
  

  

Stabilization of Three Links Inverted Pendulum with Cart Based on Genetic LQR Approach  
 

Abdullah Ibrahim Abdullah, Yazen Hudhaifa Shakir Alnema*, Mohammad A. Thanoon 

 

 

College of Electronics Engineering, Systems and Control Engineering, Ninevah University, Mosul 41001, Iraq 

 

Corresponding Author Email: yazen.shakir@uoninevah.edu.iq 

 

https://doi.org/10.18280/jesa.550113 

  

ABSTRACT 

   

Received: 30 November 2021 

Accepted: 17 February 2022 

 This academic paper demonstrates the implementation of a Linear Quadratic Regulator 

(LQR) controller design for optimal controlling a three connected links in an inverted 

pendulum form that attached to a moving cart to realize the stability of making a pendulum 

in a straight vertical line via translation of the cart left and right. To maintain a triple link 

inverted pendulum (TLIP) vertical, genetic algorithm has been employed to adjust and 

tune the parameters of LQR, which are the weighting matrices Q and R instead of the 

approach of try and error. In this article, a hybrid control algorithm (GA-LQR) proposed 

to select the optimal values of weighting matrices to overcome LQR design difficulties, 

which gives the best transient response requirements such as percentage overshoot and 

steady state error. The triple link inverted pendulum is model mathematically modelled in 

MATLAB platform to simulate the actual system where the results from the simulation 

gives acceptable and adequate performance of LQR controller in making the system stable.  
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1. INTRODUCTION 

 

The features that distinguish the triple inverted pendulum 

over other system can be summarized as follow: non-linearity 

extremely high, multi-variable parameters, high order 

instability.  

This system is dynamics and similar to many actual systems 

such as legged robots, landing system automatically for 

aircrafts and many other applications in the industry sector [1]. 

Applying control techniques for the inverted pendulum via 

control theory is considered a challenging and not mush easy 

to perform.  

Since it is highly unstable plus nonlinear system. This 

complexity increases directionally proportional with the 

number of links that constitutes the pendulum body [2]. In this 

research, a three inverted links pendulum carried via or 

mounted on a cart will be revealed to study and analysis the 

control theory that ensure making the pendulum 

straightforward. The TLIP scheme is SIMO system that means 

single input with multiple output.  

This pendulum will be stabilized via a linear quadratic 

regulator which is shortly called (LQR) in continuous time 

domain. The main reason behind this work is to obtain 

improvement of the overall performance for transient and 

steady state responses of the cart TLIP [3]. A LQR controller 

that tuned via a genetic algorithm has been successfully 

executed for a cart triple link inverted pendulum system. 

 

 

2. MATHEMATICAL MODEL 

 

The best description for the mathematical model of the 

triple link inverted pendulum (TLIP) can be expressed via the 

Lagrange technique (equation) [4]. Three links with different 

lengths are together create the pendulum hinged from the 

bottom with a cart as shown below in Figure 1 where the 

external force or action denoted by u, x is measured by meters 

that represents displacement of cart. The Joints variables of the 

first, middle and last bars of the pendulum are θ1, θ2, θ3 

respectively [5]. 

 

 
 

Figure 1. Schematic of cart with three links inverted 

pendulum 

 

The state space equations are an appropriate approach to 

implement the modelling of the this inverted pendulum plant 

as shown below: 

 

𝑋̇ = AX + BU (1) 

 

Y = CX + DU (2) 

 

where, 

The state variables as a vector is defined 𝑋 =
[𝑥 𝜃1 𝜃2 𝜃3 𝑥̇ 𝜃̇1 𝜃̇2 𝜃̇3]

𝑇. 

Y: is a vector that contains the output matrix;  
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U: is the vector that contains inputs of the systems;  

C: is the output matrix that selects required output; 

D: is the feedforward matrix which is zero; 

A: plant matrix which is square matrix. 

 

𝐴 =

[
 
 
 
 
 
 
 
0   
0   
0  
0   
0   
0   
0   
0   

0
0
0
0

−12.4928
67.1071
144.5482

−300.4564

0
0
0
0

−2.0824
65.2564

−394.2536
512.8310

0
0
0
0

2.2956
−71.9704
272.1049

−258.9198

1
0
0
0

−5.1127
14.0176
5.2021

−10.8077

0
1
0
0

0.0075
0.0039

−0.4334
0.6476

0
0
1
0

0.0024
−0.1948
1.1287

−1.3621

0
0
0
1

−0.0053
0.1659

−0.7492
0.826 ]

 
 
 
 
 
 
 

 

 

B=[0   0  0   03.651   -10.012 -3.716  7.720]T 

 

𝑐 = [

1
0

0 0 0 
1 0 0

0
0

0 1 0
0 0 1

0 
0
0
0

0 
0
0
0

0
0
0
0

 0
0
0
0

] 

 

The following system, input and output matrices have been 

taken from the reference [5]. 

 

m0=2.4 kg 

m1=1.323 kg    m2=1.389 kg    m3=0.8655 kg 

L1=10402 m     L2=0.332 m      L3=0.72 m 

I1=0.2449 m     I2=0.193 m     I3=0.3405 m 

J1=.0119 Kgm2    J2=.0069e-3Kgm2         J3=.0291 Kgm2 

f0=13.611 Nsm-1     f1=.0045 Nsm       f2=0.0045 Nsm 

f3=0.0045 Nsm     Ks=9.722 NV       g=9.81 ms-2 

 

Regarding C- Matrix gives four outputs out of eight states. 

Which are (three Joints angles and linear distance of the 

cart). 

 

 

3. LQR CONTROLLER 

 

The feedback control system for all states compared with 

reference input for Triple Links Inverted Pendulum (TLIP) is 

illustrated in Figure 2. It is a controller with more than one 

variable, which can instantaneously regulate and control two 

or more parameters, which can be identified here as the linear 

horizontal distance of the cart and the joint angles of the links 

with respect to the vertical line at the same time. Let assume 

that the state equation of a given LTI system is: [6].  

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 , 𝑦 = 𝐶𝑥 + 𝐷𝑢 (3) 

 

In addition, the quadratic cost function (performance index) 

is: 

 

𝐽 =
1

2
∫ [𝑋𝑇(𝑡)𝑄(𝑡)𝑋(𝑡) + 𝑈𝑇(𝑡)𝑅(𝑡)𝑈(𝑡)]𝑑𝑡

𝑡𝑓

0

 (4) 

 

where, Q and R are positive definite matrices. For our paper 

we have incorporated degree of stability 𝛼. All closed-loop 

poles are to the left of −𝛼. Thus, we derive a new performance 

index cost function: 

 

𝐽 =
1

2
∫ [𝑒2𝛼𝑇{𝑋𝑇(𝑡)𝑄(𝑡)𝑋(𝑡) + 𝑈𝑇(𝑡)𝑅(𝑡)𝑈(𝑡)}]𝑑𝑡

𝑡𝑓

0

 (5) 

 

In order to determine the best feedback control law  

u(t)=-Kx(t); to make the cost function (J) as minimum as 

possible, thus u(t) is named optimal control. From the optimal 

control theory, it can make Eq. (3) to be minimum by this 

control law as written below: 

 

𝑢(𝑡) = −𝑅−1𝐵𝑇λ(t) (6) 

 

We can compute the value of the λ(t) from the follwoing 

relation: 

 

λ(t) = −p(t)X(t) (7) 

 

p(t) is the solution for what is called Riccati differential 

equation, so the dervative of this solution can be as: 

 

ṗ(t) = −p(t)𝐴 − 𝐴𝑇p(t) + p(t)𝐵𝑅−1𝐵𝑇p(t) − 𝑄 (8) 

 

𝑡𝑓: 𝑓𝑖𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑠.  

A, B: are the system and input matirces respectively.  

When 𝑡𝑓 goes to approximately infinity, p(t) tends to be a 

constant value matrix, and ṗ(t) = 0 , thus  

 

p(t)𝐴 + 𝐴𝑇p(t) − p(t)𝐵𝑅−1𝐵𝑇p(t) + 𝑄 = 0 (9) 

 

where, A, B, Q and R are already known, so the solver is p (t) 

which Riccati constant will be determined via Eq. (9). 

This relation is called Algebraic Riccati equation which is 

in a matrix form. Consequently, it can obtain the state 

feedback vector:  

 

K = −R−1𝐵𝑇  𝑝 (10) 

 

This is giving an indication that the crucial concern is to 

choose the optimal values of Q and R matrices that leads to 

calculate best value of P in algebric Riccati equation, 

consequently the feedback gain K can be solved [7, 8].  

As mention above in details for obtaining the feed-back gain 

K does not ensure or give guarantee that the obtained gain 

from the feedback signal can achieve to zero steady state error. 

when the input is a step for instance, it is very common the 

feedback transfer function H(s) of a closed loop system has 

unsatisfactory dc gains M, 0 < M < 1. The transfer function of 

a closed loop system is expressed as 𝐻(𝑠) = 𝐶(𝑠𝐼 − (𝐴 −
𝐵𝐾))−1𝐵 where dc gain M can be obtained by 𝐻(𝑠)|𝑠=0 [9]. 
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Figure 2. Feedback control system with full states for TIP 

 

where the N as shown in Figure 2 is a pre-gain = 1/M which is 

unsatisfactory, however it is necessary to ensure steady state 

error to be zero when H(s)=0. 

In Figure 2, the mathematical representation for the block 

diagram can be summarized as follow: 

 

𝐾 = [𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6 𝐾7 𝐾8] (11) 

 

𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑔𝑎𝑖𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑢(𝑡) = −𝐾𝑥(𝑡) (12) 

 

𝑥(𝑡) = [𝑥 𝜃1 𝜃2 𝜃3 𝑥̇ 𝜃̇1 𝜃̇2 𝜃̇3 ]
′
 (13) 

 

One of the key solutions to enhance the performance of the 

system through reducing the steady state error is to place a pre 

gain N as shown in Figure 3 which can be calculated as N=1/M. 

Thus, the full s.s equations can be expressed as follow [9]: 

 

𝑥̇ = (𝐴 − 𝐵𝐾)𝑥 + 𝐵𝑢 𝑦 = 𝐶𝑥 𝑢 = 𝑟 − 𝐾𝑥 (14) 

 

 
 

Figure 3. Feedback control system with pre gain N 

 

 

4. GENETIC ALGORITHM (GA) 

 

Genetic algorithm is one of the classical optimization 

techniques which is shortly written GA. It is considered that 

one of the global adaptive searches for optimal values based 

on natural choice or selection. That leads to classify stages to 

three which are: Selection, Crossover and finally Mutation 

respectively. To apply these three operations gives new 

generations and individuals which can be the best compared 

with their parents [10].  

This algorithm works via repeating itself many times to 

produce several or many generations and then stop when 

obtaining optimal solutions for the individuals for a certain 

problem. This can be illustrated graphically as shown in Figure 

4 [11]. 

 

 
 

Figure 4. GA block diagram 

 

The following points describe GA implementation process:  

1. Define the population size. 

2. Make a Selection to mate individuals. 

3. Every two individuals mating to generate progeny. 

4. Mutation. 

5. Inserting external individuals into original population. 

6. Is the criteria satisfied? 

7. Searching is finished. 

The approach of tuning the gains via genetic algorithm 

starts with the definition of the chromosome representation. 

Each individual chromosome represented in in real valued 

form as shown in Figure 5, it is segregated to nine different 

values that correspond to the weight matrices Q and R of the 

linear quadratic (LQR) to be tuned to realize acceptable and 

reasonable performance. The diagram as blocks of the genetic 

algorithm with LQR controller of the plant which is Triple 

inverted pendulum is consisted of the optimum feedback gain 

K is shown in Figure 6 [11]. 

 

 
 

Figure 5. Chromosome identification 
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Figure 6. Block diagram of GA-LQR controller for the Triple inverted pendulum 

 

 

5. GA-LQR CONTROLLER 

 

The main contribution in this paper is to employ the genetic 

algorithm to find the LQR controller parameters Q and R. The 

vector that represent the control parameters that will be tuned 

and optimal selected are (q11,q22,q33,q44, q55, q66,q77,q88,R) to 

obtain optimum response in the output for the system and give 

best settling time (ts), rise time (tr), maximum overshoot 

(%MP) and steady state error (ess).The proposed Fitness 

function for the optimization of parameters of GA-LQR 

controller is defined as: 

 

𝐹 = (1 − 𝑒−0.5)(𝑀𝑝 + 𝑒𝑠𝑠) + 𝑒−0.5(𝑡𝑠 − 𝑡𝑟) (15) 

 

This fitness function designed by the authors and the 

contribution for this work to find best performance.  

where, 𝑀𝑝: Max. Overshoot, 𝑡𝑟 : Rise Timing, 𝑡𝑠 : Settling 

time, 𝑒𝑠𝑠: error in steady state. 

The genetic algorithm parameters chosen for the tuning 

purpose are shown in Table 1. The main reason of the 

GA_LQR is to find the optimal values of Q and R for LQR. 

 

Table 1. GA parameters 

 
Genetic Algo. 

Properties 
Number or method 

Population Size 50 

Generations in max 200 

Selection approach 
Geometric Selection in a normalized 

manner 

Possibility of Selection 0.05 

Crossover type scattering 

Possibility of 

Crossover 
0.2 

Mutation Technique Uniform 

Mutation Probability 0.01 

6. SIMULATION RESULTS 

 

A Triple inverted pendulum system is simulated using LQR 

controller based on genetic algorithm. The weight matrix of 

GA-LQR controller Q and R are:  

 

𝑄 =

[
 
 
 
 
 
 
 
750 
0
0
0
0
0
0
0

0
2500

0
0
0
0
0
0

0
0

2500
0
0
0
0
0

0
0
0

2500
0
0
0
0

0
0
0
0

0.00389395
0
0
0

0
0
0
0
0

0.0059744
0
0

0
0
0
0
0
0

0.00761559
0

0
0
0
0
0
0
0

0.0162112]
 
 
 
 
 
 
 

 

𝑅 = 0.999998 

 

The optimal feedback gain matrix K is: 

 

𝐾 =

[
 
 
 
 
 
 
 

27.3862
−104.8944
54.8264
148.6146
3.7285

−0.8572
18.8153
13.9137 ]

 
 
 
 
 
 
 
𝑇

 
 

 

The closed Loop poles for the GA-LQR controller are: 

 

𝑃 =

[
 
 
 
 
 
 
 
−3.1165 + i26.7811
−3.1165 − i26.7811
−18.8979 + i15.8910
−18.8979 − i15.8910
−7.1022 +  i5.0083
−7.1022 − i5.0083

−0.7608 
−3.8504 ]
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The dc gain M can be obtained by 𝐻(𝑠)|𝑠=0  𝐻(𝑠) =
𝐶(𝑠𝐼 − (𝐴 − 𝐵𝐾))−1𝐵 M=0.036488. 

Boundary conditions or the upper and lower limits that the 

iteration and optimization techinques occure: 

Lower boundary = [700; 2500; 2500; 2500; 0; 0; 0; 0; 0.8]; 

Upper boundary = [750; 3000; 3000; 3000; 0.1; 0.1; 0.1; 0.1; 

1]; 

The value of pre gain N to improve the performance of the 

steady state error is equal to 𝑁 =
1

𝑀
=

1

0.036488
= 27.405861. 

N=(1/max(y(:,1))); (scaling factor). 

Figure 7 illustrates the response for step input signal that 

represent three angles with cart position via using GA-LQR 

Controller. 

The curve of the convergence part for each gain values for 

diagonal Q matrix and R plotted to give an idea how the 

genetic algorithm fluctuated to its final value as shown in 

Figure 8. 

The time response specifications for the system under 

consideration equipped with the proposed controller are given 

in Table 2. 

 

 
 

Figure 7. Step response of cart position using GA_LQR 

controller 

 

 
 

Figure 8. Illustration of genetic algorithm converging 

through generations 

Table 2. Performance characteristics for cart position and 

link angles 

 
GA-LQR 

specifications 
x 𝜃1 𝜃2 𝜃3 

Settling Timets 

(Sec) 
5.890 5.223 5.6628 5.7268 

Rise Timetr 

(Sec) 
2.7155 

1.55 
× 10−15 

1.642 
× 10−14 

NaN 

 

 

7. CONCLUSION 

 

Dealing with multivariable, dynamic and unstable system is 

attracting control researchers to apply optimal control 

techniques to improve output response. Triple inverted 

pendulum is one of these systems that can be optimally 

controlled to stabilize their inverted links to be align in a 

vertical line. In this article, a combination of genetic algorithm 

with Linear quadratic controller approaches are successfully 

applied with reasonable results.  

According to the findings, it can be concluded that the 

control scheme has been employed to balancing the three 

inverted links with the cart's position of the linearized system. 
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