
Mitigation Web Server for Cross-Site Scripting Attack Using Penetration Testing Method

Abdul Fadlil1, Imam Riadi2, Fahmi Fachri3*

1 Department of Electrical Engineering, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
2 Department of Information System, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
3 Department of Informatics, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia

Corresponding Author Email: fahmi2007048017@webmail.uad.ac.id

https://doi.org/10.18280/ijsse.120208 ABSTRACT

Received: 3 February 2022

Accepted: 29 March 2022

The increasing number of user-oriented applications uploading all their information to the

web is causing cyber-attacks and data theft. One of the most prevalent vulnerabilities is

Cross-Site Scripting (XSS). Intruders take advantage of these attacks to access sensitive

user data. This study aims to mitigate XSS attacks by using the penetration testing method

as an official effort to improve web server security. The subject of this research uses the

login form from the academic information system web server. This study offers a

mitigation system prototype against XSS using the penetration test method and the secure

code algorithm. This method plays a role in obtaining vulnerability data and security code

as a prevention system. The results of this study indicate three categories of web server

weaknesses: five at the high level, 164 at the medium level, and 52 vulnerabilities at the

low level. Mitigation measures use secure code by denying repeated failed login attempts.

These results provide a strategy for web managers to improve security and consider the

risk of cyberattacks.

Keywords:

web server, cross-site scripting, cyberattack,

penetration testing, log

1. INTRODUCTION

Cross-Site Scripting (XSS) attacks threaten industries,

organizations, companies, and governments. The attack

targets website applications that collect various data and

information. XSS attacks allow attackers to obtain data from

users for malicious purposes that harm the relevant agencies.

Attackers can legitimately enter the system and send a

backdoor virus to the user's machine or a central server.

The website application is a medium to deliver information

regarding the profile, vision, mission, types of products, and

company data [1]. A website application is a task-oriented

application used on a web server; this is essential because the

webserver is required to maintain and protect the integrity of

the information submitted to website users [2].

The use of more and more websites does not guarantee

security; increased cyber attacks and theft of sensitive data are

the main topics that are often discussed at this time; based on

the Global report by Cyber Imperva throughout 2020, web

server security in the world has increased by 33% from 2019

[3]. Based on these data, web developers need to consider the

security side and risk assessment in designing applications

based on these data [4, 5]. When launched without prior

security testing, the web becomes an attractive target for

attackers [6]. Every user who uses this vulnerable application

falls prey to hackers to obtain private data and confidential

information [7, 8].

Many security vulnerabilities in web pages result from

proven issues Cross-Site Scripting (XSS). Cross-Site Scripting

(XSS) is a type of web attack wherein malicious web code,

usually in a script, is delivered or executed from a browser on

the victim's computer through a user's web application. This

execution can filter personal information or steal users [9].

The most common type of attack is cross-site scripting (XSS)

[3]. According to top10 2020 (OWASP) Open Web

Application Security project statistics [10], XSS attack is one

of the top web application vulnerabilities in recent years; more

than 60% of websites are still vulnerable to XSS attacks [11].

Cookies serve as an objective to hijack identities in fraudulent

sessions, thus offering attackers the possibility of stealing

sensitive data or even taking control of certain devices. XSS

delivers 40% attack attempts, SQL injection (SQLi) 24%, so-

called cross-section attacks 7%, local file inclusion (LFI) 4%

and in last place in distributed denial of service (DDoS) with

3% [12].

Several studies have tested web server security against

cross-site scripting attacks with various methods, including

Machine Learning and n-Gram Methods [13]; Multilayer

Perceptron Technique [14]; OWASP Security Shepherd [15].

In addition, there is also research that uses the penetration

testing method [16]. However, so far, most of the penetration

testing on cross-site scripting attacks is only limited to

vulnerability assessment, exploitation surveys, and

identification of system loopholes. While this research uses

five stages of penetration testing, according to chipper [17],

which not only assesses system security but also includes the

process of system improvement (post-exploitation) and

reporting of results before and after repairs.

Evaluating information security systems on websites

consists of three main things: hosting providers, website

protocols such as HTTP/HTTPS, and website platforms. The

evaluation aims to determine the vulnerability of the system

[18]. This research focuses on mitigating XSS attacks through

the website platform. The vulnerability evaluation process

uses penetration testing methods intending to help

management glimpse the security of their web pages from an

International Journal of Safety and Security Engineering
Vol. 12, No. 2, April, 2022, pp. 201-208

Journal homepage: http://iieta.org/journals/ijsse

201

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.120208&domain=pdf

attacker's point of view [19].

In a security case research, this research aims to find

Vulnerability or security holes on the webserver against Cross-

Site Scripting attacks using the Penetration Testing Method to

be mitigated immediately.

2. LITERATURE REVIEW

Here are some studies that have made improvements to web

servers against Cross-site scripting attacks.

Rodríguez et al. conducted mitigation research on Cross-

Site Scripting vulnerabilities with the results of being able to

mitigate these attacks showing that the trend is increasing in

proposals that analyze web page content (13.20%), as well as

those that serve as toolkits for web browsers (16.98%) using

artificial intelligence techniques [12]. His research explained

that XSS vulnerabilities could be exploited by stealing the

victim's cookie and making the cookie login remotely, namely

by utilizing the CORS (Cross-Origin Resource Sharing)

working principle on di browser web [20]. Gunawan et al.

conducted research on XSS attacks by sending HTTP GET

requests to a web server using Java Script that connected all

web browsers to the BeFF tool on Kali Linux. The attack

exploited the victim's web server and gained remote access to

the victim's machine [21]. Omer et al. conducted mitigation

research showing that released patches for existing

vulnerabilities at the operating system (OS) level and in

Software programs do not entirely prevent XSS cyber attacks.

On the other hand, producing company-specific patches and

fixing Software bugs by realizing that software running on

each system can give better results [22]. Lei et al. research

describes three stages of XSS vulnerability repair using the

Short-Term Long Memory (LSTM) method, namely: first, the

data needs to be processed using decoding technology to return

the XSS code to an unencoded state to improve code

readability. The second uses word2vec to extract the XSS

payload features and maps them to vector features. Third,

improve the LSTM model by adding a more effective attention

mechanism. The experimental results show that the proposed

XSS detection model based on the LSTM achieves a 99.3%

resistance rate and a 98.2% recall rate in the data set collected.

This method can help minimize website security system

vulnerabilities from XSS attacks [23].

2.1 Cross-site scripting (XSS)

XSS is an attack that exploits a security vulnerability to

insert malicious scripts into web pages.

Figure 1. Survey on current vulnerability

The script will hand redirect the user to a website that has

been designed to be able to retrieve the user's cookies or

session [24]. This attack will have originated from the site or

a reliable source. As a result, until it has complete access to the

web system, a malicious script can access any information

stored in the browser, such as cookies, session tokens, or

sensitive information [25].

Figure 1 provides information that the Open Web

Application Security Project (OWASP) has summarized the

current top web application vulnerabilities; more than 24% of

websites are still vulnerable to XSS attacks and are at the

second-largest vulnerability level [26]. XSS is generally

divided into 3 three types of attacks, namely:

2.1.1 Reflected XSS

For attackers, reflected XSS is the most prevalent and

essential form of XSm [23]. Attackers employ social

engineering to get visitors to visit a website that contains

harmful malware. Next, the Intruder gains access to legitimate

users' cookies and carries out his malicious purposes, as shown

in Figure 2.

One way to prevent this attack is to verify each input data

and ensure that the data complies with the system

requirements—conditions such as maximum and minimum

character length, use of special characters, and use of numbers.

If the data does not match, the system will display a warning

and generate a warning log. The warning log becomes an

evaluation material to increase the next system update.

Figure 2. Attack type reflected XSS

2.1.2 Stored XSS

Persistent (or stored) XSS issues are a more dangerous

version of a typical attack. When attacker data gets into the

server system, users continually access and execute XSS code

unknowingly by luring users to third-party websites. These

attacks allow theft of user data through search engines and

execute a backdoor virus. The virus will give attackers access

to carry out their malicious purposes. Persistent XSS

vulnerabilities can be more severe than other varieties. In

addition, persistent XSS can spread to all accounts, create

client-side worms, login legitimately, and will not stop even if

the user restarts the machine. Persistet stored XSS refers to

Figure 3.

2.1.3 DOM based XSS

DOM-Based XSS (or as it is called in some texts, "type-0

XSS") is an XSS attack in which the attack is implemented as

a result of modification of the DOM "like environment" in the

202

victim's browser used by the original client-side script so that

client-side code running in an "unexpected" way. To deliver a

DOM-based XSS attack, one needs to put data into a source

that propagates to the sink and causes arbitrary JavaScript

execution. The XSS DOM is the URL that typically accesses

the window location. The object can generate a link to lead the

victim to a vulnerable page with a payload in the query string

and part of the URL fragment. Like targeting a 404 page or a

PHP website, the payload can also be placed in the path. If an

error occurs, the XSS script cannot run, and the payload will

be the error or delay, as shown in Figure 4.

Figure 3. Attack type stored XSS

Figure 4. Attack type DOM based XSS

2.2 System models

In this study, virtualization is carried out in a cloud network

environment, and penetration testing is used to complete the

mitigation process.

2.2.1 Cloud network environment

Cloud Network Environment [24] is a technology that

allows users to share hosts, access distributed environments,

and virtualize—using the VirtualBox program to create a

virtual environment to conduct valid and realistic assault trials.

This virtual server and attacker operating systems are available

[25]. They are making it possible to do Mitigation to prevent

web server vulnerabilities. The environmental structure design

in this research is shown in Figure 5.

Figure 5 provides information on the virtual environment

infrastructure, consisting of three parts: the Intruder as the

attacker, the web server acts as the initial target of the attack

before obtaining essential data, and the database serves as the

primary purpose of cyberattacks on the overall data storage.

The following is the network configuration data for each

device, as shown in Table 1.

Figure 5. Environment structure

Table 1. Configuration network

Device OS IP Address Port

Server Ubuntu 20.04 192.168.1.14 Enp0s3

Attacker Parrot OS 192.168.1.20 eth0

Table 1 shows that this environment consists of two devices:

Linux Ubuntu as the server and Parrot Os as the attacker.

2.2.2 Penetration testing

Penetration testing is a structured process to test an

organization's computing base, including hardware, software,

and people. This process includes analyzing the organization's

overall computing system, looking for vulnerabilities such as

system configuration, software, and hardware errors, and its

operational processes to identify weaknesses [27]. Penetration

testing aims to secure an organization by imitating what

attackers do. This helps determine the various vulnerabilities

that can damage the system and fix them before they happen.

3. THE PROPOSED APPROACH

3.1 Research subject

The research subject studied in this research was a web

server on the Academic Information System. Researchers

analyzed system security using the Penetration Testing

method. Researchers also analyzed the tools' ability to

discover what vulnerabilities were found on the webserver.

Penetration Testing is expected to improve and enhance the

web server's security.

3.2 Experiment research stages

This experimental study is to mitigate against XSS attacks

using two secure code algorithms. This research consists of

three stages: the first stage of gathering information about the

webserver, which involves searching for vulnerabilities,

determining the type of attack, and the attack process. The

second stage includes corrective actions against web server

vulnerabilities using a mitigation system.

The third stage is to test the attack again on the system to

determine which Mitigation can work to minimize attacks.

Each stage has its role. The first stage focuses on identifying

vulnerabilities, the second stage on improvement efforts based

on vulnerabilities, and the third stage as a verification step

against improvement efforts in the previous stage [28]. The

flow chart of the experimental stages in this research refers in

Figure 6.

203

Figure 6 shows how the workflow experiment in this study

is used to implement Mitigation. There are five steps to follow:

1. Intelligence Gathering, gathering information about

web servers.

2. Vulnerability analysis is carried out by scanning for

vulnerabilities and determining the types of attacks

that can be exploited.

3. Exploitation attacked the vulnerabilities found and

tested whether they could be exploited.

4. Post-Exploitation this stage, improvements are made,

solutions are applied to vulnerabilities, and a retest is

carried out.

5. Reporting: This is the report generation section based

on the analysis results in vulnerability testing results

before and after repairs.

Figure 6. Flowchart of experiment research stages

3.3 Forensic tools

This section defines the forensic tools that play an essential

role in simulating attacks against web servers, as shown in

Table 2.

Table 2. Forensic tools

No Tools Version Function

1 Parrot 5.10 OS Attacker

2 Ubuntu 20.05 OS Server

3 VirtualBox 6.1.32 Research Environment

4 NMAP 7.9.1 Intelligence Gathering

5 Whois Web App Intelligence Gathering

6 Nikto 2.1.6 Vulnerability analysis

7 Acunetix 11.0 Vulnerability analysis

8 Wireshark 3.4.3 Capture Network

Table 2 presents a list of data from tools and materials to

perform a series of simulations. The attacker carries out the

attack process using the Parrot Security Operating System.

Parrot OS provides complete tools to attack web servers and

perform Penetration Testing, namely NMAP, Whois, Nikto,

and Acunetix.

4. RESULT AND DISCUSSION

Penetration testing in this research is done by simulating,

reviewing, and evaluating the Academic Information System

on the server. The penetration testing analysis used in this

research includes several stages, namely intelligence gathering,

vulnerability analysis, exploitation, post-exploitation, and

reporting.

4.1 Intelligence gathering

The first step is Intelligence Gathering, which is a process

of direct action against the target taken [29]. Intelligence

gathering aims to investigate the problem and determine the

right tools for the next phase. The information-gathering

process is divided into active and passive information

gathering [30]. Collecting information using active

information gathering techniques using NMAP (Network

Exploration or Security Auditing) tools, while passive

information gathering using tools which is lookup.

4.1.1 NMAP (Network exploration or security auditing)

Figure 7. Information web server system

Based on Figure 7, it is known that the scan results using

Nmap on the Academic Information System server display

information about ports on the system that are still open, one

of which is port 22 SSH (Secure Shell) and port 80 HTTP

(Hypertext Transfer Protocol) running on IP 192.168.1.14.

4.1.2 Who is lookup

Whois is an internet service that provides information about

a domain. Whois Lookup aims to display information on a

particular domain, such as status, registration, address, contact,

name server, and other information [31]. In addition, this

application also provides information related to a domain that

is available or has been taken by someone else, Figure 8.

Figure 8 shows the results of passive information gathering.

The front of the web is a page where users can see and interact

directly at the beginning of a visit before entering the system

and getting all the information contained therein.

204

Figure 8. Front end website login

4.2 Vulnerability analysis

In this second step, take a systematic and proactive

approach to find vulnerabilities by identifying, classifying,

and prioritizing vulnerabilities in the system. Generally, this

section is helpful to websites, applications, and network

infrastructure [31]. This research uses Nikto and Acunetix

tools. Nikto can assess website server security systems to

identify specific security holes. Acunetix can detect and notify

various kinds of vulnerabilities in website applications.

4.2.1 Nikto

Nikto is a web application security scanner tool that

functions to find security gaps. Nikto is also a vulnerability

assessment (VA) application designed as a hidden tool for

evaluating systems or finding system weaknesses [32]. The

results of the analysis using the Nikto application can be seen

in Figure 9.

Figure 9. Scanning vulnerability Nikto

Nikto's scanning results produce information about several

vulnerabilities, namely:

a. Anti-clickjacking

b. X-XSS (Cross-site Scripting)

c. X-Frame Header Options are Missing

d. Indikasi file /index.php

e. /: Output the phpinfo() was found

f. HTML Form without CSRF Protection

4.2.2 Acunetix

Figure 10 provides information on the acunetix application,

which can detect and notify various vulnerabilities in

applications built on various platforms such as WordPress,

PHP, ASP.NET, Java Frameworks, and Ruby on Rails [5].

Figure 10 shows the results of a vulnerability scan using the

acunetix application, namely:

a. 5 Vulnerabilities are at High Severity Vulnerabilities

b. 164 Vulnerability is at Medium Severity

Vulnerabilities

c. 52 Vulnerabilities are at Low Severity Vulnerabilities

Figure 10. Report scan acunetix

Figure 11. Result scan vulnerability

Figure 11 shows that the webserver security level in

Acunetix tools is at a dangerous (high) level. At this level,

hackers are very easy to exploit, which may be done from

viewing, changing, deleting data, creating new accounts to

endanger the web, and taking over the website's function

completely [33]. Based on the results of scanning with both

tools, it can be concluded that the vulnerability to Cross-site

scripting attacks is in the High category. Therefore, it is

necessary to analyze to maintain system security from outside

attacks.

4.3 Exploitation

The third step is to take advantage of the XSS vulnerability

by injecting the payload into the webserver. This exploitation

stage focuses on all possible XSS attacks, thereby minimizing

the vulnerability to reappearance [34].

4.3.1 Wireshark

Figure 12. Network traffic log

The network traffic log in Figure 12 shows a cross-site

script attack, starting with the attacker launching an attack on

the server using a malicious script on the user and password.

The use of target port is port 80, the length of the batch is 416,

and the HTTP and IP protocols are 192.168.1.20, namely

computers with operating systems using Parrot OS.

4.3.2 Cross-site scripting

In this case, the attacker's payload becomes part of the

request sent to the webserver. This is then reflected such that

the HTTP response includes the payload of the HTTP request.

The reflected XSS Payload is then executed in the user's

browser. The exploitation web refers to Figure 13.

205

Figure 13. Exploitation web target

The result of Figure 13 is an example of a web server system

that was successfully attacked in a cross-site scripting security

vulnerability. The web server vulnerability gets an alert

message with the script <scr<script>ipt>alert("Hello, I'm

Fachri trying cross-site scripting")</script>. Attackers use

social engineering to invite users to click on URLs embedded

with malicious code. This helps the Intruder obtain the user's

cookies, which can then be used to hijack the user's session.

This result follows Buyukkayhan et al. research [35], which

states that cross-site scripting vulnerabilities are dangerous in

tampering with web server security.

4.4 Post exploitation

The next stage in penetration testing is post-exploitation. At

this stage, a repair process is carried out on the webserver

based on the weaknesses found, and the appropriate solution

is determined to overcome the vulnerability [36]. The best way

to solve this problem is to provide an anti-injection source

code configuration, i.e., username and password do not use

special characters. Post-exploitation consists of two stages.

The first stage is adding a secure code algorithm to the

webserver. The second stage is retesting to ensure the

application of the Algorithm has functioned as intended.

4.4.1 Mitigation web server

Based on the results obtained in the above exploitation stage,

the mitigation process needed aims to stop the spread of

hackers against cross-site scripting attacks by configuring the

server and adding the security code of the Algorithm. Fixing

the vulnerability to cross-site Scripting attacks is done by

configuring the server. The Mitigation refers to Figure 14.

Figure 14. Mitigation web server with algorithm1

Figure 14 provides information on the implementation of

algorithm1 to prevent injection through special characters in

the username and password form. If the user uses one or more

special characters, the Algorithm will reject the incoming data

process, thus preventing the injection process of the database.

The following is the application of Algorithm2 to validate the

input data, as shown in Figure 15.

Figure 15. Mitigation web server with algorithm2

Figure 15 the InputValidation() code tests the validity of the

input made and ensures that the data loaded has not changed.

The Algorithm will check the input data by matching them to

the system. Valid data will produce True output, and if invalid

data, it will give False output.

4.4.2 Attack test simulation

Test attacks are carried out when the server conditions have

been improved. Attack trials were carried out from the

attacker's host and simulated cross-site scripting attacks on the

server, as shown in Figure 16.

Figure 16. Rejection attack on a web server

4.5 Reporting

The fifth or final stage of the Penetration testing method is

the reporting stage. This shows the effectiveness of the

penetration testing method by comparing the results of

exploitation with the post-exploitation stage. The vulnerability

testing results produce an effective solution by rejecting

suspicious data input into the system. This solution is a

mitigation effort by adding a secure code algorithm to the

source code on the webserver so that if an injection attack

attempts on the webserver occur, the system will reject the

attempt.

Table 3. Result report mitigation

No Mitigation Function Result Status

1 Algorithm1
Identification Special

Character
Block Success

2 Algorithm2 Validation Input Data Block Success

Table 3 provides information on the implementation of

secure code mitigation using two algorithms. Algorithm1

functions to prevent injection via special characters (*, %, #,

<), and algorithm2 focuses on preventing data input that does

not match the database system. The result column with the

"Block" indicator means that the XSS attack test was

206

successfully rejected. The status column with the "success"

indicator shows that the implementation of Mitigation using

secure code is running successfully to prevent injection attacks

against the webserver.

5. CONCLUSIONS

Implementing source code improvements applied to the

webserver is proven to prevent cross-site scripting attacks and

block attackers. Researchers also found several vulnerabilities

in the Academic Information System server. There are also

types of vulnerabilities categorized into three categories,

namely five high levels, 164 medium levels, and 52 low levels.

Simulation of attacks carried out by injecting scripts on the

server has proven to be successful in penetrating the system by

displaying an alert message. System improvement is made by

configuring the source code contained on the server and has

proven successful in preventing attacks and thwarting

attackers' access to enter the system. The results of the attack

simulation using the Penetration Testing method can provide

information on vulnerabilities and accelerate IT in overcoming

structured and systematic attacks on Academic Information

Systems, especially against cross-site scripting attacks. This

research has limitations, namely, only testing on servers that

use the reflected XSS feature. Therefore, further research is

recommended to test other types of features to increase the

generalizability of the results of this research.

REFERENCES

[1] Arnaldy, D., Perdana, A.R. (2019). Implementation and

analysis of penetration techniques using the man-in-the-

middle attack. In 2019 2nd International Conference of

Computer and Informatics Engineering (IC2IE), pp. 188-

192. https://doi.org/10.1109/IC2IE47452.2019.8940872

[2] Prajapati, P., Patel, N., Shah, P. (2019). A review of

recent detection methods for HTTP DDoS attacks.

International Journal of Scientific and Technology

Research, 8(12): 1693-1696.

[3] Malviya, V.K., Rai, S., Gupta, A. (2021). Development

of web browser prototype with embedded classification

capability for mitigating Cross-Site Scripting attacks.

Applied Soft Computing, 102: 106873.

https://doi.org/10.1016/j.asoc.2020.106873

[4] Toapanta, S.M., Quimis, O.A.E., Gallegos, L.E.M.,

Arellano, M.R.M. (2020). Analysis for the evaluation

and security management of a database in a public

organization to mitigate cyber attacks. IEEE Access, 8:

169367-169384.

https://doi.org/10.1109/ACCESS.2020.3022746

[5] Surian, R.U., Abd Rahman, N.A., Nathan, Y. (2020).

Nscanner: Vulnerabilities detection tool for web

application. Journal of Physics: Conference Series,

1712(1): 012018. https://doi.org/10.1088/1742-

6596/1712/1/012018

[6] Toapanta, S.M.T., Ochoa, I.N.C., Sanchez, R.A.N.,

Mafla, L.E.G. (2019). Impact on administrative

processes by cyberattacks in a public organization of

Ecuador. In 2019 Third World Conference on Smart

Trends in Systems Security and Sustainablity (WorldS4),

pp. 270-274.

https://doi.org/10.1109/WorldS4.2019.8903967

[7] Priyanka, A.K., Smruthi, S.S. (2020). WebApplication

Vulnerabilities: Exploitation and Prevention. In 2020

Second International Conference on Inventive Research

in Computing Applications (ICIRCA), pp. 729-734.

https://doi.org/10.1109/ICIRCA48905.2020.9182928

[8] Chen, Q. (2020). Research on the implementation

method of database security in management information

system based on big data analysis. In E3S Web of

Conferences, 185: 02033.

https://doi.org/10.1051/e3sconf/202018502033

[9] Zubarev, D., Skarga-Bandurova, I. (2019). Cross-site

scripting for graphic data: Vulnerabilities and prevention.

In 2019 10th International Conference on Dependable

Systems, Services and Technologies (DESSERT), pp.

154-160.

https://doi.org/10.1109/DESSERT.2019.8770043

[10] Open Web Application Security Project. (2021). Top 10

Web Application Security Risks.

[11] Salas, M.I.P., Martins, E. (2014). Security testing

methodology for vulnerabilities detection of XSS in web

services and WS-security. Electronic Notes in

Theoretical Computer Science, 302: 133-154.

https://doi.org/10.1016/j.entcs.2014.01.024

[12] Rodríguez, G.E., Torres, J.G., Flores, P., Benavides, D.E.

(2020). Cross-site scripting (XSS) attacks and mitigation:

A survey. Computer Networks, 166: 106960.

https://doi.org/10.1016/j.comnet.2019.106960

[13] Habibi, G., Surantha, N. (2020). XSS attack detection

with machine learning and n-gram methods. In 2020

International Conference on Information Management

and Technology (ICIMTech), pp. 516-520.

https://doi.org/10.1109/ICIMTech50083.2020.9210946

[14] Mokbal, F.M.M., Dan, W., Imran, A., Lin, J., Akhtar, F.,

Wang, X. (2019). MLPXSS: An integrated XSS-based

attack detection scheme in web applications using

multilayer perceptron technique. IEEE Access, 7:

100567-100580.

https://doi.org/10.1109/ACCESS.2019.2927417

[15] Wibowo, R.M., Sulaksono, A. (2021). Web

Vulnerability Through Cross Site Scripting (XSS)

Detection with OWASP Security Shepherd. Indonesian

Journal of Information Systems, 3(2): 149-159.

https://doi.org/10.24002/ijis.v3i2.4192

[16] Liu, M., Zhang, B., Chen, W., Zhang, X. (2019). A

survey of exploitation and detection methods of XSS

vulnerabilities. IEEE Access, 7: 182004-182016.

https://doi.org/10.1109/ACCESS.2019.2960449

[17] Chipher. (2020). A complete guide to the phases of

penetration testing. 2020 5th International Conference on

Computer and Communication Systems, ICCCS 2020,

Farmingdale, NY 11735 United States.

[18] Nirmal, K., Janet, B., Kumar, R. (2018). Web application

vulnerabilities-the hacker's treasure. In 2018

International Conference on Inventive Research in

Computing Applications (ICIRCA), pp. 58-62.

https://doi.org/10.1109/ICIRCA.2018.8597221

[19] Pandey, R., Jyothindar, V., Chopra, U.K. (2020).

Vulnerability Assessment and Penetration Testing: A

portable solution Implementation. In 2020 12th

International Conference on Computational Intelligence

and Communication Networks (CICN), pp. 398-402.

https://doi.org/10.1109/CICN49253.2020.9242640

[20] Nirmal, K., Janet, B., Kumar, R. (2018). It's more than

stealing cookies-exploitability of XSS. In 2018 Second

207

https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/10.1016/j.asoc.2020.106873
https://doi.org/
https://doi.org/10.1109/ICIRCA.2018.8597221
https://doi.org/

International Conference on Intelligent Computing and

Control Systems (ICICCS), pp. 490-493.

https://doi.org/10.1109/ICCONS.2018.8663230

[21] Gunawan, T., Lim, M.K., Kartiwi, M., Malik, N.A.,

Ismail, N. (2018). Penetration testing using Kali Linux:

SQL injection, XSS, Wordpres, and WPA2 attacks.

Indonesian Journal of Electrical Engineering and

Computer Science, 12(2): 729-737.

https://doi.org/10.11591/ijeecs.v12.i2.pp729-737

[22] Aslan, Ö., Samet, R. (2017). Mitigating cyber security

attacks by being aware of vulnerabilities and bugs. In

2017 International Conference on Cyberworlds (CW), pp.

222-225. https://doi.org/10.1109/CW.2017.22

[23] Lei, L., Chen, M., He, C., Li, D. (2020). XSS detection

technology based on LSTM-attention. In 2020 5th

International Conference on Control, Robotics and

Cybernetics (CRC), pp. 175-180.

https://doi.org/10.1109/CRC51253.2020.9253484

[24] Gupta, S., Gupta, B.B. (2017). Cross-Site Scripting (XSS)

attacks and defense mechanisms: Classification and

state-of-the-art. International Journal of System

Assurance Engineering and Management, 8(1): 512-530.

https://doi.org/10.1007/s13198-015-0376-0

[25] Mahmoud, S.K., Alfonse, M., Roushdy, M.I., Salem,

A.B.M. (2017). A comparative analysis of Cross Site

Scripting (XSS) detecting and defensive techniques. In

2017 Eighth International Conference on Intelligent

Computing and Information Systems (ICICIS), pp. 36-42.

https://doi.org/10.1109/INTELCIS.2017.8260024

[26] Patel, K. (2019). A survey on vulnerability assessment &

penetration testing for secure communication. In 2019

3rd International Conference on Trends in Electronics

and Informatics (ICOEI), pp. 320-325.

https://doi.org/10.1109/ICOEI.2019.8862767

[27] Al Shebli, H.M.Z., Beheshti, B.D. (2018). A study on

penetration testing process and tools. In 2018 IEEE Long

Island Systems, Applications and Technology

Conference (LISAT), pp. 1-7.

https://doi.org/10.1109/LISAT.2018.8378035

[28] Ye, Y., Guo, J., Xu, X., Li, Q., Liu, H., Di, Y. (2019).

High-risk problem of penetration testing of power grid

rainstorm disaster artificial intelligence prediction

system and its countermeasures. In 2019 IEEE 3rd

Conference on Energy Internet and Energy System

Integration (EI2), pp. 2675-2680.

https://doi.org/10.1109/EI247390.2019.9062097

[29] Kothia, A., Swar, B., Jaafar, F. (2019). Knowledge

extraction and integration for information gathering in

penetration testing. In 2019 IEEE 19th International

Conference on Software Quality, Reliability and Security

Companion (QRS-C), pp. 330-335.

https://doi.org/10.1109/QRS-C.2019.00068

[30] Sadigh, D., Landolfi, N., Sastry, S.S., Seshia, S.A.,

Dragan, A.D. (2018). Planning for cars that coordinate

with people: leveraging effects on human actions for

planning and active information gathering over human

internal state. Autonomous Robots, 42(7): 1405-1426.

https://doi.org/10.1007/s10514-018-9746-1

[31] Gautam, R. (2016). Analysis and implementation of

WHOIS domain lookup. International Journal of

Technical Research & Science, 20(1-2): 21-37.

[32] Rahman, M.A., Amjad, M., Ahmed, B., Siddik, M.S.

(2020). Analyzing web application vulnerabilities: an

empirical study on e-commerce sector in Bangladesh. In

Proceedings of the International Conference on

Computing Advancements, pp. 1-6.

https://doi.org/10.1145/3377049.3377107

[33] Amankwah, R., Chen, J., Kudjo, P.K., Towey, D. (2020).

An empirical comparison of commercial and open‐

source web vulnerability scanners. Software: Practice

and Experience, 50(9): 1842-1857.

https://doi.org/10.1002/spe.2870

[34] McKinnel, D.R., Dargahi, T., Dehghantanha, A., Choo,

K.K.R. (2019). A systematic literature review and meta-

analysis on artificial intelligence in penetration testing

and vulnerability assessment. Computers & Electrical

Engineering, 75: 175-188.

https://doi.org/10.1016/j.compeleceng.2019.02.022

[35] Buyukkayhan, A.S., Gemicioglu, C., Lauinger, T., Oprea,

A., Robertson, W., Kirda, E. (2020). What's in an Exploit?

An Empirical Analysis of Reflected Server {XSS}

Exploitation Techniques. In 23rd International

Symposium on Research in Attacks, Intrusions and

Defenses (RAID 2020), pp. 107-120.

[36] Rapley, A., Bellekens, X., Shepherd, L.A., McLean, C.

(2018). Mayall: A framework for desktop JavaScript

auditing and post-exploitation analysis. In Informatics,

5(4): 46. https://doi.org/10.3390/informatics5040046

208

https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/

