evaluate the classification results. 

This research, performed operations on Syn flood, MSSQL, SSDP datasets have taken 

from the CIC-DDoS2019 evaluation dataset. Select TCP-based DDoS attacks common 

uncorrelated feature subset selected by applying intersection on Syn flood, MSSQL, and 

SSDP data sets PSK common uncorrelated feature subsets is the second feature selection 

proposal of this research. Use these TCP-based DDoS attacks common uncorrelated 

feature subsets with SVM classifier with different kernels on TCP-based DDoS attacks 

and evaluate the classification results. Results with these two proposed methods also 

compared in this study. Experiments have been performed with these two approaches on 

a customized TCP-based DDoS attack that's been developed with Syn flood, MSSQL, and 

SSDP data sets, and the results have been evaluated. Linear, rbf, poly, sigmoid kernels 

SVM kernels used in this research. Experiments conclude that SVM with rbf kernel 

produces better results on TCP-based DDoS attacks. 
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1. INTRODUCTION

Internet usage increased exponentially during the 

coronavirus outbreak, it became, the internet has been 

essential and very important to everyone's daily life. The 

number of cyber attacks increases proportionately with the 

number of people using the internet. Reputational damage, 

data theft, and financial losses are major consequences of 

cyber attacks. Denial of Service (DoS) is one of the cyber 

attack, it is a malicious attack which makes system or network 

unavailable to its intended users. Multiple compromised 

systems attack a target and cause a denial of service for 

legitimate users of the targeted resource, such as a server, 

website, or other network resources is called a Distributed 

Denial of Service (DDoS) attack [1]. Attackers can use 

counterfeit traffic from a DDoS attack to overwhelm a 

business server, causing losses anywhere from $8,000 to 

$74,000 per hour of downtime, and then steal data while the 

business is distracted. It shows that the importance of DDoS 

attack detection. Early detection of DDoS attack is essential to 

reduce the huge circumstances of the attack. Conventional 

detection techniques of DDoS attacks require huge computing, 

it is very expensive. This research proposed two feature 

selection methods with Support Vector Machine (SVM) to 

detect TCP-based DDoS attacks. It is computationally cost-

effective and detect the attack very fast. Syn flood, MSSQL 

and SSDP DDoS attacks are TCP-based DDoS attacks. 

A syn flood [2] exploits the handshake process of a TCP 

connection to make a server unavailable to legitimate users by 

using all available server resources. In order to establish a 

connection, a TCP connection goes through three distinct 

stages under normal circumstances. To establish a connection, 

the client first sends a SYN packet to the server. The server 

acknowledges the communication by sending a SYN/ACK 

packet in response to the initial packet. Finally, the client sends 

an ACK packet to the server to acknowledge receipt of the 

message. The TCP connection is open and ready to send and 

receive data when this sequence of packet sending and 

receiving is completed. An attacker exploits these sequences 

of handshaking processes to create a denial-of-service attack. 

The attacker sends a huge number of SYN packets to the 

targeted server with spoofed IP addresses. The server then 

acknowledges to each connection request and leaves an open 

port waiting for the response. The attacker continues to 

transmit SYN packets while the server waits for the last packet 

ACK, which never arrives. Each SYN packet leads the server 

to open a new open port connection for a set amount of time, 

and after all of the available ports have been used, the server 
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becomes unable to function normally. 

An MSSQL attack [3] is made to exploit the Microsoft SQL 

Server Resolution Protocol when a Microsoft SQL Server 

responds to a client query or request. When a client requests 

information from an MS SQL Server, the SQL Resolution 

Protocol is employed. When a client connects to a database 

server, the server responds with a list of database instances 

using the MS SQL Resolution protocol, which helps the client 

figure out which database instances they're trying to connect 

to. Attackers can take advantage of SQL servers by running 

controlled requests from a spoofed IP address that appears to 

originate from the target server. 

A reflection DDoS attack using the Universal Plug and Play 

(UPnP) network protocols to send an amplified traffic stream 

to the victim's server is known as a simple service discovery 

protocol (SSDP) attacks [4]. The SSDP protocol is used to 

allow UPnP devices to broadcast their existence to other 

devices on the network in normal conditions. During the 

typical SSDP attack process, the attacker begins looking for 

plug-and-play devices that can be used as amplifiers. 

Identified and created a list of devices capable of responding 

to queries. The attacker sends a packet to a spoofed target's IP 

address. The attacker sends packets with misleading queries to 

every Plug and Play device via a botnet. As a result, each 

device responds to the designated target, the victim receives a 

massive amount of traffic from all devices and becomes 

exhausted and unable to process legitimate traffic.  

This section introduces Syn flood, MSSQL and SSDP 

DDoS attacks. These DDoS attacks have a wide range of 

consequences, including financial and reputational 

consequences. The loss is reduced by detecting DDoS attack 

early stage. It drives DDoS attack detection research. The 

statistical methods for detecting DDoS attacks are effective, 

but model creation takes a long time. The machine learning 

method for detecting DDoS attacks has a high level of 

accuracy, but it requires more computation. Using feature 

selection, the data computation is reduced. Related works 

discussed in section 2 of this paper. Proposed methodologies 

and SVM classification algorithm explained in section 3 of this 

paper. Experimental results discussed in section 4. Both PSK 

and TCP-based common uncorrelated features produces good 

results with SVM rbf and poly kernels on TCP-based DDoS 

attacks. Section 5 contains conclusion of this research. 
 

 

2. RELATED WORK 
 

Statistical measures such as correlation, entropy, and 

covariance have been used to analyze network traffic in order 

to detect DDoS attacks. Xiao et al. [5] Proposed correlation-

based DDoS attack detection method with KNN machine 

learning method. Experiments performed on KDD’99 dataset. 

Bahl and Dahiya [6] Proposed DDoS attacks detection with 

Random forest and Naive Bayes classifier using Pearson 

Correlation Feature selection. Experiments performed on 

NSL_KDD dataset. Wei et al. [7] Proposed DDoS attacks 

Detection with Spearman correlation. Singh and Shrivastava 

[8]. Proposed DDoS attack detection method with Kendall 

correlation method. 

All proposals are proposed single correlation methods for 

feature selection to detect DDoS attack detection. This study 

proposed intersection of multiple correlation methods on 

dataset to select common uncorrelated feature subset. This 

study applies Pearson, Spearman and Kendall correlation 

methods for empirical research on TCP–based DDoS attack 

detection.  

 

 

3. METHODOLOGY 

 

3.1 Data set 

 

This study uses CIC-DDoS2019 [9] DDoS attack evaluation 

data set which contains eleven DDoS attack datasets, each data 

set contains the corresponding attack and benign target class 

labels. Each data set contains millions of records. It is 

collected from the Canadian Institute for Cyber Security. This 

research focused on TCP-based DDoS attack detection, so 

collected TCP-based DDoS attack data sets of Syn flood, 

DDoS_MSSQL, DDoS_SSDP data sets from CIC-DDoS2019 

data sets and performed operations on them. 

 

3.2 Preprocessing 
 

Data preprocessing is a set of processing steps to make a 

data suitable for machine learning algorithms. This study 

removes Unnamed: 0, Flow ID, Source IP, Source Port, 

Destination IP, Destination Port, Timestamp, SimillarHTTP 

features which vary from network to network and remove 

missing and infinite values records for cleaning the data. 

Encoding the attack and benign target labels with 0 and 1 

respectively. Next apply standardization to the features to 

increase the efficiency of the classification algorithms on data.  
 

3.3 Feature selection 
 

Feature selection [10] is an essential step for machine 

learning classification algorithms to reduce the data 

computation and reduce the model training time. Intrinsic, 

Wrapper and Filter-based feature selection techniques are 

available now a days. Variance threshold and correlation filter-

based feature selection techniques are applied in this study for 

feature selection. 
 

3.4 Variance threshold 
 

Variance threshold is a fast processing threshold based 

feature elimination method. It removes features which vary 

below a specific threshold value. Variance threshold considers 

the relationship of the feature itself in all records of the data 

set. It ignores the features link with target label. By default, it 

removes constant features which have the variance threshold 

value equal to zero, it means, that features have the same value 

in all records of the data.  
 

3.5 Correlation 
 

Correlation [11, 12] describes the relationship between two 

or more features. The correlation coefficient values vary 

between -1 to +1 to show the strength of the association 

between the features. The coefficient value is ±1 indicates 

features has the strong correlation between the features. The 

coefficient value is 0 indicates features have strong 

uncorrelation. Pearson, Spearman and Kendall correlation 

techniques [8] are used in this study for finding uncorrelation 

features. 

Pearson correlation coefficient calculated by:  
 

𝑟 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2
 (1) 
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where, r - rank of Pearson correlation coefficient; 

xi - independent-feature in a sample; 

yi - target or dependent-feature in a sample; 

𝑥̅ – mean of the x-feature values; 

𝑦̅ – mean of the y-feature values. 

Spearman correlation coefficient calculated by 

 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 (2) 

 

where, 𝜌 − rank of Spearman correlation coefficient; 

di - difference between the two ranks of each observation; 

n - number of observations. 

Kendall correlation coefficient calculated by 

 

𝜏 =
𝑁𝑐 − 𝑁𝑑

𝑛(𝑛 − 1)
2

 (3) 

 

where, 𝜏 – rank of Kendall rank correlation coefficient; 

Nc - number of concordant; 

Nd - number of discordant. 

 

3.6 Support vector machine  

 

In Machine Learning, classification [13] is the problem of 

learning to distinguish records in a dataset that correspond to 

two or more target labels. The Support Vector Machine (SVM) 

is a simple and powerful machine-learning algorithm that finds 

a hyperplane in an N-dimensional space features to classify 

among label classes. Support Vectors are the data points with 

the shortest distance to the hyperplane. Due to the kernel 

functions that turns the input data space into a higher-

dimensional space, SVMs are also known as kernelized SVMs 

[14, 15]. Linear, polynomiall, radial basis function (rbf), and 

sigmoid are the most common kernel functions. 

The linear kernel function can be written as 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖 ∗ 𝑥𝑗 (4) 

 

The polynomial kernel function can be written as 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = (1 + 𝑥𝑖 ∗ 𝑥𝑗)𝑑 (5) 

 

The radial basis function (rbf) kernel function can be written 

as 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾||𝑥𝑖 − 𝑥𝑗||2) (6) 

 

The sigmoid kernel function can be written as 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = tanh(∝ 𝑥𝑇𝑦 + 𝑐) (7) 

 

 

4. RESULTS AND DISCUSSION 

 

In this research experiments are performed on data sets of 

Syn, MSSQL, and SSDP. Experiments also are conducted out 

on a customized TCP-based DDoS attack data set, which has 

been created by concatenating 40% of the total of each Syn 

flood, MSSQL, and SSDP data sets. After pre-processing, 

remove the constant features from the datasets which have 

variance threshold=0. Next, remove quasi-constant features 

from the data sets which have variance threshold=0.01. Table 

1 shows the number of constant and quasi-constant features of 

the data sets. The amount of constant features in each data set, 

including customized data set, is the same, but the number of 

quasi-constant features vary. 

 

Table 1. Number of constant and quasi-constant features of 

the data sets 

 

Datasets 
Number of 

Constant Features 

Number of Quasi-

constant Features 

Syn 12 7 

MSSQL 12 5 

SSDP 12 8 

Customized 

TCP-Based 

DDoS attack 

12 5 

 

Table 2. Number of correlated features of the data sets 

 
Correlation Methods 

Data Sets Pearson Spearman Kendall 

Syn 41 44 41 

MSSQL  39 49 48 

SSDP 34 44 43 

Customized TCP-Based 

DDoS attack 

39 50 47 

 

Table 3. Number of PSK-common un-correlated features of 

the data sets 

 

Data Set 
Number of PSK-common un-

correlated features 

Syn 12 

MSSQL 9 

SSDP 12 

Customized TCP-Based 

DDoS attack 
10 

 

 
 

Figure 1. PSK. Common uncorrelated feature subset 

selection framework 
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Figure 2. TCP-based DDoS attack common uncorrelated 

feature subset selection framework 

 

After removing constant features, applied correlation 

algorithms in order to identify correlated features of the 

datasets. The data sets in this study are correlated using the 

Pearson, Spearman, and Kendall algorithms. In this research, 

correlation features are selected based on a threshold value 

of >=80. Table 2 shows the number of correlated features of 

the data sets including customized data set. 

Remove correlation features which are selected by the 

Pearson correlation method for the data set features set, and 

create a Pearson un-correlation feature subset. Remove 

correlation features which are selected by the Spearman 

correlation method for the data set features set, and create a 

Spearman un-correlation feature subset. Remove features 

which are selected by the Kendall correlation method for the 

data set features set, and create a Kendall un-correlation 

feature subset. Create a PSK-common un-correlated feature 

subset by intersecting uncorrelated feature subsets of Pearson, 

Spearman, and Kendall correlation Techniques. Table 3 shows 

the number of PSK-common un-correlated features of the 

datasets. Table 4 shows the list of PSK-common un-correlated 

features of TCP-based DDoS attack data sets. Figure 1 and 

Figure 2 shows the PSK and TCP common un-correlated 

features subsets selection Frameworks respectively. 

 

4.1 Evaluation metrics of classification algorithms 

 

4.1.1 Confusion matrix 

Confusion matrix is a square matrix is used to evaluate the 

performance of a classification algorithm. The actual values 

and predicted values of the target labels are represented by the 

columns and rows of the confusion matrix respectively. It 

contains True Positive (TP), True Negative (TN), False 

Positive (FP) and False Negative (FN) values. TP indicates the 

actual Positive value predicted by the classification algorithm 

to be Positive. TN indicates the actual Negative value 

predicted by the classification algorithm to be Negative. FP 

indicates the actual Positive value predicted by the 

classification algorithm to be Negative. FN indicates the actual 

Negative value predicted by the classification algorithm to be 

Positive. The values of the confusion matrix are used to 

calculate the classification algorithms evaluation metrics. 

 

4.1.2 Accuracy 

The accuracy measure shows how many of the target labels 

are correctly predicted. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

 

4.1.3 Precision 

The precision measure shows the number of target label' 

predictions are correct out of the total predictions of the label. 

Precision of positive label is  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

 

4.1.4 Recall 

The recall measure shows the number of target label' 

predictions are correct out of the total number of the label. 

Precision of positive label is  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

 

4.1.5 F1-score 

F1 Score is harmonic mean of precision and recall.  

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

 

4.1.6 Specificity 

Specificity also called True Negative rate, is True Negative 

divided by sum of True Negative and False Positive. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (12) 

 

4.1.7 K-Fold cross validation 

The K-Fold cross validation process is used to estimate the 

model's performance on a data set. The procedure is known as 

K-Fold cross validation because it only has one parameter, K, 

which specifies how many parts or folds the given data sample 

should be divided into. It selects one fold as a test set, the 

remaining folds as training sets, and then evaluates the model. 

This process is repeated until each fold has been designated as 

a test fold. 

 

4.1.8 AUC-ROC curve 

Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC) is a measurement for evaluating the effectiveness 

of classification models. It is a probabilistic curve that plots 

the True Positive Rate against False Positive Rate (FPR) at 

different threshold values. If the AUC-ROC score is close to 

1, the model is referred to as an excellent measure of target 

class separability. If the AUC-ROC score is close to 0, the 

model is referred to as the worst measure of target class 

separability. If the AUC-ROC score is close to 0.5, the model 

has no capacity for target class separation at all. 

 

4.1.9 Log-loss 

One of the most important measurements of error for 

evaluating the performance of a classification algorithm based 

on probabilities is log-loss. The log loss in a perfect model 

would be close to 0. The log loss in a worst model would be 

close to 1. 

 

𝐿𝑜𝑔 − 𝑙𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖 ln 𝑝𝑖 + (1 − 𝑦𝑖)𝑙𝑛(1 − 𝑝𝑖)]

𝑁

𝑖=1

 (13) 

 

Here, y indicates the actual value, p indicates the prediction 

probability and N indicates the number of observations. 
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Table 4. PSK-common un-correlated features lists of the data sets 

 

Sr 

No 

Feature Names 

Syn Flood attacks MSSQL attack SSDP attack Customized Exploitation DDoS 

attack 

1 Protocol Protocol Protocol Protocol 

2 Active Mean Active Mean Active Mean  

3 Total Length of Bwd 

Packets 

Total Length of Bwd 

Packets 

Total Length of Bwd 

Packets 

Total Length of Bwd Packets 

4  Total Length of Fwd 

Packets 

Total Length of Fwd 

Packets 

Total Length of Fwd 

Packets 

 

5 Total Fwd Packets Total Fwd Packets Total Fwd Packets Fwd Packet Length Std 

6  Flow Duration Flow Duration Flow Duration Bwd Packet Length Min 

7 min_seg_size_forward Fwd Header Length Fwd Header Length Fwd Header Length 

8 Total Backward Packets Total Backward Packets Bwd Packet Length Min Total Backward Packets 

9 Down/Up Ratio Fwd Packet Length Std Fwd Packet Length Std Down/Up Ratio 

10  Flow Packets/s  Fwd Packet Length Max Inbound 

11 Flow IAT Min  Flow IAT Min Flow IAT Min 

12 Active Min  Active Std min_seg_size_forward 

 

Table 5. Precision, recall, F1-score, specificity and accuracy scores of the SVM classifier kernels with PSK un-correlated 

features on Syn flood DDoS attack dataset 

 
Kernel Precision Recall F1-Score Specificity Accuracy (%) 

Attack Benign Attack Benign Attack Benign Attack Benign 

Linear 1 0.67 1 0.5 1 0.57 05 1 99.95 

RBF 1 0 1 0 1 0 0 1 99.94 

Poly  1 0.57 1 0.5 1 0.53 0.5 1 99.95 

Sigmoid 1 0 1 0 1 0 0 1 99.93 

 

Table 6. Precision, recall, F1-score, specificity and accuracy scores of the SVM classifier kernels with PSK un-correlated 

features on MSSQL attack 

 
Kernel Precision Recall F1-Score Specificity Accuracy (%) 

Attack Benign Attack Benign Attack Benign Attack Benign 

Linear 1 0.87 1 0.89 1 0.88 0.89 1 99.31 

RBF 1 0.85 1 1 1 0.92 1 1 99.52 

Poly  1 0.88 1 0.99 1 0.93 0.99 1 99.60 

Sigmoid 1 0.73 0.99 0.86 0.99 0.79 0.86 0.99 98.70 

 

Table 7. Precision, recall, F1-score, specificity and accuracy scores of the SVM classifier kernels with PSK un-correlated 

features on SSDP attack 

 
Kernel Precision Recall F1-Score Specificity Accuracy (%) 

Attack Benign Attack Benign Attack Benign Attack Benign 

Linear 1 0.49 1 0.65 1 0.56 0.65 1 99.82 

RBF 1 1 1 0.35 1 0.51 0.35 1 99.89 

Poly  1 0.51 1 0.88 1 0.65 0.88 1 99.84 

Sigmoid 1 0.5 1 0.35 1 0.41 0.35 1 99.83 

 

Table 8. Precision, recall, F1-score, specificity and accuracy scores of the SVM classifier kernels with PSK un-correlated 

features on customized dataset 

 
Kernel Precision Recall F1-Score Specificity Accuracy (%) 

Attack Benign Attack Benign Attack Benign Attack Benign 

Linear 1 0.89 1 0.83 1 0.86 0.83 1 99.68 

RBF 1 0.95 1 0.88 1 0.91 0.88 1 99.8 

Poly 1 0.94 1 0.9 1 0.92 0.9 1 99.82 

Sigmoid 0.99 0.71 1 0.39 1 0.5 0.39 1 99.1 

 

Table 9. Cross-validation accuracy values with a standard deviation of the SVM classifier kernels with PSK un-correlated 

features on datasets 

 
Kernel Syn MSSQL  SSDP Customized Dataset 

Linear 99.9766% (0.0078%) 99.4542% (0.1342%) 99.9766% (0.0078%) 99.5860% (0.0345%) 

RBF 99.9805% (0.0062%) 99.5854% (0.1142%) 99.9220% (0.0151%) 99.7920% (0.0287%) 

Poly  99.9786% (0.0095%) 99.9786% (0.0095%) 99.9415% (0.0130%) 99.8003% (0.0274%) 

Sigmoid 99.9649% (0.0048%) 98.7511% (0.1031%) 99.9649% (0.0048%) 99.0784% (0.0894%) 
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4.1.10 Run-time  

Run time is the total execution time of the process. 

 

4.2 Results and discussions with PSK common un-

correlated feature subsets 

 

Table 5 shows the accuracy, precision, recall, F1-score, and 

specificity scores of the SVM kernels with a PSK uncorrelated 

feature subset of Syn dataset. The SVM classifier produces 

good accuracy with all kernels. For attack classification, SVM 

gives better precision, recall and F1-scores with all kernels. 

For benign classification, SVM gives poor precision, recall 

and F1-scores with ‘rbf’ and sigmoid kernels, SVM with linear 

kernel gives better precision, recall and F1-scores and SVM 

with poly kernel gives good poor precision, recall and F1-

scores. For benign classification, an SVM classifier produces 

best specificity scores with all kernels. For attack classification, 

SVM with kernels ‘rbf’ and sigmoid gives poor specificity 

score, but linear and poly kernels gives a good specificity score. 

The SVM with linear kernel produces best classification 

results on Syn DDoS attack data set. 

Table 6 shows the accuracy, precision, recall, F1-score, and 

specificity scores of the SVM kernels with PSK common un-

correlated feature subset of MSSQL dataset. The SVM poly 

kernel gives best accuracy than remaining kernels on MSSQL 

dataset. The SVM all kernels gives better precision, recall and 

F1-score values for attack classification. For benign 

classification, the SVM poly kernel produces best precision 

and F1-score values, and the SVM rbf kernel produces best 

recall value. For attack classification, the SVM rbf produces 

best specificity score. For benign classification, the SVM all 

kernels produce better specificity scores. The SVM rbf kernel 

produces better classification results on MSSQL data set. 

Table 7 shows accuracy, precision, recall, F1-score, and 

specificity values of the SVM kernels with PSK common un-

correlated feature subset of SSDP dataset. The SVM ‘rbf 

‘kernel produces better accuracy on SSDP dataset than 

remaining kernels. For attack classification, the SVM all 

kernels produce better values for precision, recall and F-1 

score. For benign classification, the SVM ‘rbf’ kernel produce 

the best precision scores and the SVM poly kernel produces 

best recall and F-1 score values. For benign classification, the 

SVM produces better specificity value with all kernels. For 

attack classification, the SVM poly kernel produces best 

specificity value. Overall results, the SVM poly kernel 

produces better classification results on SSDP dataset. 

Table 8 shows accuracy, precision, recall, F1-score, and 

specificity scores of the SVM kernels using PSK common un-

correlated features-subset of customized dataset. The SVM 

poly kernel gives the best accuracy on customized dataset. On 

attack classification, an SVM classifier with all kernels gives 

better precision, recall and F1-score value. On benign 

classification, the SVM ‘rbf’ kernel gives best precision value, 

and the SVM poly kernel gives best recall and precision score 

values. The SVM sigmoid kernel gives poor F1-score value. 

On benign classification, The SVM all kernels give better 

specificity value. For attack classification, The SVM poly 

kernel gives best specificity value while, the SVM sigmoid 

kernel gives poor specificity value. Overall, the SVM poly 

kernel gives better classification results on the customized 

dataset with PSK common-uncorrelated feature subset.  

Table 9 shows K-fold cross-validation accuracy scores of 

the SVM kernels. On Syn attack, the SVM rbf kernel gives 

best K-fold cross validation accuracy value than remaining 

kernels. On MSSQL, the SVM poly kernel gives best K-fold 

cross validation accuracy value than remaining kernels. On 

SSDP, the SVM linear kernel gives best K-fold cross 

validation accuracy value than remaining kernels. On 

customized dataset, the SVM poly kernel gives best K-fold 

cross validation accuracy value than remaining kernels. 

Table 10 depicted ROC-AUC scores of the SVM kernels on 

TCP based DDoS attack data sets. The SVM ‘rbf’ kernel 

provides the best ROC-AUC score on all DDoS attack datasets. 

The SVM linear kernel provides the better ROC-AUC score 

on all DDoS attack data sets. The SVM poly kernel provides 

the very poor ROC-AUC score on Syn and MSSQL datasets 

while it produces good ROC-AUC score on SSDP dataset. The 

SVM sigmoid kernel provides the good ROC-AUC score on 

Syn and MSSQL datasets while it produces very poor ROC-

AUC score on SSDP dataset. Overall, The SVM rbf kernel 

gives best ROC-AUC scores on TCP-based DDoS attacks. 

Figure 3 to Figure 6 shows the ROC curves of the SVM kernels 

on Syn, MSSQL, SSDP and customized datasets. 

Table 11 shows the Log-loss values of the SVM kernels on 

TCP based DDoS attack data sets. The SVM linear kernel 

produces best log-loss value on Syn dataset. The SVM r with 

poly kernel produces best log-loss value of MSSQL dataset. 

The SVM rbf kernel produces best log-loss value on SSDP 

data set. The SVM classifier produces poor log-loss values of 

MSSQL dataset than the remaining two dataset. By observing 

all log-loss results, the SVM ‘rbf’ produces better log-loss 

values on all datasets. 

Table 12 depicted the execution times of the SVM kernels 

on datasets. The SVM poly kernel contain best run time on Syn 

data set. The SVM rbf kernel contain best run time on MSSQL 

dataset. The SVM linear kernel contain best run time on SSDP 

dataset. By observing all execution time results, an SVM 

classifier with rbf contain best values on all datasets. 
 

4.3 Results and discussions with TCP-based DDoS attacks 

common uncorrelated feature subsets 
 

Accuracy, precision, recall, F1-score, and specificity scores 

of the SVM kernels on Syn dataset using the TCP common un-

correlated feature subset showed in Table 13. On Syn flood 

attack data set, SVM produces better accuracy values with all 

kernels. For attack classification, SVM produces best 

evaluation values. For benign classification, SVM linear and 

poly kernels give good and SVM with rbf and sigmoid kernels 

give very low precision, recall, F1-scores and specificity 

values. 

Accuracy, precision, recall, F1-score, and specificity scores 

of the SVM kernels on MSSQL attack data set using the TCP 

common un-correlated feature subsets depicted in Table 14. 

The SVM ‘rbf’ kernel gives better accuracy on MSSQL 

dataset. For attack classification, SVM ‘linear’, ‘rbf’ and ‘poly’ 

kernels gives the better precision, recall and F1-score values. 

The SVM ‘sigmoid’ kernel gives the better precision value, 

but gives lower values than other kernels recall and F1 score 

value for attack classification. For benign classification, the 

SVM ‘linear’ and ‘rbf’ give better precision, recall and F1-

score values. The SVM ‘sigmoid’ kernel gives better recall 

value, but it gives poor precision and F1-score values compare 

to other kernels. The SVM ‘rbf’ kernel gives best specificity 

values for attack classification. For benign classification, the 

SVM classifier gives good results with all kernels. From 

overall these results, SVM with ‘rbf’ produces better 

classification results on MSSQL dataset with TCP common 

uncorrelation feature subset. 
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Table 10. ROC-AUC scores of the SVM classifier kernels with PSK un-correlated features on datasets 
 

Kernel Syn  MSSQL  SSDP Customized Dataset 

Linear 0.875117004680187 0.9013935183456373 0.976684398495299 0.9943542082601688 

Rbf 0.999926872074883 0.9988391406068616 0.986826353304181 0.953029610564549 

Poly 0.000175507020280 0.0082899972886221 0.922360637344032 0.946619500637433 

Sigmoid 0.621948127925117 0.8684299823192183 0.853126361819465 0.668447069011137 

 

 
 

Figure 3. ROC curves of the SVM kernels using PSK 

common un-correlated feature subset on Syn flood attack 
 

 
 

Figure 4. ROC curves of the SVM kernels using PSK 

common un-correlated feature subset on MSSQL attack 
 

 
 

Figure 5. ROC curves of the SVM kernels using PSK 

common un-correlated feature subset on SSDP attack 

 
 

Figure 6. ROC curves of the SVM kernels using PSK 

common un-correlated feature subset on customized TCP-

based DDoS attack 
 

Table 11. Log-loss values of the SVM classifier kernels with PSK un-correlated features on datasets 
 

Kernel Syn MSSQL SSDP Customized Dataset 

Linear 0.016154962329217152 0.23925096872239923 0.060622385688063156 0.11208449573471901 

RBF 0.02154011599148268 0.16674892046241613 0.03817023934666906 0.0689752227187703 

Poly  0.018847414495954815 0.1377492760496931 0.056131561377174344 0.06322718214778413 

Sigmoid 0.024232568158220336 0.44950027893275407 0.05837754530481742 0.3103890677676761 
 

Table 12. Execution times (in seconds) of the SVM classifier kernels with PSK un-correlated features on datasets 
 

Kernel Syn MSSQL SSDP Customized Dataset 

Linear 26.6 s 3.93 s 4.7 s 1min 15s 

RBF 4.22 s 2.15 s 7.88 s 8.54 s 

Poly  1.78 s 16.7 s 16.5 s 37.1 s 

Sigmoid 1.67 s 3.14 s 6.13 s 17.3 s 
 

Table 13. Precision, Recall, F1-score, Specificity and Accuracy scores of the SVM classifier kernels with TCP un-correlated 

features on Syndata set 
 

Kernels Precision Recall F1-Score Specificity Accuracy (%) 

Attack Benign Attack Benign Attack Benign Attack Benign 

Linear 1 0.6 1 0.38 1 0.46 0.38 1 99.95 

RBF 1 0 1 0 1 0 0 1 99.94 

Poly  1 0.6 1 0.38 1 0.46 0.38 1 99.95 

Sigmoid 1 0 1 0 1 0 0 1 99.94 
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Table 14. Precision, Recall, F1-score, Specificity and Accuracy scores of the SVM classifier kernels with TCP un-correlated 

features on MSSQL dataset 

 
Kernels Precision Recall F1-Score Specificity Accuracy (%) 

Attack Benign Attack Benign Attack Benign Attack Benign 

Linear 1 0.87 1 0.89 1 0.88 0.89 1 99.33 

RBF 1 0.86 1 1 1 0.92 1 1 99.54 

Poly  0.99 0.81 1 0.62 0.99 0.7 0.62 1 98.53 

Sigmoid 1 0.14 0.82 1 0.9 0.25 0.82 1 82.83 

 

Table 15. Precision, Recall, F1-score, Specificity and Accuracy scores of the SVM classifier kernels with TCP un-correlated 

features on SSDP dataset. 

 
Kernels Precision Recall F1-Score Specificity Accuracy (%) 

Attack Benign Attack Benign Attack Benign Attack Benign 

Linear 1 0.6 1 0.12 1 0.19 0.12 1 99.84 

RBF 1 1 1 0.38 1 0.56 0.38 1 99.9 

Poly  1 0.4 1 0.65 1 0.5 0.65 1 99.78 

Sigmoid 1 0.5 1 0.12 1 0.19 0.12 1 99.83 

 

Table 16. Precision, Recall, F1-score, Specificity and Accuracy scores of the SVM classifier kernels with TCP un-correlated 

features on customized dataset 

 
Kernels Precision Recall F1-Score Specificity Accuracy (%) 

Attack Benign Attack Benign Attack Benign Attack Benign 

Linear 0.99 0.69 1 0.39 1 0.5 0.39 1 99.08 

RBF 0.99 0.76 1 0.49 1 0.6 0.49 1 99.23 

Poly  0.99 0.95 1 0.13 0.99 0.23 0.13 1 98.98 

Sigmoid 0.99 0.41 1 0.08 1 0.13 0.08 1 98.79 

 

Table 17. K-fold cross-validation accuracy scores (with a standard deviation) in % of the SVM classifier with different SVM 

kernels at gamma=’auto’ on Syn attack data set with common features of common uncorrelated feature subsets of. TCP-based 

DDoS attack data sets 
 

Kernels Syn flood attack MSSQL attack SSDP attack Customized Exploitation DDoS attack 

Linear 99.9825% (0.0039%) 99.4437% (0.1213%) 99.4437% (0.1213%) 99.2074% (0.0981%) 

RBF 99.9805% (0.0062%) 99.6117% (0.1015%) 99.8879% (0.0174%) 99.3072% (0.0788%) 

Poly  98.9786% (0.0413%) 98.7826% (0.3742%) 99.6117% (0.1015%) 98.9786% (0.0413%) 

Sigmoid 99.9630% (0.0073%) 99.3335% (0.1911%) 99.7855% (0.0407%) 99.1387% (0.0363%) 

 

Table 18. ROC-AUC scores of the SVM classifier kernels with TCP un-correlated features 

 
Kernels Syn  MSSQL  SSDP  Customized Dataset 

linear 0.5000780031201248 0.9115668679364141 0.97216754073562 0.804878166117432 

Rbf 0.9998147425897035 0.9985558259717529 0.97746705336078 0.9166135472542274 

poly  0.01884747682815236 0.009709817623306864 0.96056421276190 0.9602001298919971 

sigmoid 0.02154011599148268 0.9659640896670526 0.22380673308588 0.7238688571909653 

 

Table 19. Log-loss values of the SVM classifier kernels with TCP un-correlated features 

 
Kernels Syn  MSSQL  SSDP Customized Dataset 

Linear 0.018847476828152368 0.23200084781720595 0.05613260096299011 0.3161369087387047 

Rbf 0.02154011599148268 0.15949896739883287 0.035924931149806244 0.267279329018493 

Poly 0.018847476828152368 0.5075051065313313 0.05837785718056215 0.41672705319774966 

Sigmoid  0.02154011599148268 5.930461606011113 0.05613260096299011 0.3161369087387047 

 

Table 20. Execution times (in seconds) of the SVM classifier kernels with TCP un-correlated features 
 

Kernels Syn  MSSQL SSDP  Customized Dataset 

Linear 10.8 s 2.78 s 12.8 s 17.3 s 

Rbf 1.9 s 2.76 s 8.27 s 18.4 s 

Poly 3.07 s 8.7 s 4min 38s 24.1 s 

Sigmoid 1.41 s 2.86 s 7.93 s 26.9 s 

 

Accuracy, precision, recall, F1-score, and specificity scores 

of the SVM kernels on SSDP dataset using the TCP-common 

un-correlated feature subsets depicted in Table 15. An SVM 

classifier gives better accuracy values with all kernels, but it 

gives the best accuracy with ‘rbf’ kernel. An SVM classifier 

gives better precision, recall and F1-score for attack 

246



 

classification. For benign classification, an SVM classifier 

with all kernels gives better specificity value. An SVM with 

‘rbf’ kernel gives better precision and F1-score value and 

SVM ‘poly’ kernel gives better recall value for benign 

classification. An SVM with ‘poly’ kernel gives better 

specificity value for attack classification. From these overall 

results, the SVM ‘rbf’ produces better classification results on 

SSDP dataset with TCP common uncorrelation features sub 

set.  

Accuracy, Precision, Recall, F1-score, and specificity 

scores of the SVM kernels with TCP common feature subset 

depicted in Table 16. SVM rbf kernel gives best accuracy 

score while SVM remaining kernels also gives better accuracy 

results. For attack classification, SVM all kernels gives better 

precision, recall and F1-score values. SVM with poly kernel 

gives best precision value, the SVM rbf kernel gives good 

recall and F1-score values than others. For benign 

classification for benign classification, the SVM poly and 

sigmoid kernels produce poor recall and F1-score values. For 

benign classification, SVM all kernels produce the best 

specificity score. The SVM rbf kernel gives a good specificity 

score while SVM with poly and sigmoid kernel produce poor 

specificity scores for attack classification. From overall results 

show SVM rbf kernel produce better classification results on 

customized dataset.  

Table 17 shows K-fold cross-validation accuracy values of 

SVM kernels on Syn attack data set with TCP common 

uncorrelated feature subset depicted in Table 17. On MSSQL 

DDoS attack data set, an SVM classifier with ‘poly’ kernel 

gives the best K-fold cross-validation accuracy value and 

SVM with ‘rbf’ kernel gives better K-fold cross validation 

value. On customized data set, an SVM classifier with ‘poly’ 

kernel gives the best K-fold accuracy value and SVM ‘rbf’ 

kernel gives better K-fold cross validation value.  

ROC-AUC scores of the SVM classifier with different SVM 

kernels on Syn attack data set with TCP common uncorrelated 

feature subset shows Table 18. An SVM classifier with ‘rbf’ 

kernel gives the best ROC-AUC scores on SYN, MSSQL, and 

SSDP TCP-based DDoS attack data sets, but it gives better 

ROC-AUC score value of customized data set with TCP 

common uncorrelated feature subset. While SVM classifier 

with ‘poly’ kernel gives the best ROC-AUC score on 

customized data set and better score on SSDP dataset, but it 

gives poor ROC-AUC score values on Syn and MSSQL 

attacks datasets. In terms ROC_AUC score, SVM with 

‘sigmoid’ kernel gives better score on MSSQL attack data set, 

good score on customized data set and it gives poor values on 

Syn and MSSQL attack data sets. Conclusion of these results, 

SVM classifier with ‘rbf’ produces best ROC-AUC scores on 

TCP-based DDoS attacks data sets with TCP common 

uncorrelated feature subset. Figure 7 to Figure 10 shows ROC 

curves of the SVM classifier with different kernels on Syn 

flood, MSSQL, SSDP and customized datasets. 

Table 19 shows the SVM kernels log-values on the Syn 

attack data set with TCP common uncorrelated feature subset. 

On Syn flood DDoS attack data set, SVM with ‘linear’ and 

‘poly’ kernels gives better log-loss score and SVM classifier 

with ‘rbf’ and ‘sigmoid’ kernels gives good log-loss values. 

An SVM classifier with ‘rbf’ kernel gives better log-loss 

values on MSSQL, SSDP and customized data set than others. 

An SVM classifier with ‘sigmoid’ kernel gives very poor log-

loss value on MSSQL DDoS attack data set. From these results, 

an SVM classifier with ‘rbf’ gives better log values on TCP 

based DDoS attacks with a common uncorrelated feature 

subset of TCP based DDoS attacks. 

Table 20 shows the execution values of the SVM classifier 

with different SVM kernels on a Syn attack dataset with TCP- 

common uncorrelated feature subset. An SVM classifier with 

‘sigmoid’ and ‘rbf’ kernels contain better execution time on 

Syn dataset. An SVM classifier with ‘rbf’ and ‘linear’ kernels 

contain better execution time on MSSQL DDoS attack data set. 

An SVM classifier with ‘poly’ kernel contains better execution 

time on SSDP dataset. An SVM classifier with ‘linear’ and ‘rbf’ 

kernels contain better execution time on customized dataset. 

From these results, SVM classifier with ‘rbf’ contain better 

execution time on TCP common uncorrelated feature subsets.  
 

4.4 Compare results with common uncorrelated feature 

subsets of PSK and TCP based DDoS attack 
 

SVM classification gives better classification results with 

both PSK and TCP common feature subsets on TCP based 

DDoS attacks. An SVM classifier with ‘linear’ kernel 

produces the best accuracy, specificity and classification 

results consists of precision, recall, and F1-score on a Syn 

attack dataset with PSK common uncorrelated feature subset. 

An SVM classifier with both ‘linear’ and ‘poly’ kernels 

produce better accuracy, specificity and classification results 

consist of precision, recall, and F1-score on Syn attack data set 

with TCP based DDoS attacks common uncorrelated feature 

subset. An SVM classifier with ‘linear’ and ‘poly’ kernels give 

accuracy value 99.95% with both PSK and TCP-based DDoS 

attacks common uncorrelated feature subset. SVM 

classification algorithm with ‘rbf’ kernel produces better 

accuracy, specificity and classification results on MSSQL 

DDoS attack data set with both PSK and TCP-based DDoS 

attacks common uncorrelated feature subset. The SVM 

classification algorithm gives 99.52% accuracy with ‘rbf’ 

kernel on MSSQL dataset with PSK common uncorrelated 

feature subset. The SVM classification algorithm gives 

99.54% accuracy with ‘rbf’ kernel with TCP-based DDoS 

attacks common uncorrelated feature subset on MSSQL DDoS 

attack data set. SVM with poly kernel produces better 

classification results on SSDP attack dataset with PSK 

common uncorrelation feature subset. SVM with ‘rbf’ 

produces better classification results on SSDP DDoS attack 

data set with a common uncorrelation feature subset of TCP-

based DDoS attacks. The SVM classification algorithm gives 

99.89% accuracy with ‘rbf’ kernel on SSDP DDoS attack data 

set with PSK common uncorrelated feature subset. The SVM 

classification algorithm gives 99.90% accuracy with ‘rbf’ 

kernel with TCP-based DDoS attacks common uncorrelated 

feature subset on SSDP dataset. SVM with ‘rbf’ kernel 

produce better classification results on a customized dataset 

with a common uncorrelation feature subset of TCP based 

DDoS attacks. The SVM classification algorithm gives 

99.80% accuracy with ‘rbf’ kernel with PSK common feature 

subset on customized dataset. The SVM classification 

algorithm gives 99.23% accuracy with ‘rbf’ kernel with TCP-

based DDoS attacks common uncorrelated feature subset on 

customized data set. 

SVM classifier kernels gives same classification results 

with both PSK and TCP common uncorrelated feature subsets 

in terms of K-fold cross validation, ROC-AUC score and log-

loss values. SVM classification with ‘rbf’ kernel gives better 

results in terms of in terms of K-fold cross validation, ROC-

AUC score and log-loss values with both PSK and TCP 

common uncorrelated feature subsets on TCP based DDoS 

attacks. 
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Figure 7. ROC curves of the SVM classifier kernels with 

TCP un-correlated features on Syn flood dataset 

 

 
 

Figure 8. ROC curves of the SVM classifier kernels with 

TCP un-correlated features on MSSQL dataset 

 
 

Figure 9. ROC curves of the SVM classifier kernels with 

TCP un-correlated features on SSDP dataset 

 
 

Figure 10. ROC curves of the SVM classifier kernels with 

TCP un-correlated features on customized dataset 

 

 

5. CONCLUSION 

 

This research proposed two feature selection method of 

PSK and TCP common uncorrelated feature subsets by using 

Pearson, Spearman and Kendall correlation methods. SVM 

classifier with linear, poly, rbf and sigmoid kernels produces 

good classification results on Syn flood, MSSQL, SSDP and 

customized TCP-based DDoS attack datasets with both 

proposed feature selection method. Although the TCP-based 

DDoS attacks common uncorrelated feature subset has less 

features than the PSK common uncorrelated feature subset, it 

yields comparable results. SVM classifier with rbf kernel 

produces better results with both feature selection methods on 

datasets. Correlation based feature selection ignores the 

interaction with the target class. So, in future, will do research 

on DDoS attack detection with Wrapper based feature 

selection methods which are selected the feature subsets based 

on the target class.  
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