

Security of Federated Learning: Attacks, Defensive Mechanisms, and Challenges

Mourad Benmalek*, Mohamed Ali Benrekia, Yacine Challal

Laboratoire des Méthodes de Conception des Systèmes, Ecole nationale Supérieure d’Informatique, BP 68M, 16309, Oued-

Smar Algiers, Algeria

Corresponding Author Email: m_benmalek@esi.dz

https://doi.org/10.18280/ria.360106

ABSTRACT

Received: 10 December 2021

Accepted: 18 January 2022

 Recently, a new Artificial Intelligence (AI) paradigm, known as Federated Learning (FL),

has been introduced. It is a decentralized approach to apply Machine Learning (ML) on-

device without risking the disclosure and tracing of sensitive and private information.

Instead of training the global model on a centralized server (by aggregating the clients’

private data), FL trains a global shared model by only aggregating clients’ locally-computed

updates (the clients’ private data remains distributed across the clients’ devices). However,

as secure as the FL seems, it by itself does not give the levels of privacy and security

required by today’s distributed systems. This paper seeks to provide a holistic view of FL’s

security concerns. We outline the most important attacks and vulnerabilities that are highly

relevant to FL systems. Then, we present the recent proposed defensive mechanisms.

Finally, we highlight the outstanding challenges, and we discuss the possible future research

directions.

Keywords:

artificial intelligence, federated learning,

machine learning, privacy, security

1. INTRODUCTION

In recent years, improvements in the implementation of

Machine Learning (ML) models, have significantly increased

the adoption of this technology in a wide range real-world

systems that revolutionize almost all industries [1-6]. Despite

ML's enormous success, many domains can only desire to

benefit from it, but are unable to do so due to two significant

obstacles: (1) concerns about clients’ data privacy, as well as

the laws and regulations that govern them, and (2) inability to

develop a ML model because of insufficient data or high

training overheads.

In order to overcome these obstacles, Federated Learning

(FL) [7] emerges as an effective technique to exploit

distributed data and computing resources, in order to

collaboratively train ML models, while adhering to laws and

regulations, and protecting users’ data security and privacy. As

consequent, ML algorithms have become further integrated in

the devices of end users. This new paradigm in ML, famous as

“privacy-by-design”, allows a number of clients’ devices to

train a ML model collaboratively. A key feature would be that

the clients’ private data remain stored on the client’s device.

By conducting model training at the clients’ devices, aggregate

analytics could be accomplished without having to collect the

clients’ data themselves [8].

However, as secure as the FL seems, it by itself does not

give the levels of privacy and security demanded by today’s

distributed systems requirements [9]. Beyond fundamental

and FL-specific restrictions, the security of FL systems

themselves are essential for developing networks where users

can collaborate, learn, and most importantly trust. FL systems

are vulnerable to a slew of new attacks and threats that target

each stage of training and deployment process. Attackers can

exploit flaws in FL systems in a variety of ways. For example,

an attacker may maliciously corrupt training data or local

model updates on clients’ devices before sending them to the

central server. He may also intercept the model updates

exchanged between the central server and the clients’ devices

and replace them with malicious model updates. In order to

overcome these security threats, many researchers have

proposed mechanisms that defend against FL attacks and

vulnerabilities.

1.1 Contributions

In this paper, we seek to provide a holistic view of FL’s

security concerns. The main contributions of this paper are

presented as follows:

• We outline the most important vulnerabilities and

attacks in FL environments, such as poisoning attacks,

inference attacks, communication attacks, and free-

riding attacks.

• We present the recent proposed security mechanisms

that defend against the security attacks and threats in

FL systems.

• We highlight the outstanding challenges, and we

address the future research opportunities to improve the

security of FL systems.

1.2 Paper organization

This paper is organized as follows. The basics of FL are

introduced in Section 2. The major attacks and threats that are

relevant to FL settings are presented in Section 3. The recent

proposed security defensive mechanisms that defend against

the security attacks and threats are summarized in Section 4.

Section 5 identifies the research challenges and discusses the

future directions towards a robust and secure FL. Finally,

Section 6 gives conclusion remarks.

Revue d'Intelligence Artificielle
Vol. 36, No. 1, February, 2022, pp. 49-59

Journal homepage: http://iieta.org/journals/ria

49

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360106&domain=pdf

2. BASICS OF FEDERATED LEARNING

FL [7-13] is a ML-based framework in which numerous

clients cooperate to solve a ML problem, under the supervision

and the coordination of a central server usually referred to as

FL server. In other words, “it is a distributed ML strategy that

generates a global model by learning from multiple

decentralized edge clients. FL enables on-device training,

keeping the client’s local data private, and further, updating

the global model based on the local model updates” [14].

From a privacy perspective, FL complies with the “privacy-

by-design” guidelines made by the European Union Agency

for Network and Information Security (ENISA) [15] since the

clients’ private data are held locally and are not transferred to

the FL server (the client’s device uses meaningful data to

update the local models, and model updates are aggregates of

the client’s private data). This has made FL a more privacy-

friendly technique, attracting many communities to use it

instead of the standard ML technique based on centralized data

collection and centralized model training.

In order to understand the different FL security aspects

presented in later sections, we give in this section a non-

exhaustive overview of different concepts, techniques, and

approaches used to implement this AI paradigm in practice.

2.1 Federated learning implementation

FL can be viewed as an iterative learning process in which

the global model is improved with each round. FL process

flow follows three steps [16]:

• Model initialization: each client’s device receives the

initial ML model from the FL server.

• Local model training: each client’s device trains its

own model with the client’s local training data.

• Aggregation of local models: the FL server collects

updated model weights, and then it aggregates them to

the global model, which is subsequently updated to

replace each client’s local model.

Figure 1. A schematic diagram of FL process flow

As shown in Figure 1, FL is in a continuous iterative

learning process that repeats the above steps (steps 2 and 3) to

maintain the global model updated across all the participants.

2.2 Network topology in federated learning

Based on network topology, the FL can be categorized into

two classes: (1) Centralized FL, and (2) Fully decentralized FL

[17].

Figure 2. Fully decentralized FL

Figure 3. Data partition in FL

2.2.1 Centralized federated learning

As shown in Figure 1, even though FL is typically

considered as a decentralized approach, a centralized server is

required to collect clients’ model updates and aggregate them

to the global model. Unlike in traditional ML systems where

the global model is trained on a centralized server by

aggregating the clients’ private data, the centralized server in

FL trains the global model by only aggregating clients’

updates. The Gboard keyboard application (developed by

Google) is an example of centralized FL systems.

2.2.2 Fully decentralized federated learning

As shown in Figure 2, no central server is required in fully

decentralized FL systems. In this type of FL systems,

participants improve their models by sharing information with

their neighbors using Peer-2-Peer (P2P) communications.

2.3 Data partition in federated learning

As shown in Figure 3, the distribution of data among clients

classifies FL into three classes: (1) Vertical Federated

Learning (VFL), (2) Horizontal Federated Learning (HFL),

and (3) Federated Transfer Learning (FTL). The three classes

are defined as follows [10]:

2.3.1 Vertical Federated Learning

VFL is frequently used when two datasets need to share

identical sample IDs, but different feature spaces. An example

for VFL approach would be a scenario from business domain,

where a client A (Amazon) has information about customers’

book purchases on Amazon, and client B (Goodreads) has

information about customers’ book reviews. Using these two

50

sets of datasets from different feature spaces, one may better

serve the customers by using book reviews information to

provide better book recommendation to the customers

browsing Amazon’s books.

2.3.2 Horizontal Federated Learning

In this class, there is some overlap between the features of

data dispersed over multiple participants, while the data are

fairly distinct in sample space. Clients in this type of FL share

similar features in terms of domain, usage style of derived

statistical information, or any other FL outcome. An example

for HFL approach would be a scenario from medical domain,

where multiple hospitals are collaborating to train a ML model

(using medical images) for detecting cancer cells. Due to the

laws and constraints of private medical data, medical images

cannot be shared as is. However, with FL, information on such

sensitive data may be safely transmitted through a secure

aggregated update from each hospital.

2.3.3 Federated Transfer Learning

FTL is typically used when FL participants have little

overlap in both sample and feature spaces. FTL enables to

move the knowledge of one domain (the source domain) to

another domain (the target domain) to achieve better learning

results. An example for FTL approach would be a scenario of

training a book recommendation model from the user’s past

browsing behavior.

2.4 Aggregation algorithms in federated learning

The aggregation algorithm can be defined as the logic that

combines the locally-computed updates from all the clients

participating in the training phase [18]. These algorithms play

a cornerstone role in any FL system. For that, several

aggregation algorithms have been proposed in the literature.

We present in the following some of the most used aggregation

algorithms:

2.4.1 FedAvg

The Federated Averaging algorithm (FedAvg) is regarded

as the de facto optimization algorithm in the federated setting.

This aggregation algorithm, implemented by Google [7], runs

Stochastic Gradient Descent (SGD) in parallel on K devices,

where K is a small fraction of the total clients’ devices in the

FL network. After that, the clients’ devices communicate their

model updates to a FL server, where the global model is built

using averaging logic to compute the weighted sum of all the

received updates. Although FedAvg has shown empirical

success in heterogeneous settings, it does not entirely address

the underlying challenges associated with heterogeneity [19].

2.4.2 FedProx

To address the challenges of heterogeneity in FL

environments, Li et al. [19] proposed FedProx. As stated by

the authors, “FedProx algorithm can be viewed as a

generalization and re-parametrization of FedAvg”. They

proposed to add a proximal term to the local subproblem that

helps to effectively limit the impact of variable local updates,

and thus improve the stability of the method. Moreover, they

proved that FedProx achieves better convergence and stability

compared to FedAvg in heterogeneous FL environments.

2.4.3 SMC-Avg

A secure aggregation algorithm, called Secure Multi-Party

Computation Averaging (SMC-Avg) was proposed by

Bonawitz et al. [20, 21]. SMC-Avg algorithm is based on the

concept of the Secure Multi-party Computation (SMC), which

aggregates private values of clients’ models without revealing

information about their private values. SMC-Avg algorithm is

suitable to deal with the problems of the mobile device-based

FL networks.

3. SECURITY ATTACKS IN FEDERATED LEARNING

While FL comes with privacy guarantees regarding the

protection of private data in ML settings, exchanging the

model updates, as well as the large number of training

iterations and communications expose the FL system to

curious and malicious attackers [22-24]. Several attacks are

already identified against FL systems. In this section, we

present the most important attacks and vulnerabilities in FL

environments. We categorize attacks against FL systems into

four groups: poisoning attacks, inference attacks,

communication attacks, and free-riding attacks. Table 1

summarizes the properties of attacks on FL settings.

3.1 Poisoning attacks

Typically, these attacks are undertaken by the insiders on

FL systems [17, 25]. They try to prevent a model from being

learned at all, or to bias the model to produce inferences that

are suitable to the attacker. Regarding the attacker’s

capabilities, we classify poisoning attacks into two types: data

poisoning attacks and model poisoning attacks [26].

Table 1. Summary of attacks on FL systems

Attacks Key idea

Source of attacks

Compromised
Communication

Distributed

nature of FL Clients Server

Poisoning attacks
Manipulate client’s data or local model to bias the global

model performance/accuracy
✓ ✓ - -

Inference attacks

Analyze the clients’ updates in the goal of illegitimately

gain knowledge about FL process and use this knowledge

to extract meaningful insights about the training data

✓ ✓ ✓ -

Communication

attacks

Intercept the clients’ updates, then replace them with faulty

or malicious updates. Moreover, communication

bottlenecks can drastically destabilize the FL system

- - ✓ ✓

Free-riding

attacks

Craft fake local updates with the purpose of acquiring the

global shared model without really participating to the FL

process

✓ - - -

51

Figure 4. An example of data poisoning attack in FL systems

Figure 5. A taxonomy of attacks on FL systems

3.1.1 Data poisoning attacks

They are attacks that compromise the clients’ training data

to distort the output of the global model at inference time. As

shown in Figure 4, an adversary participant may adversarially

manipulate existing inputs or add poison instances to corrupt

the global model’s output [27]. As shown in Figure 5, we

recognize two classes of attacks in this category:

Clean-label attacks. In this category of attacks, the

adversary assumes that data are certified as belonging to the

correct class, so, he cannot change the label of any input data,

and he must craft the poisoned training data to appear as

correctly labeled as the non-corrupted data. Tolpegin et al. [27]

achieved 100% attack success rate on the dog-vs-fish

classification task using the feature collision technique, where

the attacker exploits the high complexity and nonlinearity of

the function f that propagates an input X through the neural

network to the last layer, it is possible to find an example (a

dog’s picture) that “collides” with the target (fish class) in

feature space, while simultaneously being close to the base

instance b (dog class) in input space.

Dirty-label attacks. In this category of attacks, the adversary

participant can add, remove, or change any data samples he

intends to misclassify with the desired target label into the

training set. A very known example of dirty-label poisoning

attack is label-flipping [28, 29] which has been demonstrated

to be effective in traditional ML settings and become a feasible

strategy to implement in FL settings.

3.1.2 Model poisoning attacks

They are attacks where malicious clients directly change the

learning rule and affect gradients that they share with the FL

server during the training process [26]. We can recognize

several techniques in this category:

Gradient manipulation attacks. In this type of attacks,

adversaries perform adversarial manipulations of the training

process by manipulating local model gradients to compromise

the global model performance and reduce the overall accuracy

[26]. This technique can be used for example to modify an

image classifier so that it assigns an attacker-chosen label to

images with certain features or force a word predictor to

complete certain sentences with an attacker-chosen word [22].

Training rule manipulation attacks. In this type of attacks, if

the attackers have access to the model, they may be able to

manipulate its output such that it has the same distribution as

correct model updates, making the attack undetectable [30].

For example, Bhagoji et al. [31] added a penalty term to the

objective function in order to reduce the distance between the

wrong and the correct weight update distributions. This

modification helped to successfully achieve a non-detectable

targeted model poisoning attack.

Backdoor attacks. These attacks can be viewed as a type of

model poisoning attacks. A malicious participant trains its

local model with poisoned data and uploads the locally-

computed updates to the FL server, embedding a backdoor to

the global model after unwitting aggregative optimization [32].

Bagdasaryan et al. experiment on how backdoor attacks is

implemented [22, 33].

3.2 Inference attacks

These attacks are adversarial algorithms that are capable of

extracting meaningful insights about the training data via

analysis of locally-computed updates [30, 34]. Inference

attacks fall into four categories:

3.2.1 Membership inference attacks

Under this category, attackers aim to identify whether a

specific sample belongs to a given class represented by the

model and/or whether a specific sample was used to train the

model [35]. For instance, an adversary can determine whether

a given patient profile was used to train a classifier associated

with a disease.

3.2.2 Properties inference attacks

Under this category, attackers attempt to induce properties

of other clients’ private data that are independent of the

features which characterize the FL model classes [35]. For

instance, a property inference attack would be for facial

recognition models, if a class corresponds to a certain

individual, the adversary task would be determining whether

the individual wears glasses or not [36].

3.2.3 Training inputs and labels inference attacks

These attacks are much destructive than previous ones since

they can not only determine the label of the FL model classes

but also the client’s training inputs. The authors showed that

the proposed optimization algorithm can obtain both the

training inputs and the labels in just a few rounds [37, 38].

3.2.4 GANs-based inference attacks

Under this category, powerful attacks can be performed

through Generative Adversarial Networks (GANs). GANs

52

have been recently proposed by Hitaj et al. [39] and are still

being intensively developed. The architecture of GANs is

composed of two models: Discriminator D and Generator G.

The GAN-based attacks exploit the real-time nature of the FL

process which allows the attacker to train a GAN generating

synthetic samples that are statistically representative of the

training data. It should be noted that GANs generate these

samples without having the right to access clients’ private data.

The GAN is first initialized with random noise, and at each

round, it is trained to mimic the inputs in the training set of the

discriminative network. Figure 6 shows an example of GANs-

based inference attack.

3.3 Communication attacks

As mentioned above, FL is based on an iterative learning

process in which the global model is improved with each

round. In order to update the shared global model and maintain

it updated across all the participants, a large number of

communication messages should be exchanged between the

FL server and all the participants over a given network

(typically, a FL process achieves stability and convergence

after a large number of communication iterations). Thus, a

non-secure communication channel is considered an open

vulnerability. Moreover, the communication bottlenecks can

drastically destabilize the FL system [17, 40, 41].

3.3.1 Man-In-The-Middle attacks

In this type of attacks, the Man-in-the-Middle (MITM)

intercepts the model updates exchanged between the

participants and the FL server and replaces them with

malicious updates [42]. Typically, a MITM attack is carried out

through interfering with real networks or by creating fake

networks that the MITM controls. After that, the compromised

communication is frequently stripped of any encryption in

order to steal, modify or redirect the model updates [43]. This

attack is difficult to detect because the attacker may be silently

observing or re-encrypting the hijacked communication to its

designed destination once saved or modified.

Figure 6. An example of GANs-based inference attack in FL systems

Figure 7. Communications bottlenecks in FL systems

3.3.2 Communications bottlenecks

As shown in Figure 7, communication bottlenecks can

drastically destabilize the FL system because they increase the

number of participants who drop out. Further, discarding

clients depending on their connection state causes eventual

biases in the global shared model and affects the aggregation

of individual updates. Furthermore, techniques that seek to

decrease the communication overhead [44-46], such as

compression, can be exploited in a destructive way to inject

noise in individual updates and deteriorate their quality.

3.4 Free-riding attacks

Figure 8. An example of free-riding attack in FL systems

Free-rider attacks consist in crafting fake local updates with

the purpose of acquiring the global shared model without

really participating to the FL process [47, 48]. Free-rider is

generally referred to an individual who benefits from services,

53

public goods, or resources, of a communal nature, but do not

pay for them [49]. In free-riding attacks, there could be two

main motives to submit fake updates: (1) a client may want to

save local CPU cycles or other computing resources, also, (2)

a client may not have the required data, or is concerned about

data privacy violations, so that local data are not available for

model training [48]. As shown in Figure 8, the strategy of a

free-rider, to obtain the final aggregated model, consists in

participating in FL cycle by mimicking local updating through

the sharing of opportune crafted parameters.

4. DEFENSES IN FEDERATED LEARNING

Recent studies into FL security have tried to stress-test

existing techniques for preventing private information

extraction and model corruption. In this section, we present a

review of the recent proposed mechanisms that defend against

the security attacks and threats raised in Section 3. Figure 9

and Table 2 summarize the prominent types of defensive

mechanisms in FL.

Figure 9. An overview of defensive mechanisms in FL

systems

4.1 Differential privacy

The basic goal of Differential Privacy (DP) is to ensure that,

with high probability, no single record in a given client’s

dataset can be meaningfully discriminated from the other

records [50-52]. The basic idea behind this technique is to

introduce noise to the client’s sensitive attributes before

sharing individual updates with the FL server [52]. As a

consequence, each client’s privacy is protected. Meanwhile,

the statistical data quality loss caused by the introduced noise

of each client is rather minor compared with the greater data

privacy protection. In FL environment, DP distorts client

updates so that the existence or absence of any given record in

a client’s private data has no major impact on the update

shared by the client.

Based on DP, McMahan et al. [53] proposed DP-FedAvg, a

noised version of FedAvg (presented earlier in Section 2.4.1)

that satisfies user-level differential privacy. The main goal of

DP-FedAvg is to provide a strong guarantee that the trained

model protects the privacy of clients’ data without affecting

model quality. Later, Augenstein et al. [54] proposed DP-

FedAvg-GAN with the purpose to protect the clients’ training

data against GANs-based attacks.

Ma et al. showed that DP can be used as defense against

data poisoning attacks [55-57]. Further, Bagdasaryan et al. [22]

demonstrated that DP applied to clients’ models can

successfully defend against backdoor attacks, but the required

noise levels significantly baffle the model’s learning ability

(i.e., the more we apply noise the higher we protect data but

the utility decreases drastically). Furthermore, Lecuyer et al.

[58] studied the possibility of using DP as a defense

mechanism against inference attacks.

4.2 Secure multi-party computation

This technique (SMC) was originally proposed with the

purpose of creating methods for distrustful parties to jointly

compute a function over their inputs while keeping them

private [59]. In FL environment, SMC, which is based on

cryptographic methods, is used to protect the privacy of client

data.

In this direction, Google proposed a secure aggregation

algorithm [60] that securely aggregates the clients’ updates by

using SMC to compute the weighted averages of received

updates. Upon receiving a sufficient number of clients’

updates, the FL server can decrypt the average update. This is

possible because client updates are transferred via additive

secret sharing. As a consequence, the clients’ private data are

protected.

In the same direction, Xu et al. [61] proposed a privacy-

preserving approach, called VerifyNet, that aim to realize

secure gradient aggregation and verification. This approach

employs a double-masking method (based on Shamir’s secret

sharing and homomorphic hash function) making it difficult

for malicious adversaries to infer training data. Moreover,

VerifyNet guarantees that the clients may verify the FL

server’s results, ensuring the FL server’s reliability.

Table 2. Summary of defensive mechanisms in FL systems

Defensive mechanisms Key idea Attacks

Differential Privacy
Introduce noise to the client’s sensitive data before sharing individual updates

with the FL server

Data poisoning attacks

Backdoor attacks

Inference attacks

Secure Multi-party

Computation
Encrypt clients’ uploaded parameters

Inference attacks

MITM attacks

Anomaly detection Analyze clients’ updates to identify misbehaving clients

Free-riding attacks

Model poisoning attacks

Data poisoning attacks

Robust aggregation Detect malicious individual updates during training process

Inference attacks

Model poisoning attacks

Data poisoning attacks

Federated distillation Transfer knowledge from a fully trained model to another model

Communications

bottlenecks

MITM attacks

Inference attacks

GANs-based attacks

54

Although SMC-based methods [60-64] provide a secure

aggregation of the protected clients’ updates, they induce

significant extra communication overhead among clients

which may be unaffordable for some devices and networks.

Moreover, they make countermeasures to security attacks

(such as model poisoning attacks) ineffective, and attacks

become difficult to detect by the FL server.

4.3 Anomaly detection

This category of defenses (also called outlier detection) uses

analytical and statistical methods to identify events that do not

conform to an expected pattern or activity. In order to identify

misbehaving clients in FL settings, anomaly detection

mechanisms could be used. For that, the FL server analyzes

individual updates and their impact on the global shared model

to discover attacks such as poisoning attacks. However, these

mechanisms are most likely to fail when it comes to targeted

backdoor attacks.

Chen et al. [65] proposed an anomaly detection-based

technique, in which the FL server can reconstruct the clients’

updated models and compare the model performance metrics

against a validation dataset with respect to the model obtained

by aggregating all updates except that of the client. After that,

any client updates that decrease model performance, according

to some criteria or threshold, are marked as outliers.

Cao et al. [66] proposed another defense technique called

Sniper. The proposed approach can recognize honest clients

and decrease the success rate of poisoning attacks to 2% even

when multiple attackers are colluded. In Sniper, the FL server

identifies legitimate clients by solving a maximum clique

problem in a graph constructed with clients’ shared updates as

vertices and if the Euclidean distance between two vertices is

small enough, then there exists an edge between them. The FL

server then finds the maximum clique in the graph, and

aggregates vertices (local models) in the clique to get the

global FL model.

In another work, Fung et al. [67] presented FoolsGold, a

novel defensive mechanism to cope with poisoning attacks. In

their work, the authors defined poisoning sybils as malicious

clients creating multiple fake identities to mount more

powerful poisoning attacks on FL and transfer fake updates to

the FL server. After that, they presented their defensive

technique that leverages client similarity to identify poisoning

sybils based on the diversity of client updates, because in the

distributed learning process, each client’s private data has a

unique distribution, while sybils aim to the same objective and

will share updates that appear more similar to each other than

non-malicious clients. On the contrary to other defensive

techniques, this mechanism does not require any changes of

the protocol executed on client-side. In addition, it doesn’t

need prior knowledge of the number of malicious clients.

Many other research works have been developed in this

category [29, 68]. In these studies, the proposed approaches

aim to detect a deviation in individual updates from each client,

as well as the verification of honesty of training inputs.

4.4 Robust aggregation

As mentioned above, robust aggregation algorithms play a

cornerstone role in any FL system, and several algorithms [69-

72] have been proposed in the literature. Theses algorithms are

used to detect and discard faulty model updates during the

training process. Moreover, robust aggregation algorithms

should be able to sustain clients’ dropout and communications

instabilities. They can also address the challenges of

heterogeneity in FL environments [19].

In addition to algorithms presented in Section 2.4, Lu and

Fan [71] proposed an aggregation algorithm that uses

Gaussian distribution to measure clients’ potential

contributions. Further, they proposed layer-wise optimizing

steps, so the aggregation works well on different functional

units in the neural network. Furthermore, they showed that the

proposed algorithm achieves better convergence and stability

compared to the well-known aggregation algorithm FedAvg

[7]. Moreover, this algorithm outperforms FedAvg in terms of

robustness against attacks.

4.5 Federated distillation

Federated Distillation [73-76] (also called Federated

Knowledge Distillation) is regarded as an alternative of the

model compression method. As mentioned above, a large

number of communication messages should be exchanged

between all the clients and the FL server to update the global

shared model and maintain it updated across all the clients.

However, these exchanged messages can drastically

destabilize the FL system. For that, federated distillation is a

compelling FL solution in which a fully trained model

transfers knowledge to a small model step by step on what

needs to be done. The idea of sharing knowledge only instead

of model parameters can be used to improve the security and

privacy of the clients’ private data. Moreover, this concept

helps to save communication and reduce computation

overheads.

In this direction, Li and Wang [76] proposed an algorithm

of federated distillation called FedMD. In this algorithm, the

authors seek to transfer knowledge from a fully trained model

to a smaller model. Typically, the knowledge is a pre-trained

model’s logit, transferred to a small model for compression.

The knowledge can also be a collection of other small models’

logits, in that the collection of forecasts is often more accurate

than individual predictions.

5. CHALLENGES AND FUTURE OPPORTUNITIES

To complete our overview, we discuss the outstanding

challenges, and we address the future research opportunities to

improve the robustness of FL environments, summarized in

the following recommendations:

5.1 Ensuring and building trust

When private data is stored on clients’ devices, FL servers

have little scope for manual verification. Thus, the question

that might arise is: how can the FL server trust reports, such

as model updates, from clients? Cryptographic primitives may

offer promise for secure calculations using private data. For

example, Zero-Knowledge Proofs may be used to ensure that

participants are transferring individual updates with pre-

specified properties to defend against backdoor attacks and

model corruption attacks, while avoiding the disclosure of

clients’ private data. However, it is important to understand

better how to effectively implement and apply these

cryptographic primitives and protocols, especially in large-

scale FL systems.

55

5.2 Ensuring traceability

Ensuring traceability of the global model throughout the

lifecycle of the FL process is another major challenge in FL

settings. For example, if a model parameter is modified or

updated during the training process, it is important to have

backward tracking ability to determine which client’s update

caused that change. In this direction, we believe that

blockchain can provide attractive solutions for FL due to its

unique features, such as traceability, immutability, and

decentralization [77]. By using blockchain, any update events

and client actions are transparently tracked by all network

entities. Moreover, a model parameter modification or update

can be easily traced through blockchain transaction logs [78].

5.3 Ensuring a trade-off between security/privacy and

performance/accuracy

As presented in this paper, many defensive approaches for

FL security have been designed, each of which is proposed to

address different security/privacy and performance/accuracy

objectives. However, each one of them has its own pros and

cons. Thus, the question that might arise is: how to ensure a

better trade-off between security/privacy and

performance/accuracy? On the one hand, designing efficient

FL approaches should not undermine the robustness of the

proposed mechanisms. If the approach is not secure against the

different attacks, an attacker can affect the FL process. For

example, if the encryption level in SMC-based mechanisms or

the quantity of noise in DP-based mechanisms is not enough,

the clients that participate to the FL process still suffer from

the risk of privacy leakage. On the other hand, if the encryption

level is too high or too much noise added to the exchanged

updates, the FL model severally suffers from low accuracy.

5.4 Deploying decentralized federated learning

In the traditional FL systems, a third party (which is the FL

server) is required for system initialization, supervision, and

global model aggregation. However, a setting where no central

server is required in the system is a potential framework for

collaboration among applications that do not trust any third

party. For example, we can consider a strategy where each

client that participates to the FL system could be elected as a

server using a round robin method. It would be interesting to

explore if existing attacks and vulnerabilities on the traditional

FL still apply in this decentralized scenario, as well as new

attack surfaces that may be opened. Therefore, the defensive

mechanisms of decentralized FL should also be investigated.

6. CONCLUSION

As FL is becoming widely used in many practical

applications that aim to preserve users’ privacy, protecting the

security of this new paradigm becomes an urgent need. In this

paper, we have presented a survey on security concerns in FL

settings. Specifically, we have revisited existing security

attacks and threats towards FL, such as poisoning attacks,

inference attacks, communication attacks, and free-riding

attacks. Furthermore, we have presented the current defensive

techniques based on differential privacy, secure multi-party

computation, anomaly detection, robust aggregation, and

federated distillation. We showed that there is not yet a

defensive mechanism that fulfills all the security/privacy and

performance/accuracy objectives and that there is still much

work to be done. After that, we have presented four interesting

research topics in this field. We hope that such survey can

serve as a valuable reference for researchers in both FL and

security fields.

REFERENCES

[1] Bkassiny, M., Li, Y., Jayaweera, S.K. (2013). A survey

on machine-learning techniques in cognitive radios.

IEEE Communications Surveys & Tutorials, 15(3):

1136-1159.

https://doi.org/10.1109/surv.2012.100412.00017

[2] Ucci, D., Aniello, L., Baldoni, R. (2019). Survey of

machine learning techniques for malware analysis.

Computers & Security, 81: 123-147.

https://doi.org/10.1016/j.cose.2018.11.001

[3] Joshua, E.S.N., Chakkravarthy, M., Bhattacharyya, D.

(2020). An extensive review on lung cancer detection

using machine learning techniques: A systematic study.

Revue d'Intelligence Artificielle, 34(3): 351-359.

https://doi.org/10.18280/ria.340314

[4] Lin, W., Hu, Y., Tsai, C. (2012). Machine learning in

financial crisis prediction: A survey. IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 42(4): 421-436.

https://doi.org/10.1109/tsmcc.2011.2170420

[5] Ketepalli, G., Bulla, P., (2020). Review on generative

deep learning models and datasets for intrusion detection

systems. Revue d'Intelligence Artificielle, 34(2): 215-

226. https://doi.org/10.18280/ria.340213

[6] Hossain, E., Khan, I., Un-Noor, F., Sikander, S.S., Sunny,

M.S.H. (2019). Application of big data and machine

learning in smart grid, and associated security concerns:

A review. IEEE Access, 7: 13960-13988.

https://doi.org/10.1109/access.2019.2894819

[7] McMahan, H.B., Moore, E., Ramage, D., Hampson, S.,

y Arcas, B.A. (2017). Communication-efficient learning

of deep networks from decentralized data. The 20th

International Conference on Artificial Intelligence and

Statistics, Fort Lauderdale, FL, USA. pp. 1273-1282.

[8] Aledhari, M., Razzak, R., Parizi, R.M., Saeed, F. (2020).

Federated learning: A survey on enabling technologies,

protocols, and applications. IEEE Access, 8: 140699-

140725. https://doi.org/10.1109/Access.2020.3013541

[9] Bouacida, N., Mohapatra, P. (2021). Vulnerabilities in

federated learning. IEEE Access, 9: 63229-63249.

https://doi.org/10.1109/access.2021.3075203

[10] Yang, Q., Liu, Y., Chen, T., Tong, Y. (2019). Federated

machine learning: Concept and Applications. ACM

Transactions on Intelligent Systems and Technology,

10(2): 1-9. https://doi.org/10.1145/3298981

[11] Guizani, M. (2020). A survey on federated learning: The

journey from centralized to distributed on-site learning

and beyond. IEEE Internet Things Journal, 8(7): 5476-

5497. https://doi.org/10.1109/jiot.2020.3030072

[12] Lim, W.Y.B, Luong, N.C., Hoang, D.T., Jiao, Y., Liang,

Y.C., Yang, Q., Niyato, D., Miao, C. (2020). Federated

learning in mobile edge networks: A comprehensive

survey. IEEE Communications Surveys & Tutorials,

22(3): 2031-2063.

https://doi.org/10.1109/comst.2020.2986024

56

[13] Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H.

(2019). Federated Learning. Morgan & Claypool.

[14] Imteaj, A., Thakker, U., Wang, S., Li, J., Amini, M.H.

(2021). A survey on federated learning for resource-

constrained IoT devices. IEEE Internet of Things Journal,

9(1): 1-24. https://doi.org/10.1109/jiot.2021.3095077

[15] Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman,

J.H., Metayer, D.L., Tirtea, R., Schiffner, S. (2015).

Privacy and data protection by design-from policy to

engineering. arXiv preprint arXiv:1501.03726.

[16] Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.

(2021). A survey on federated learning. Knowledge-

Based Systems, 216: 106775.

https://doi.org/10.1016/j.knosys.2021.106775

[17] Mothukuri, V., Parizi, R.M., Pouriyeh, S., Huang, Y.,

Dehghantanha, A., Srivastava, G. (2021). A survey on

security and privacy of federated learning. Future

Generation Computer Systems, 115: 619-640.

https://doi.org/10.1016/j.future.2020.10.007

[18] Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., Jirstrand,

M. (2018). A performance evaluation of federated

learning algorithms. The 2nd Workshop on Distributed

Infrastructures for Deep Learning, Rennes, France, pp. 1-

8. https://doi.org/10.1145/3286490.3286559

[19] Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar,

A., Smith, V. (2018). Federated optimization in

heterogeneous networks, arXiv preprint

arXiv:1812.06127.

[20] Bonawitz, K., Ivanov, B., Kreuter, B., Marcedone, A.,

McMahan, H.B., Patel, S., Ramage, D., Segal, A., Seth,

K. (2016). Practical secure aggregation for federated

learning on user-held data. arXiv preprint

arXiv:1611.04482.

[21] Bonawitz, K., Ivanov, B., Kreuter, B., Marcedone, A.,

McMahan, H.B., Patel, S., Ramage, D., Segal, A., Seth,

K. (2017). Practical secure aggregation for privacy-

preserving machine learning. The 24th ACM SIGSAC

Conference on Computer and Communications Security,

Dallas, Texas, USA, pp. 1175-1191.

https://doi.org/10.1145/3133956.3133982

[22] Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov,

V. (2020). How to backdoor federated learning. The 23rd

International Conference on Artificial Intelligence and

Statistics, Palermo, Italy, pp. 2938-2948.

[23] Sun, G., Cong, Y., Dong, J., Wang, Q., Liu, J. (2020).

Data poisoning attacks on federated machine learning.

arXiv preprint arXiv:2004.10020.

[24] Weng, H., Zhang, J., Xue, F., Wei, T., Ji, S., Zong, Z.

(2020). Privacy leakage of real-world vertical federated

learning. arXiv preprint arXiv:2011.09290.

[25] Muñoz-González, L., Biggio, B., Demontis, A., Paudice,

A., Wongrassamee, V., Lupu, E.C., Roli, F. (2017).

Towards poisoning of deep learning algorithms with

back-gradient optimization. The 10th ACM Workshop on

Artificial Intelligence and Security, Dallas, Texas, USA,

27-38.

[26] Shejwalkar, V., Houmansadr, A. (2021). Manipulating

the byzantine: optimizing model poisoning attacks and

defenses for federated learning. The Network and

Distributed System Security Symposium.

https://dx.doi.org/10.14722/ndss.2021.23xxx

[27] Tolpegin, V., Truex, S., Gursoy, M.E., Liu, L. (2020).

Data poisoning attacks against federated learning

systems. The European Symposium on Research in

Computer Security, Guildford, United Kingdom, pp.

480-501. https://doi.org/10.1007/978-3-030-58951-6_24

[28] Biggio, B., Nelson, B., Laskov, P. (2012). Poisoning

attacks against support vector machines. The 29th

International Conference on International Conference on

Machine Learning, Edinburgh, Scotland, pp. 1467-1474.

[29] Fung, C., Yoon, C.J., Beschastnikh, I. (2020). The

limitations of federated learning in sybil settings. The

23rd International Symposium on Research in Attacks,

Intrusions and Defenses, 301-316.

[30] Kairouz, P., McMahan, H.B., Avent, B., et al. (2021).

Advances and open problems in federated learning.

Foundations and Trends® in Machine Learning, 14(1-2):

1-210. http://dx.doi.org/10.1561/2200000083

[31] Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.

(2019). Analyzing federated learning through an

adversarial lens. The International Conference on

Machine Learning, California, USA, pp. 634-643.

[32] Yin, Z., Yuan, Y., Guo, G.P., Zhou, P. (2021). Backdoor

attacks on federated learning with lottery ticket

hypothesis. arXiv preprint arXiv:2109.10512.

[33] Sun, Z., Kairouz, P., Suresh, A.T., McMahan, H.B. (2019)

Can you really backdoor federated learning? arXiv

preprint arXiv:1911.07963.

[34] Lee, H., Kim, J., Hussain, R., Cho, S., Son, J. (2021). On

defensive neural networks against inference attack in

federated learning. The 2021 IEEE International

Conference on Communications, Montreal, Canada, pp.

1-6. https://doi.org/10.1109/icc42927.2021.9500936

[35] Melis, L., Song, C., De-Cristofaro, E., Shmatikov, V.

(2019). Exploiting unintended feature leakage in

collaborative learning. The 40th IEEE Symposium on

Security and Privacy, CA, USA, pp. 691-706.

https://doi.org/10.1109/SP.2019.00029

[36] Fredrikson, M., Jha, S., Ristenpart, T. (2015). Model

inversion attacks that exploit confidence information and

basic countermeasures. ACM SIGSAC Conference on

Computer and Communications Security, Colorado,

USA, pp. 1322-1333.

https://doi.org/10.1145/2810103.2813677

[37] Zhu, L. Han, S. (2020). Deep leakage from Gradients. In:

Yang Q., Fan L., Yu H. (eds) Federated Learning.

Lecture Notes in Computer Science, vol 12500. Springer,

Cham. https://doi.org/10.1007/978-3-030-63076-8_2

[38] Zhao, B., Mopuri, K.R., Bilen, H. (2020). iDLG:

Improved deep leakage from gradients. arXiv preprint

arXiv:2001.02610.

[39] Hitaj, B., Ateniese, G., Perez-Cruz, F., Deep models

under the GAN: Information leakage from collaborative

deep learning. The 24th ACM SIGSAC Conference on

Computer and Communications Security, Texas, USA,

pp. 603-618. https://doi.org/10.1145/3133956.3134012

[40] Konecný, J., McMahan, H.B., Yu, F.X., Richtarik, P.,

Suresh, A.T., Bacon, D. (2016). Federated learning:

Strategies for improving communication efficiency.

NIPS Workshop on Private Multi-Party Machine

Learning, Barcelona, Spain, pp. 1-8.

[41] Smith, S.L., Kindermans, P.J., Ying, C., Le, Q.V. (2018).

Don’t decay the learning rate, increase the batch size.

The 6th International Conference on Learning

Representations, Vancouver, Canada, pp. 1-11.

[42] Wang, D., Li, C., Wen, S., Nepal, S., Xiang, Y. (2021).

Man-in-the-middle attacks against machine learning

classifiers via malicious generative models. IEEE

57

Transactions on Dependable and Secure Computing,

18(5): 2074-2087.

https://doi.org/10.1109/tdsc.2020.3021008

[43] Datta, S. (2020). Vulnerabilities of smart homes. In

Chatterjee, P., Benoist, E., Nath, A. (eds). Applied

approach to privacy and security for the internet of things.

IGI-Global, Hershey, Pennsylvania, USA, pp. 1-25.

[44] Chen, Y., Sun, X., Jin, Y. (2020). Communication-

efficient federated deep learning with layerwise

asynchronous model update and temporally weighted

aggregation. IEEE Transactions on Neural Networks and

Learning Systems, 31(10): 4229-4238.

https://doi.org/10.1109/tnnls.2019.2953131

[45] Chen, Z., Liao, W., Hua, K., Lu, C., Yu, W. (2021).

Towards asynchronous federated learning for

heterogeneous edge-powered internet of things. Digital

Communications and Networks, 7(3): 317-326.

https://doi.org/10.1016/j.dcan.2021.04.001

[46] Nishio, T., Yonetani, R. (2019). Client selection for

federated learning with heterogeneous resources in

mobile edge. The 2019 IEEE International Conference

on Communications, Shanghai, China, pp. 1-7.

https://doi.org/10.1109/ICC.2019.8761315

[47] Lin, J., Du, M., Liu, J. (2019). Free-riders in federated

learning: Attacks and defenses. arXiv preprint

arXiv:1911.12560.

[48] Fraboni, Y., Vidal, R., Lorenzi, M. (2021). Free-rider

attacks on model aggregation in federated learning. The

24th International Conference on Artificial Intelligence

and Statistics, San Diego, California, pp. 1846-1854.

[49] Baumol, W.J. (2014). Welfare Economics and the

Theory of the State. In Rowley, C.K., Schneider, F. (eds),

The Encyclopedia of Public Choice. Springer, Boston,

MA. https://doi.org/10.1007/978-0-306-47828-4_214

[50] Dwork, C. (2018). Differential privacy: A survey of

results. The International Conference on Theory and

Applications of Models of Computation, Xi’an, China,

pp. 1-19. https://doi.org/10.1007/978-3-540-79228-4_1

[51] Dwork, C., McSherry, F., Nissim, K., Smith, A. (2006).

Calibrating noise to sensitivity in private data analysis.

Theory of Cryptography Conference, New York, USA,

pp. 265-284. https://doi.org/10.1007/11681878_14

[52] Dwork, C., Roth, A. (2014). The Algorithmic

Foundations of Differential Privacy. Now Publishers Inc.,

Hanover, MA, USA.

[53] McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.

(2018). Learning differentially private recurrent

language models. The 6th International Conference on

Learning Representations, Vancouver, BC, Canada, pp.

1-14.

[54] Augenstein, S., McMahan, H.B., Ramage, D.,

Ramaswamy, S., Kairouz, P., Chen, M., Mathews, R.Y.,

Arcas, B.A. (2020). Generative models for effective ML

on private, decentralized Datasets. The 8th International

Conference on Learning Representations, Addis Ababa,

Ethiopia, pp. 1-26.

https://doi.org/10.48550/arXiv.1911.06679

[55] Ma, Y., Zhu, X., Hsu, J. (2019). Data poisoning against

differentially-private learners: Attacks and defenses. The

28th International Joint Conference on Artificial

Intelligence, Macao, China, pp. 4732-4738.

https://doi.org/10.48550/arXiv.1903.09860

[56] Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B.,

Mironov, I., Talwar, K., Zhang, L. (2016). Deep learning

with differential privacy. The 23rd ACM SIGSAC

conference on computer and communications security,

Vienna, Austria, pp. 308-318.

https://doi.org/10.1145/2976749.2978318

[57] Geyer, R.C., Klein, T., Nabi, M. (2019). Differentially

private federated learning: A client level perspective.

International Conference on Learning Representations,

New Orleans, Louisiana, USA, pp. 1-9.

[58] Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana,

S. (2019). Certified robustness to adversarial examples

with differential privacy. The 40th Symposium on

Security and Privacy, San Francisco, CA, USA, pp. 656-

672. https://doi.org/10.1109/SP.2019.00044

[59] Canetti, R., Feige, U., Goldreich, O., Naor, M. (1996).

Adaptively secure multi-party computation. ACM

Symposium on Theory of computing, Pennsylvania,

USA, pp. 639-648.

[60] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,

McMahan, H.B., Patel, S., Ramage, D., Segal, A., Seth,

K. (2017). Practical secure aggregation for privacy-

preserving machine learning. The 24th ACM SIGSAC

Conference on Computer and Communications Security,

Dallas, Texas, USA, pp. 1175-1191.

https://doi.org/10.1145/3133956.3133982

[61] Xu, G., Li, H., Liu, S., Yang, K., Lin, X. (2019).

VerifyNet: Secure and verifiable federated learning.

IEEE Transactions on Information Forensics and

Security, 15: 911-926.

https://doi.org/10.1109/tifs.2019.2929409

[62] Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.

(2018). Privacy-preserving deep learning via additively

homomorphic encryption. IEEE Transactions on

Information Forensics and Security, 13(5): 1333-1345.

https://doi.org/10.1109/tifs.2017.2787987

[63] Hao, M., Li, H., Xu, G., Liu, S., Yang, H. (2019).

Towards efficient and privacy-preserving federated deep

learning. The 2019 IEEE International Conference on

Communications, Shanghai, China, pp. 1-6.

https://doi.org/10.1109/ICC.2019.8761267

[64] Hao, M., Li, H., Luo, X., Xu, G., Yang, H., Liu, S. (2020).

Efficient and privacy-enhanced federated learning for

industrial artificial intelligence. IEEE Transactions on

Industrial Informatics, 16(10): 6532-6542.

https://doi.org/10.1109/tii.2019.2945367

[65] Chen, Y., Su, L., Xu, J. (2017). Distributed statistical

machine learning in adversarial settings: Byzantine

gradient descent. ACM on Measurement and Analysis of

Computing Systems, 1(2): 1-25.

https://doi.org/10.1145/3154503

[66] Cao, D., Chang, S., Lin, Z., Liu, G., Sun, D. (2019).

Understanding distributed poisoning attack in federated

learning. The 25th International Conference on Parallel

and Distributed Systems, Tianjin, China, pp. 233-239.

https://doi.org/10.1109/icpads47876.2019.00042

[67] Fung, C., Yoon, C.J., Beschastnikh, I. (2020). The

limitations of federated learning in sybil settings. The

23rd International Symposium on Research in Attacks,

Intrusions and Defenses, San Sebastian, pp. 301-316.

[68] Tran, D., Li, J., Mądry, A. (2018). Spectral signatures in

backdoor attacks. The 32nd International Conference on

Neural Information Processing Systems, Montréal,

Canada, pp. 8011-8021.

https://doi.org/10.48550/arXiv.1811.00636

[69] Pillutla, K., Kakade, S.M., Harchaoui, Z. (2019). Robust

58

aggregation for federated learning. arXiv preprint

arXiv:1912.13445.

https://doi.org/10.48550/arXiv.1912.13445

[70] Grama, M., Musat, M., Muñoz-González, L., Passerat-

Palmbach, J., Rueckert, D., Alansary, A. (2020). Robust

aggregation for adaptive privacy preserving federated

learning in healthcare. arXiv preprint arXiv:2009.08294.

https://doi.org/10.48550/arXiv.2009.08294

[71] Lu, Y., Fan, L. (2020). An efficient and robust

aggregation algorithm for learning federated CNN. The

3rd International Conference on Signal Processing and

Machine Learning, Beijing, China, pp. 1-7.

[72] Ang, F., Chen, L., Zhao, N., Chen, Y., Wang, W., Yu,

F.R. (2020). Robust federated learning with noisy

communication. IEEE Transactions on Communications,

68(6): 3452-3464.

https://doi.org/10.1109/tcomm.2020.2979149

[73] Seo, H., Park, J., Oh, S., Bennis, M., Kim, S.L. (2020).

Federated knowledge distillation. arXiv preprint

arXiv:2011.02367.

[74] Jiang, D., Shan, C., Zhang, Z. (2020). Federated learning

algorithm based on knowledge distillation. International

Conference on Artificial Intelligence and Computer

Engineering, Beijing, China, pp. 163-167.

https://doi.org/10.1109/icaice51518.2020.00038

[75] Zhu, Z., Hong, J., Zhou, J. (2021). Data-free knowledge

distillation for heterogeneous federated learning. The

38th International Conference on Machine Learning, pp.

12878-12889.

https://doi.org/10.48550/arXiv.2105.10056

[76] Li, D., Wang, J. (2019). FedMD: Heterogenous federated

learning via model distillation. International Workshop

on Federated Learning for User Privacy and Data

Confidentiality, Vancouver, Canada, pp. 1-8.

https://doi.org/10.48550/arXiv.1910.03581

[77] Babu, B.V.S., Babu K.S. (2021). The purview of

blockchain appositeness in computing paradigms: A

survey. Ingénierie des Systèmes d’Information, 26(1):

33-46. https://doi.org/10.18280/isi.260104

[78] Nguyen, D.C., Ding, M., Pham, Q.V., Pathirana, P.N., Le,

L.B., Seneviratne, A., Li, J., Niyato, D., Poor, H.V.

(2021). Federated learning meets blockchain in edge

computing: opportunities and challenges. IEEE Internet

of Things Journal, 8(16): 12806-12825.

https://doi.org/10.1109/jiot.2021.3072611

59

