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This paper focuses on the theoretical and numerical investigation of the unsteady, 

viscous, incompressible, two-dimensional laminar boundary layer flow of a Newtonian 

biomagnetic fluid over a stretching sheet under the influence of an applied magnetic 

field in the presence of heat transfer. The magnetic field is induced by a magnetic dipole 

placed below the stretching sheet. The magnetic field intensity represents the magneto-

thermo-mechanical coupling. This allows exclusion of the biofluid that is distant from 

the sheet at Curie temperature to avoid further magnetization. The unsteadiness of the 

flow is discernible in the fluid flow properties. The mathematical model of the problem 

conforms to the principles of Magnetohydrodynamics (MHD) and Ferrohydrodynamics 

(FHD). In this work, the study is performed on a specific biofluid, human blood. The 

modified Stokes principle is used to implement the model under the assumption that 

along with the three thermodynamic variables P, ρ, and T, the Biomagnetic Fluid 

Dynamics (BFD) fluid behavior can be characterized as a function of magnetization M. 

To describe the physical problem, a coupled non-linear system of ordinary differential 

equations subject to appropriate boundary conditions is derived from Navier-Stokes and 

thermal energy equations by performing non-dimensionalization of the considered 

variables. To solve these equations, the dsolve routine in the MAPLE software is used. 

Numerical results for flow profiles and the local skin friction coefficient (Cfx) and the 

local Nusselt number (Nux) are discussed for different values of unsteadiness parameter 

(A), biomagnetic interaction parameter (B) and a rational quantity (ϵ). The achieved 

results are compared with previously published work for steady state flow, and they 

seem to be in good agreement. It is found that MHD and FHD interaction parameters 

affect significantly on the velocity, temperature and pressure field. A successful 

completion will bring interesting results for better understanding of the biomagnetic 

fluid flow characteristics and can be beneficial to medical and bioengineering 

applications; particularly for estimating the characteristics of blood flow in stenosed 

arteries. 
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1. INTRODUCTION

Unsteady fluid flow hinges upon time dependent flow 

properties—velocity, pressure, temperature etc. This type of 

fluid flow can be observed in human body due to much 

impulsive body movement, vibration, unintentional abrupt 

body acceleration while riding any vehicle or in various kinds 

of physical competition. In addition, this type of flow might 

occur in a cardiovascular disease—the leading cause of death. 

In 2015, the World Health Organization (WHO) reported 

approximately 17.7 million deaths due to cardiovascular 

diseases, consisting of 31% of all global deaths. 

Approximately 7.4 million of these deceased population 

suffered from coronary heart disease and 6.7 million suffered 

from stroke. A “myocardial infarction” or a heart attack 

happens when the blood flow to some portion of the heart 

muscle is blocked by a formed clot in an artery. Due to 

inadequate blood flow and consequently less oxygen and 

nutrients, the portion of the heart muscle gets damaged. The 

intensity of the damage depends on a variety of factors: the 

size and the location of the clot and the duration of the block. 

Longer duration causes extensive damage to the muscle. There 

are other kinds of diseases which are concerned with 

narrowing of blood vessels such as peripheral artery disease, 

vascular diseases, atherosclerosis etc. In these diseases the 

irregular blood flow might fall prey to unsteadiness in the flow. 

Peripheral artery disease (PAD) is a well-known circulatory 

problem where narrowed arteries lessen the blood flow to 

limbs. As known, arteries carry oxygen and nutrients through 

blood from the heart to every part of the body such as the brain, 

kidneys, intestines, arms, legs, and heart itself. When PAD is 

developed, extremities such as legs do not get sufficient blood 
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flow to match the demand of the body. Two other types of 

diseases that are caused by disruptive blood flow are vascular 

disease and atherosclerosis. Vascular disease is an abnormal 

condition of the blood vessels that occurs where turbulent 

blood flow takes place, e.g., when the direction of blood flow 

in the arteries changes abruptly. Atherosclerosis, on the other 

hand, is the narrowing of the vessels that carry blood to the 

heart. Atherosclerosis occurs due to fat deposit built up in the 

artery walls. Hereby the inevitable usefulness of the study of 

blood flow in a narrow blood vessel. A substantial amount of 

work has been carried out on biological fluids. Among them 

the most important and characteristic one is blood. Also, some 

extensive amounts of works have been done using the effects 

of magnetic field and heat transfer. Needless to say, all these 

studies bear immense potential for biomedical engineering 

applications and clinical medicine. 

Kafoussias and Tzirtzilakis provided mathematical analyses 

that dealt with the flow and heat transfer of a BFD fluid in a 

channel with stretching sheet [1]. Tzitzilakis et al. [2] studied 

turbulent flow of a BFD fluid in a rectangular channel under 

the influence of an applied magnetic field. Andersson and 

Valnes [3] investigated the heated ferrofluid flow over a 

stretching sheet. They performed their study in the presence of 

a magnetic dipole. Under certain conditions, BFD fluid, 

human blood has been observed to exhibit viscoelastic 

behavior [4-6]. Misra and Shit [7] presented mathematical 

models to investigate the biomagnetic viscoelastic fluid flow 

over a stretching sheet and in a channel with stretching walls. 

They fluid was considered to flow under the action of a 

magnetic field that is externally produced by a magnetic dipole. 

In another work, Misra and Shit [8] studied the heated Ferro-

fluid flow over a linear stretching sheet under the influence of 

an applied magnetic field. Further Misra et al. [9] 

mathematically analyzed the steady incompressible second 

grade electrically conducting fluid flow in a channel perfused 

by a uniform transverse magnetic field. There are several 

mathematical studies on the blood flow such as arterial blood 

flow in the presence of body exercise by Mwapinga [10], 

blood flow through a narrow, catheterized artery by Kumar et 

al. [11], arterial blood flow during electromagnetic 

hyperthermia by Misra et al. [12], MHD effects on stenosed 

blood flow by Haik et al. [13], and so on. The mathematical 

analyses of BFD fluid flow have been known to serve several 

important biomedical application-based research such as study 

on various types of magnetically controlled drug carrier 

systems by Ruuge and Rusetski [14], approaches for drug 

delivery to particular destinations within the human body by 

Voltairas et al. [15], and so on. Researchers have performed 

comparative numerical studies of biomagnetic fluid flow over 

the years. Tzirtzilakis and Kafoussias [16] have presented 

comparative study of a BFD fluid flow over a stretching sheet 

under the action of an applied magnetic field and mathematical 

models for biomagnetic fluid flow and applications [17]. Some 

other research works on comparative numerical studies are 

mathematical modeling of BFD that is suitable for describing 

the Newtonian blood flow controlled by an applied magnetic 

field by Tzirtzilakis [18], mathematical models of the blood 

flow in a stenosed channel under the influence of a steady 

localized magnetic field by Tzirtzilakis [19], numerical 

analysis for BFD problems applying stream function vorticity 

by Tzirtzilakis [20], the study of biomagnetic fluid flow under 

the impact of a steady magnetic field in an aneurysmal 

geometry by Tzirtzilakis [21], numerical analysis of BFD fluid 

flow over a stretching sheet in the presence of heat transfer by 

Tzirtzilakis and Tanoudis [22], BFD fluid flow under the 

impact of an applied magnetic field in a curved square duct by 

Papadopoulos and Tzirtzilakis [23], BFD fluid flow under the 

action of a uniform localized magnetic field in a channel by 

Tzirtzilakis and Loukopoulos [24], mathematical model of 

biomagnetic fluid Tzirtzilakis [18]. A substantial amount of 

works has been done on BFD fluid flow on a stretching sheet 

with unsteady velocity such as numerical analysis of unsteady 

stagnation point flow over a stretching or shrinking sheet with 

prescribed heat flux [25-27].  

In this paper, the biofluid is studied under two 

considerations: there is a stretching sheet with unsteady 

velocity and the stretching sheet is under the influence of a 

magnetic dipole. The observed variables/properties of the fluid 

flow are velocity, pressure and temperature. These properties 

depend on dimensionless unsteadiness parameter A and 

biomagnetic parameter B.  
 

 

2. MODELING AND FORMULATION 
 

An unsteady laminar flow of an incompressible, viscous, 

and electrically conducting BFD fluid and with heat transfer is 

assumed to be confined in half space (y > 0) above a sheet. 

This sheet is characterized as impermeable, flat, elastic, 
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with boundary conditions: 

 

y = 0: u = Uw, v = 0, T = Tw  

y→∞: u → U∞, T→ Tc, =+ 2q2/1p constant (5) 

 

and stretched with a velocity Uw (x,t). The velocity of the fluid 

becomes U∞ (x,t), as moved far away from this sheet. Below 

this sheet, at a distance d, there is a magnetic dipole 

engendering a magnetic field that is strong enough to have the 

biomagnetic fluid saturated. As far as the temperature is 

concerned, a fixed temperature Tw is maintained for the sheet. 

At a further distance from the sheet, the fluid retains the Curie 

Temperature Tc, higher than the wall temperature in 

magnitude. Unsteady fluid flow, i.e. time dependent flow as it 

implies by definition, in this study the properties like velocity 

and pressure of biomagnetic fluid flow are considered as time 

dependent functions. An overview of the flow model and co-

ordinate system of biomagnetic fluid flow is depicted in Figure 

1. 

Following the mathematical models, presented by 

Tzirtzilakis and Tanoudis [22] and Suali et al. [25], under the 

above-mentioned assumptions, the governing continuity, 

momentum and heat conservation equations can be written as: 
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In the equations above, the free stream velocity is U∞ 

=ax/(1-t); sheet stretching velocity is Uw=bx/(1-t) [25]; u is 

the velocity component of the fluid in the x direction and v is 

the velocity component of the fluid in the y direction, and 

𝑞⃗=(u,v); ν is the kinetic viscosity which is the ratio of dynamic 

viscosity μ and density ρ. 

Moreover, ∇2 is the Laplacian operator in two-dimension 

whereas φ is the dissipation function given by Tzirtzilakis and 

Tanoudis [22]: 

Here the terms 
x
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in (2) and (3), 

depict the components of the magnetic force per unit volume 

along x and y directions respectively. They are dependent on 

the presence of the magnetic gradient caused by the magnetic 

dipole. These gradients are absent when the magnetic forces 

disappear. On the left-hand side of the thermal energy Eq. (4), 

the third term accounts for heating due to adiabatic 

magnetization. As cited by Andersson and Valnes [3], the 

components Hx, Hy of the magnetic field )H,H()y,x(H yx=


, 

are given by the following expressions:  
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In the above equations d is the distance of the magnetic 

dipole situated below the sheet, α is the dimensionless distance, 

defined as  = 
2/1
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d, V refers to the scalar potential 

of the magnetic dipole [3 and, in it γ = α. 

As such, the magnitude HH =
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 is given by:  
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and the magnetic field gradients are given by: 
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Since it has been assumed that H⃗⃗⃗(x, y) has enough strength 

for saturating the biomagnetic field, the magnetization M is 

usually established by the fluid temperature and the magnetic 

field intensity. Considerably, the variation of magnetization 

with respect to temperature T can be expressed and estimated 

by M = K (Tc − T), an approximation given by ANDERSSON 

and VALNES [3]. Here K is a constant, namely the pyro-

magnetic co-efficient and Tc is the Curie temperature. The 

biofluid becomes no longer magnetized, as soon as it reaches 

the Curie temperature. The reason behind this is the increasing 

intensity H of the magnetic field. However, following the 

consideration by Matsuki et al. [28], it is experimentally 

proven that  

 

M = KH (Tc − T) (13) 

 

To have no further magnetization, in this study, Eq. (13) 

restricts to ignore the biofluid at a further distance from the 

sheet, at Curie temperature Tc.  

 

 

 
 

Figure 1. Geometry of unsteady fluid flow 

 

217



3. SIMILARITY ANALYSIS

In this part, the following non-dimensional variables given 

by Tzirtzilakis and Tanoudis [22] and Suali et al. [25] are 

introduced: 
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where, ξ(x), η(y), (ξ, η), P(ξ, η), (ξ, η) are dimensionless 

co-ordinates in x and y, stream function, pressure, and 

temperature, respectively.  

Substituting Eqns. (11)-(18) into the Eqns. (2)-(4) and then 

equating the coefficients of equal powers of ξ, up to ξ4, an

approach to the transformation is performed in the following 

manner: 

The velocity components are calculated as follows: 
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The boundary value problem (BVP) given by Eqns. (1) ̴ (5) 

then reduces to the following system of coupled nonlinear 

partial differential equations: 
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The transformed boundary conditions assure the form: 

η=0: f=0, f = =
a

b ϵ, θ1= 1, θ2=0

η⟶∞: f ⟶1,1⟶ 0, 2⟶0, P1⟶-P∞, P2⟶0 

(26) 

The physical dimensionless parameters that have appeared 

in the Eqns. (21)-(26) are: 
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The system of Eqns. (21)-(25), subjected to the boundary 

condition (26), is a seven-parameter non-linear coupled 

system. It describes the unsteady flow of a biomagnetic fluid 

over a stretching sheet under the effect of magnetization.  

4. PARAMETER ESTIMATION

Numerical calculations have been performed for different 

values of dimensionless parameters for the considered 

problem. The solutions are obtained by using MAPLE 

software [29]. The Maple differential equation solver (dsolve) 

has been used to solve the problem. Both step size Δη, and the 

convergence criteria are set to the default values: 0.01 and 10−6, 

respectively. Until convergence is achieved, an automatic 

adjustment of the missing initial derivative is performed by the 

algorithm incorporated in the software. The procedure has 

been well established by its accuracy and robustness in 

numerous publications [30-34]. The asymptotic boundary 

conditions ηmax are substituted by a finite value of 0.6. It 

ensures that all numerical solutions precisely follow the far 

field asymptotic values. The far field boundary conditions in 

(26) are replaced by a finite value of 0.6 for similarity variable

ηmax. Thus, when ηmax = 0.6, = )6.0(f 0 and P (0.6) = θ (0.6)

= 0. The command dsolve successfully substitutes the BVP by 

an initial value problem (IVP).  

In relevant to this study, for biomagnetic fluid, blood, the 

density ρ = 1050 kg m-3, viscosity μ = 3.2x10-3 kg m-1s-1, and 

the maximum velocity U∞ = 3.048 x10-2 m s-1 [20, 21]. The 

magnetic dipole is positioned under the stretching sheet at a 
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distance d = 10-4 m. The Curie temperature for blood is 

considered as Tc = 41℃ and the temperature of blood is 

considered as Tw = 37℃ (Tzirtzilakis [21]). Using Tc and Tw, 

the dimensionless temperature Tε is calculated to be 78.5. For 

these temperatures, the measurements for blood are adopted as 

specific heat under constant pressure Cp = 3.9x103 J Kg-1K-1, 

thermal conductivity K = 0.5 J m-1s-1K-1 by Chato [35]. 

Although μ, Cp, K of any fluid including blood depends on 

temperature, the Prandtl number Pr can be a constant. The 

Prandtl number Pr for the above-mentioned values is 

calculated to be 25. Furthermore, for these values Eckert 

number is derived as Ec = 5.96x10-8. Near the magnetic field 

β0 = 4 − 8T, the saturated magnetization value M0 is 40 A m-1 

Tzirtzilakis [21]. For these values, and for β0 = 4T, M0 = 40A 

m-1, d =10-4; the calculated value for B is 164. If the strength

of the magnetic field at the wall is 8T, the B becomes 336.

Note that, the value B = 0 corresponds to hydrodynamic flow.

The dimensionless distance α is taken to be equal to 1 by Sajid

et al. [36]. The values of unsteadiness parameter A and the

ratio ϵ are assumed by “trial and error” method. Here, the most

crucial quantities of physical interest are the local skin friction

coefficient 
xfC  and local rate of heat transfer coefficient Nux, 

also known as local Nusselt number. These quantities are 

defined by Misra and Shit [8]: 
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Using Eqns. (14), (15), (17), (19) and (20), the above-

mentioned quantities can be obtained as: 
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where, Rex is the local Reynolds number Rex = 


xU [23], 

)0(f − is the dimensionless wall shear parameter and

)]0()0([)0( 2

2

1 +=  is the dimensionless wall heat transfer 

parameter. The flow field is seemingly influenced by the 

values of the biomagnetic interaction parameter B. When B = 

0 (hydrodynamic case), at infinity P2 becomes zero (constant). 

So, it is more suitable to consider replacing the dimensionless 

wall heat transfer parameter )]0(θξ)0(θ[)0(θ 2
2

1
+−=−  by 

0B1

1*

)0(θ

)0(θ
)0(θ

=



= , namely the coefficient of the heat transfer 

rate at the sheet [25]. Also, P2 (0) can be defined as the 

dimensionless wall pressure parameter.  

5. RESULTS AND DISCUSSION

The numerical results of the present study together with 

comparison to studies in the open literature are presented in 

this section. The transformed Eqns. (21) to (25) with boundary 

condition (26) are numerically solved with the help of an 

efficient Runge – Kutta - Fehlberg 4th order numerical method 

using Maple 14. During the solution process, different values 

of the parameters A, B and ϵ are used. The range of parameter 

values used for numerical computations are: 0 ≤ A ≤ 3, 0 ≤ B 

≤ 328 and 0.5 ≤ ϵ ≤ 2.2. Figures 2, 3 represents the result of a 

comparison between the Maple and finite difference precision 

numerical solutions for a steady state case with B = 0, A = 0, 

ϵ = 1, Pr = 7, Ec = 0, α = 1, Tε=2 by setting ηmax = 6 and 0.9. 

The velocity and pressure profiles for the steady and 

hydrodynamic case with B = 0 are in excellent agreement with 

those obtained by Tzirtzilakis [8]. 

Figure 2. Comparison of dimensionless velocity f (η) 

Figure 3. Comparison of dimensionless pressure P2 (η) 

Figures 4, 5 illustrates the velocity profiles f (η) for various 

B, A and ϵ. Both are plotted against η. Figure 4 reveals the 

effects of A and B on the velocity profile and it can be inferred 

that under the influence of a stronger magnetic field, the fluid 

velocity decreases. In addition, the opposite results occur for 

increasing unsteadiness parameter for the case B = 0, 164 and 

328. Note that for B = 164, the velocity increases near the wall

and decreases far from the wall which cross one point

occurring at a value of η = 0.3. When these velocity profiles

are observed, it is noticed from Figure 4 that for B = 164 and

A = 0.35, velocity starting from a boundary value f  (0) = 1

tends to decrease to f  (0.22) = − 0.106384 and then increase

to the boundary value f  (0.6) = 1. Similarly for B = 164 and

A = 3, this lowest velocity is: f  (0.29) = 0.0137628; for B =

328 and A = 0.35, f  (0.28) = − 1.30197; for B = 328 and A =
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3, f  (0.3) = − 0.94128. These velocity profiles happen to be 

depicted as parabolic trajectories. In case of the steady case (A 

= 0), it is noticed in Figure 4 that at some point the 

dimensionless velocity coincides with the unsteady one (A ≠ 

0) for biomagnetic parameter B = 164 (biomagnetic field 

strength 4T). For instance: when A = 0.35 (unsteady) f (η) 

coincides with the steady profile at approximately (0.154, − 

0.0319) and for A = 3 at (0.296, 0.0152). Boundary layer 

thickness is therefore higher with B = 328. Figure 5 shows that 

the velocity profile increases with increasing values of ϵ from 

the surface to the fluid further away from the surface in two 

sets of numerical solutions. For B = 164, starting from f (0) = 

0.5, velocity decreases to f (0.21) = − 0.480572 and from f (0) 

= 2.2, it decreases to f (0.3) = 0.887956; then increases to the 

boundary value f  (0.6) = 1. Similarly for B = 328, these 

decreased velocities are: for B = 328, f (0.27) = − 1.599639 

and f (0.24) = − 0.28782 starting from f (0) = 0.5 and 2.2 

respectively. 

 

 
 

Figure 4. Variation of dimensionless velocity f (η) for 

different B and A 

 

 
 

Figure 5. Variation of dimensionless velocity f (η) for 

different ϵ and A 

 

Figures 4, 5 illustrates the velocity profiles f (η) for various 

B, A and ϵ. Both are plotted against η. Figure 4 reveals the 

effects of A and B on the velocity profile and it can be inferred 

that under the influence of a stronger magnetic field, the fluid 

velocity decreases. In addition, the opposite results occur for 

increasing unsteadiness parameter for the case B = 0, 164 and 

328. Note that for B = 164, the velocity increases near the wall 

and decreases far from the wall which cross one point 

occurring at a value of η = 0.3. When these velocity profiles 

are observed, it is noticed from Figure 4 that for B = 164 and 

A = 0.35, velocity starting from a boundary value f  (0) = 1 

tends to decrease to f  (0.22) = − 0.106384 and then increase 

to the boundary value f  (0.6) = 1. Similarly for B = 164 and 

A = 3, this lowest velocity is: f  (0.29) = 0.0137628; for B = 

328 and A = 0.35, f  (0.28) = − 1.30197; for B = 328 and A = 

3, f  (0.3) = − 0.94128. These velocity profiles happen to be 

depicted as parabolic trajectories. In case of the steady case (A 

= 0), it is noticed in Figure 4 that at some point the 

dimensionless velocity coincides with the unsteady one (A ≠ 

0) for biomagnetic parameter B = 164 (biomagnetic field 

strength 4T). For instance: when A = 0.35 (unsteady) f (η) 

coincides with the steady profile at approximately (0.154, − 

0.0319) and for A = 3 at (0.296, 0.0152). Boundary layer 

thickness is therefore higher with B = 328. Figure 5 shows that 

the velocity profile increases with increasing values of ϵ from 

the surface to the fluid further away from the surface in two 

sets of numerical solutions. For B = 164, starting from f (0) = 

0.5, velocity decreases to f (0.21) = − 0.480572 and from f (0) 

= 2.2, it decreases to f (0.3) = 0.887956; then increases to the 

boundary value f  (0.6) = 1. Similarly for B = 328, these 

decreased velocities are: for B = 328, f (0.27) = − 1.599639 

and f (0.24) = − 0.28782 starting from f (0) = 0.5 and 2.2 

respectively. 

 

 
 

Figure 6. Variation of dimensionless pressure P2 (η) for 

different B and A 

 

 
 

Figure 7. Variation of dimensionless pressure P2 (η) for 

different ϵ and B 
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Figures 6 and 7 depict the effects of unsteadiness parameter 

A and ϵ with the change of biomagnetic parameter B on the 

dimensionless pressure P2 (η). For hydrodynamic (B = 0) case 

(Figure 5) the flow coincides with the origin describing that B 

has no significant effect on pressure. With increase in B, 

dimensionless pressure increases. Also Figure 6, implicates 

that this increment in greater for larger values of unsteadiness 

parameter A. From Figure 7, it is evident that as ϵ increases, 

P2 (η) decreases. As the pattern of any of the graphs in Figures 

6 and 7 is looked at, it is easily come to sight that pressure 

decreases gradually from a highest value and as η increases, it 

approaches to the boundary asymptotically. 

In Figures 8 and 9 temperature profiles are plotted against η 

in the form of dimensionless temperature θ1 (η) for various 

values of biomagnetic parameter B, unsteadiness parameter A 

and ϵ. As to the observation, when the biomagnetic interaction 

parameter B decreases, the dimensionless temperature θ1 (η) 

decreases. Recall that, B is the strength of the magnetic field 

generated by the magnetic dipole that is placed under the 

stretching sheet. Also, from Figure 8 it is evident that with 

increasing unsteadiness parameter A, the temperature 

becomes increased. As the pattern of the graphs of the 

dimensionless temperature is concerned, it is observed that for 

the hydrodynamic state (B = 0) when A < 2 and ϵ ≥ 1 the 

temperature drops from a highest value and approaches the 

boundary in an asymptotic manner. An interesting 

phenomenon is observed when B = 0, A= 2 and when B = 164, 

A = 0.35. In both the cases the dimensionless temperature θ1 

(η) decreases almost linearly. From Figure 9 it is evident that, 

temperature is decrescent from the higher temperature region 

near the wall to the region away from the wall for increasing 

values of ϵ. 

 

 
 

Figure 8. Variation of dimensionless temperature θ1 (η) for 

different B and A 

 

 
 

Figure 9. Variation of dimensionless temperature θ1 (η) for 

different ϵ and B 
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Figure 10. Variation of the wall shear parameter − f (0) 
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Figure 11. Variation of wall pressure parameter P2 (0) 
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Figure 12. Variation of the wall heat transfer parameter θ*(0) 

 

Figures 10-12 graphically represents the results of the 

similarity solutions for the wall heat transfer. The results are 

shown for A as a function of biomagnetic parameter B. From 

Figure 10, as B increases in the blood, the wall shear increases 

asymptotically. The effect of A on the dimensionless wall 

shear is also investigated. It is found that wall shear decreases 

with the parameter A. Figure 11 shows that as the parameter B 

increases, the wall pressure increases. This effect can also be 

seen on the wall pressure as A increases. For A = 2, 3 wall 

shear parameter and wall pressure parameter increases almost 

linearly with respect to B, whereas for A = 0, 0.1, 0.35 wall 

shear parameter shows nonlinear increment with B. From 

Figure 12, we can see that for A = 0 and 0.1, θ*(0) vary almost 

linearly with respect to the increase of B. As we increase the 

value of A other than the above θ*(0) represents nonlinear 

profile. This is due to the transport of blood from higher 
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temperature near the wall to the lower temperature far away 

from the wall.  

6. CONCLUDING REMARKS 

 

In this paper, a numerical study has been carried out for the 

two-dimensional problem of the flow of a BFD fluid over a 

stretching sheet with heat transfer and magnetization. A 

similarity transformation has been employed for the reduction 

of the partial differential equations into nonlinear coupled 

ordinary differential equations. The effects of the 

dimensionless parameters A, ϵ and B on the fluid flow have 

been discussed here and the numerical results obtained here 

have been compared with the previously published results. All 

data have been acquired by using a dsolve routine in MAPLE 

software. However, significant results that have been found in 

this study are summarized as follows: 

The change in velocity ( )ηf   with the change in 

unsteadiness parameter A is dependent upon the biomagnetic 

interaction parameter B. Velocity decreases with increasing B 

and increases with increasing A. But for B = 164 this 

phenomena get reversed. 

Pressure P2 (η) increases with increasing B and this 

increment is greater for increasing A. On the other hand, P2 (η) 

decreases with increasing ϵ. 

Temperature θ1 (η) increases with the increment of B and A, 

whereas it decreases with the increment of ϵ. 

The variations of wall shear parameter − f (0) and wall 

pressure parameter P2 (0) for larger values of unsteadiness 

parameter A and coefficient of wall heat transfer rate θ*(0) for 

smaller values of A with biomagnetic interaction parameter B 

are almost linear. 

− f (0) and P2 (0) increases with B, θ*(0) decreases as B 

moves further away from its hydrodynamic state (B = 0). 
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