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This work introduces high-accuracy numerical solution for the two elastically coupled 

beams subjected to mechanical bending problem. Finite difference method (FDM) was 

considered to solve the governing equations along with the boundary conditions of the 

structure. The validity of this solution was ensured and tested with literature data. 

Finally, the influence of the key structural parameters of the problem, such as the 

relative stiffness between the beams as well as the elastic layer, was thoroughly 

discussed with the specific attention on its application in electronic assemblies 

subjected to mechanical bending. The numerical findings showed that for stiffer beams 

and compliant layer, the axial deformations of the layer are lower which can be reflected 

as lower solder stresses and hence more reliable designs of electronic devices. 
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1. INTRODUCTION

In service life, electronic devices are continuously prone to 

various mechanics bending, static and dynamic, loadings. For 

this reason, the assessment of bending-induced failures of 

electronic assemblies has become a major concern in industry. 

As a result, the reliability and quality of electronic structures 

have been widely and constantly investigated. Experimental 

works including, three-point bending tests [1], four-point 

bending tests [2, 3], vibration [4, 5] and drop impact [6, 7] 

were carried out for the evaluation of bending-related 

electronic assemblies’ reliability. 

In addition to experiments, analytical solutions are very 

efficient and low-cost tools numerously used to evaluate the 

bending-induced stresses in electronic structures. A typical 

electronic package is made of a printed circuit board (PCB) 

and an integrated circuit (IC) component which both are 

connected, i.e., coupled, by an array of solder interconnects. 

This package-on-PCB structure has been widely treated in 

literature using the two elastically coupled beams problem. In 

this type of a problem, both the PCB and IC package are being 

modeled as two Euler-Bernoulli beams and the solder joints 

are treated as a thin elastic layer that couples and connects both 

beams. 

Several successful attempts were made to solve this 

problem analytically. Perhaps the first work was done by Suhir 

[8] in which he developed a closed-form analytical solution to

approximately compute solder axial stresses in electronic

assemblies under static bending loading. In this solution, the

solder joints were assumed to only deform axially and hence

considered as axial discrete springs. The results of this

approach were further applied to electronic assemblies under

drop/impact conditions [9]. Wong et al. [10-12] presented

approximate and accurate solutions of the same problem

considering axial as well as flexural solder deformations in

static [10, 11] and dynamic [12] bending loading conditions.

Additionally, symmetric and non-symmetric bending cases 

were discussed [10, 11]. Pitarresi et al. [13] and Engle [14] 

obtained the solution of the coupled beams subjected to a 

central concentrated force problem. Later, Gharaibeh et al. 

[15] expanded the works of Pitarresi et al. [13] to solve for the

case of partially coupled beams. Recently, Gharaibeh et al.

[16] used the simple mechanics problem, the problem of a

beam made of three materials, to solve for solder stresses. In

the approach, solder stresses at the top and the bottom of the

solder layer were computed. In addition to bending, the two

elastically coupled beams has been widely adopted to solve for

solder shear stresses due to thermal cycling loadings [17-26].

In 2016, Gharaibeh et al. [27] introduced the two elastically 

coupled plates for electronic assemblies’ vibrational problem. 

In this system, Ritz method was employed to solve for the 

system natural frequency, mode shapes and for solder nominal 

stresses. The findings of this solution were compared and 

correlated with experiments and with finite element analysis 

(FEA) data. Later, this solution was combined with design of 

experiment approaches to investigate the reliability of 

electronic assemblies under harmonic [28, 29] and random 

vibrations [30] as well as under shock loadings [31, 32]. 

The aim of this paper is to revisit the two elastically coupled 

beams problem and use the finite difference method (FDM) to 

solve the governing equation and to compute solder stresses. 

In this work, the cases of solder with only axial deformations 

as well as the case of solders with both axial and flexural 

deformations were studied. The FDM based solution was 

tested in terms of numerical accuracy and validated with 

literature data. Purposefully, this solution was used to examine 

the effect of the key structural parameters of the electronic 

assembly on solder stresses, hence, design recommendations 

were provided. The value of this solution is that it can be easily 

generalized to solve for any kind of loading and boundary 

conditions imposed on the coupled beams structure. 

Additionally, the method can be effectively expanded for the 
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solution of the two-dimensional problem of the coupled plates 

structure. 

We first start by the description of the coupled beams 

problem, the governing equations of the structure and the 

imposed loading and boundary conditions i section 2. Section 

3, presents the details of the finite difference method scheme, 

an illustrative example, and numerical accuracy study is also 

introduced. The validation of this solution with literature data 

is presented in section 4 followed by the effect of the key 

structural parameters of coupled beams problem of solder 

stresses discussions. 

 

 

2. ELASTICALLY COUPLED BEAMS PROBLEM 

DESCRIPTION 

 

This section fully describes the problem of the two 

elastically coupled beams in terms of problem assumptions, 

boundary conditions, and governing equation. 

 

2.1 Problem definition 

 

As mentioned previously, in the two elastically coupled 

beams model, the PCB and the IC component are designated 

as Euler-Bernoulli beams which both are elastically connected 

by a layer composed of evenly distributed springs. Here, the 

springs are considered to model the solder interconnect 

behavior. Figure 1 presents the details of this problem. As 

shown in this figure, the IC package is beam 1 and the PCB is 

beam 2. Considering both beams are of length (L), the bending, 

i.e., flexural, stiffness of beam 1 and beam 2 are D1 and D2, 

respectively. If the modulus of elasticity of the beam material 

is (E) and its cross-sectional moment of inertia is (I), then the 

flexural stiffness is D=EI. Hereinafter, the subscript 1 is used 

for beam 1 material and geometry (E1 and I1) and subscript 2 

is for beam 2 characteristics (E2 and I2). Also, the transverse 

deflection functions of beam 1 and beam 2 are u1(x) and u2(x), 

respectively. For the modeling of solder joints, two analytical 

models were considered. The first and the simplest model 

treats the solders as linear springs with axial deformations only 

while the second, and most general, treats the interconnects as 

springs with both axial and flexural deformations. 

Considering cylindrical-shapes solder of length (Ls) and 

cross-sectional area (As) as well as moment of inertia (Is) and 

made of a material with an elastic modulus (Es), the equivalent 

axial and bending stiffnesses are K=EsAs/Lsp2 and 

Km=EsLs/Lsp2, respectively, p is the pitch distance between two 

adjacent interconnects. For the case of axial deformations only, 

requires the presence of K only in the governing equation. 

However, in the case of axial and bending deformations, both 

K and Km are required. 

 

 
 

Figure 1. Two elastically coupled beams problem 

 

2.2 Governing equations 

 

2.2.1 Solders with axial deformations 

The governing differential equations of the coupled beams 

system with axial springs can be derived as [15]: 

 

𝐷1
𝑑4𝑢1
𝑑𝑥4

= 𝜎(𝑥) (1.a) 

 

𝐷2
𝑑4𝑢2
𝑑𝑥4

= −𝜎(𝑥) (1.b) 

 

where, the notation 𝑑4𝑢/𝑑𝑥4  is the fourth derivative of the 

deflection functions; σ(x) is the solder stress along the beam. 

Considering that the elastic layer of the springs follows the 

properties of Wrinkler foundation: 

 

𝜎(𝑥) = 𝐾(𝑢2(𝑥) − 𝑢1(𝑥)) (2) 

 

By defining the solder, i.e., springs, axial deformation is the 

difference between beam 2 and beam 1 deflection, thus: 

 

𝛿(𝑥) = 𝑢2(𝑥) − 𝑢1(𝑥) (3) 

 

Combining Eq. (1), Eq. (2) and Eq. (3), the governing 

equation of the solder axial deflection can be expressed as: 

 

𝑑4𝛿

𝑑𝑥4
+ 4𝜆1

4𝛿(𝑥) = 0 (4) 

 

where, 4𝜆1
4 = 𝐾/𝐷𝑒 , where De is the equivalent bending 

stiffness of beam 1 and beam 2 and defined as 1\De=1/D1+1/D2. 

As stated earlier, for the case of springs with axial 

deformations, only K is appearing in the governing equation 

of Eq. (4) above.  

 

2.2.2 Solders with axial as well as flexural deformations 

In real-life systems, solder joints exhibit both axial and 

flexural (bending) deformations. In other words, the 

interconnects can be stretched as well as flexed. Therefore, for 

more accurate representation of the actual solder behavior, the 

flexing deformations must be considered. In this case, the 

governing equations of the coupled beams structure is [10]: 

 

𝐷1
𝑑4𝑢1
𝑑𝑥4

= 𝜎(𝑥) −
𝑑𝑀

𝑑𝑥
 (5.a) 

 

𝐷2
𝑑4𝑢2
𝑑𝑥4

= −𝜎(𝑥) +
𝑑𝑀

𝑑𝑥
 (5.b) 

 

where, M(x) is the distributed moment in the solder joint and 

expressed as [10]: 

 

𝑀(𝑥) = 𝐾𝑚
𝑑𝛿

𝑑𝑥
 (6) 

 

By combining Eq. (6), Eq. (5) and Eq. (3), the governing 

equation of the solder deformation, for this case, is written as: 

 

𝑑4𝛿

𝑑𝑥4
− 4𝜆2

4
𝑑2𝛿

𝑑𝑥2
+ 4𝜆1

4𝛿(𝑥) = 0 (7) 

 

where, 4𝜆2
4 = 𝐾𝑚/𝐷𝑒. 

 

2.3 Boundary conditions 

 

In structural mechanics point of view, loading and boundary 

conditions play an important rule in determining the behavior 
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of any structural system. For simplicity, in the present analysis 

both beams are assumed to have simple supports (pin supports) 

at both ends (𝑥 = 0  and 𝑥 = 𝐿 ). Additionally, an applied 

coupling moment (𝑀𝑎) is located at both ends of the structure. 

Thus, the boundary conditions of this system can be expressed 

as: 

For Beam 1: 

 

𝑢1(0) = 𝑢1(𝐿) = 0 (8.a) 

 

𝑑2𝑢1
𝑑𝑥2

(𝑥 = 0) = −
𝑀𝑎

𝐷1
 (8.b) 

 

𝑑2𝑢1
𝑑𝑥2

(𝑥 = 𝐿) =
𝑀𝑎

𝐷1
 (8.c) 

 

For Beam 2: 

 

𝑢2(0) = 𝑢2(𝐿) = 0 (9.a) 

 

𝑑2𝑢2
𝑑𝑥2

(𝑥 = 0) = −
𝑀𝑎

𝐷2
 (9.b) 

 

𝑑2𝑢2
𝑑𝑥2

(𝑥 = 𝐿) =
𝑀𝑎

𝐷2
 (9.c) 

 

Considering Eq. (3), the boundary conditions for 𝛿(𝑥), are: 

 

𝛿(0) = 𝑢2(0) − 𝑢1(0) = 0 (10.a) 

 

𝛿(𝐿) = 𝑢2(𝐿) − 𝑢1(𝐿) = 0 (10.b) 

 

𝑑2𝛿(0)

𝑑𝑥2
=
𝑑2𝑢2(0)

𝑑𝑥2
−
𝑑2𝑢1(0)

𝑑𝑥2
= 𝑀𝑎 (

1

𝐷1
−
1

𝐷2
) (10.c) 

 

𝑑2𝛿(𝐿)

𝑑𝑥2
=
𝑑2𝑢2(𝐿)

𝑑𝑥2
−
𝑑2𝑢1(𝐿)

𝑑𝑥2
= −𝑀𝑎 (

1

𝐷1
−
1

𝐷2
) (10.d) 

 

The above boundary conditions (BC’s) of Eq. (10), were 

employed to solve for the case of solders with axial 

deformations only Eq. (4) as well as for the case of axial and 

flexural deformations Eq. (7). 

 

 

3. NUMERICAL SOLUTION USING FDM 

 

3.1 Method implementation 

 

In the present paper, finite difference method (FDM) was 

adopted to solve the boundary value problem of Eq. (4) and 

Eq. (7) along with the boundary conditions formulated in Eq. 

(10). In this numerical approach, the finite-divided-differences 

are substituted in the differential equations of Eq. (4) and Eq. 

(7). Thus, the linear ordinary differential equations (ODE’s) 

are transformed into a system of simultaneous linear algebraic 

equations than can be easily solved [33].  

Starting with Eq. (4) solution, i.e., the case of axial 

deformations, the ODE here is of the fourth order. Hence, and 

according to FDM recommendations, a transformation to a 

system of two second order ODE’s is required. This can be 

easily done by letting 𝑣(𝑥) = 𝑑2𝛿/𝑑𝑥2, thus Eq. (4) can be 

re-written as a system of second order ODE’s as: 

 

𝑣(𝑥) =
𝑑2𝛿

𝑑𝑥2
 (11.a) 

 

𝑑2𝑣

𝑑𝑥2
=
𝑑4𝛿

𝑑𝑥4
= −4𝜆1

4𝛿(𝑥) (11.b) 

 

For the second derivatives 𝑑2𝑣/𝑑𝑥2  and 𝑑2𝛿/𝑑𝑥2 , the 

finite-divided-difference approximations are: 

 

𝑑2𝑣

𝑑𝑥2
=
𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1

(Δ𝑥)2
 (12.a) 

 

𝑑2𝛿

𝑑𝑥2
=
𝛿𝑖+1 − 2𝛿𝑖 + 𝛿𝑖−1

(Δ𝑥)2
 (12.b) 

 

where, Δx is the step size and i=0, 1, 2, …, N-1 where N is the 

total number of nodes considered in the FDM solution. Hence 

Δ𝑥 =
𝐿

𝑁−1
. 

The approximations of Eq. (12) above can be substituted 

into Eq. (11) to give: 

 

𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1 = −4(Δ𝑥)
2𝜆1
4𝛿𝑖 (13.a) 

 

𝛿𝑖+1 − 2𝛿𝑖 + 𝛿𝑖−1 = (Δ𝑥)
2𝑣𝑖  (13.b) 

 

The equations above apply for each of the interior nodes of 

v(x) and δ(x), as the first and the last nodes, i.e., the exterior 

nodes, are normally specified by the boundary conditions. 

Thus, the results system of linear algebraic equations will 

contain 2*(N-2) linear equations which will be tridiagonal. 

Such linear systems are very easy and computationally 

effective to solve. An illustrative example on the above-

described procedure will be provided later.  

To solve for the case of axial and bending deformations of 

the solder joints governed by Eq. (7), the same transformation 

procedure is required by letting 𝑣(𝑥) = 𝑑2𝛿/𝑑𝑥2, thus Eq. (7) 

becomes: 

 

𝑣(𝑥) =
𝑑2𝛿

𝑑𝑥2
 (14.a) 

 

𝑑2𝑣

𝑑𝑥2
=
𝑑4𝛿

𝑑𝑥4
= 4𝜆2

4𝑣(𝑥) − 4𝜆1
4𝛿(𝑥) (14.b) 

 

Using the same procedure discussed in the previous 

paragraphs and with the implementation of Eq. (12), the finite 

difference form of Eq. (14) is: 

 

𝑣𝑖+1 − (2 + 4(Δ𝑥)
2𝜆2
4)𝑣𝑖 + 𝑣𝑖−1 = −4(Δ𝑥)

2𝜆1
4𝛿𝑖 (15.a) 

 

𝛿𝑖+1 − 2𝛿𝑖 + 𝛿𝑖−1 = (Δ𝑥)
2𝑣𝑖  (15.b) 

 

Like the previous case of axial deformation only, the finite 

difference equations above apply for interior nodes. Also, the 

resultant system of tridiagonal linear equations will contain 

2*(N-2) equations to solve, as it will be shown in the following 

subsection. 

 

3.2 An illustrative example 

 

To show the details of the FDM along with an illustrative 

example, the most general case where both solder axial and 

bending deformations are available, was selected. If 6 nodes 
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in total were chosen in this demonstration, 4 nodes are the 

interior nodes and 2 nodes are the exterior or boundary nodes. 

As shown in Figure 2, at i=0 and i=5 are node boundary nodes.  

 

 
 

Figure 2. Six-node FDM system representation 

 

The values of v(x) at such nodes are known and could be 

easily obtained, considering the BC’s of Eq. (10) as well as Eq. 

(11) and Eq. (13), as 

 

𝑣0 = 𝑣(0) =
𝑑2𝛿(0)

𝑑𝑥2
= 𝑀𝑎 (

1

𝐷1
−
1

𝐷2
) (16.a) 

 

𝑣5 = 𝑣(𝐿) =
𝑑2𝛿(𝐿)

𝑑𝑥2
= −𝑀𝑎 (

1

𝐷1
−
1

𝐷2
) (16.b) 

 

Also, the values of 𝛿(𝑥) at the boundary nodes are given by: 

 

𝛿𝑜 = 𝛿(0) = 0 (17.a) 

 

𝛿5 = 𝛿(𝐿) = 0 (17.b) 

 

For the nodes at i=1, 2, 3, 4, the interior nodes, in the present 

FDM, two equations, one for v(x) and one for δ(x), per node 

are required and formulated. Hence, for the configuration 

studied in this illustrative example, 8 linear equations will be 

derived. It is important to emphasize here that in this 

configuration, 6 nodes were considered (N=6), however, only 

4 nodes, or interior nodes, are being analyzed. Defining that 𝑛 

is the number of the interior nodes, thus n=N-2. Hence, for 𝑛 

interior nodes, the resultant set of linear equations will contain 

2𝑛 number of equations. Here, n=4 and 8 equation will be 

derived. 

To obtain the linear equations, considering Eq. (15) for i=1, 

2, 3, 4, respectively, thus, 

 

−(2 + 4(Δ𝑥)2𝜆2
4)𝑣1 + 𝑣2 + 4(Δ𝑥)

2𝜆1
4𝛿1

= −𝑀𝑎 (
1

𝐷1
−
1

𝐷2
) 

(18.a.1) 

 

(Δ𝑥)2𝑣1 + 2𝛿1 − 𝛿2 = 0 (18.a.2) 

 

𝑣1 − (2 + 4(Δ𝑥)
2𝜆2
4)𝑣2 + 𝑣3 + 4(Δ𝑥)

2𝜆1
4𝛿2 = 0 (18.b.1) 

 

(Δ𝑥)2𝑣2 − 𝛿1 + 2𝛿2 − 𝛿3 = 0 (18.b.2) 

 

𝑣2 − (2 + 4(Δ𝑥)
2𝜆2
4)𝑣3 + 𝑣4 + 4(Δ𝑥)

2𝜆1
4𝛿3 = 0 (18.c.1) 

 

(Δ𝑥)2𝑣3 − 𝛿2 + 2𝛿3 − 𝛿4 = 0 (18.c.2) 

 

𝑣3 − (2 + 4(Δ𝑥)
2𝜆2
4)𝑣4 + 4(Δ𝑥)

2𝜆1
4𝛿4

= 𝑀𝑎 (
1

𝐷1
−
1

𝐷2
) 

(18.d.1) 

 

(Δ𝑥)2𝑣4 − 𝛿3 + 2𝛿4 = 0 (18.d.2) 

 

where, Δx=L/5. The 8 linear equations of Eq. (18) above can 

be written in a matrix form as: 

[
 
 
 
 
 
 
 
𝑑1
1
0
0
𝑑3
0
0
0

1
𝑑1
1
0
0
𝑑3
0
0

0
1
𝑑1
1
0
0
𝑑3
0

0
0
1
𝑑1
0
0
0
𝑑3

𝑑2
0
0
0
𝑑4
0
0
0

0
𝑑2
0
0
0
𝑑4
0
0

0
0
𝑑2
0
0
0
𝑑4
0

0
0
0
𝑑2
0
0
0
𝑑4]
 
 
 
 
 
 
 

{
 
 
 

 
 
 
𝑣1
𝑣2
𝑣3
𝑣4
𝛿1
𝛿2
𝛿3
𝛿4}
 
 
 

 
 
 

=

{
 
 
 
 

 
 
 
 −𝑀𝑎 (

1

𝐷1
−
1

𝐷2
)

0
0

𝑀𝑎 (
1

𝐷1
−
1

𝐷2
)

0
0
0
0 }

 
 
 
 

 
 
 
 

 (19) 

 

where, the diagonals are 𝑑1 = −(2 + 4(Δ𝑥)2𝜆2
4) , 𝑑2 =

4(Δ𝑥)2𝜆1
4, 𝑑3 = (Δ𝑥)2 and 𝑑4 = 2. 

The Eq. (19) above can be written in the compact form as: 

 
[𝐴]{𝑉𝛿} = {𝑐} (20) 

 

where, [𝐴], {𝑉𝛿} and {𝑐} are the constants matrix, unknowns’ 

vector and the right-hand side (RHS) vector. 

By solving the linear system of Eq. (20) as: 

 
{𝑉𝛿} = [𝐴]

−1{𝑐} (21) 

 

Thus, the solution for 𝑣𝑖  and 𝛿𝑖  for i=1, 2, 3, 4 can be 

obtained. 

It is convenient to mention that if the case of solders with 

axial deformations was considered, the same procedure could 

be followed except for that in the coefficient’s matrix of Eq. 

(19) the diagonal 𝑑1 becomes 𝑑1 = −2 while other diagonals 

(𝑑2, 𝑑3 and 𝑑4) remains the same. 

 

3.3 Numerical accuracy study 

 

As any other numerical technique, FDM accuracy highly 

depends on the number of approximations, i.e., nodes, 

considered during the solution process. For this reason, a 

numerical accuracy study was conducted to optimize the 

numerical solution properties by achieving highest possible 

solution accuracy in minimal solution time. In the present 

accuracy study, several numbers of interior nodes (n) were 

tested. In each tested configuration, the solder stress at x=L, 

i.e., σ(L), was computed, recorded, and hence plotted versus 𝑛. 

This is shown in Figure 3. In this analysis, it was concluded 

that at n=2000, or for 4000 equations, the σ(L) has reached a 

converged asymptotic value. Therefore, this numerical 

configuration with n=2000 FDM interior nodes, or N=2002, 

was adopted throughout the analysis of this paper. 

 

 
 

Figure 3. Numerical accuracy study details 
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4. RESULTS AND DISCUSSIONS 

 

4.1 Numerical solution validation 

 

The previously derived numerical solution was validated 

with literature data, specifically, with Wong et al. [11]. 

Wong’s data were based on a closed-form analytical solution 

of the coupled beams problem under symmetrical bending. 

Such results were thoroughly correlated with finite element 

analysis (FEA) finding. The key parameters in the present 

validation analysis, which were derived from Wong’s work, 

are D1=2083 N.mm, D2=2000 N.mm, K=9817 N/mm3 and 

Km=153 N/m2 for a structure of length L=10 mm, where the 

applied symmetrical moments is Ma=1 N.mm. This validation 

analysis was for solders with axial deformations only and for 

solders with both axial and flexural deformations. Also, as the 

problem possesses symmetry, only half the structure length 

was tested (0≤x≤5). The results of this study are shown in 

Figure 4. The figure shows that the present numerical solution 

agrees well with literature closed-form solution data, in both 

cases, for the whole length analyzed. Hence, a trust can be 

ensured in the results of the present numerical solution for both 

solder deformation cases. 

 

 
 

Figure 4. Numerical solution validation with Wong et al. 

[10] data for (a) Solder with axial deformation and (b) solder 

with axial and flexural deformations 

 

4.2 Parametric study 

 

The previously optimized and validated numerical solution, 

for solder deformation schemes, was used to examine the 

effect of the key structural parameters of the coupled beam 

configuration on solder stresses. During this analysis, one key 

parameter was varied at a time while all other factors are held 

constant. Additionally, unless otherwise mentioned, for 

generalization a unity value was used for the geometric and/or 

material parameter as D1=1 N.m, D2=1 N.m, K=1 N/m3, Km=1 

N/m2 and L=1 m. Also, the analysis was carried out for a unity 

applied coupling moment Ma=1 N.m as well. Besides, only 

half of the structure length (L/2≤x≤L) was plotted as the 

problem is highly symmetric. 

 

 

 

 
 

Figure 5. Effect of D2/D1 ratio on solder stress along the 

beam length (a) D2/D1 less than 1, (b) D2/D1 is between 1 and 

2, (c) D2/D1 is greater than 2. Here solder deformations are 

only axial 

 

4.2.1 Solder with axial deformations 

In this subsection, the case of solders with axial 
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deformations only (Km=0) is considered. Practically, it is 

strongly believed that the relative stiffness between the PCB 

and the IC package (beam 2 to beam 1) has a significant and 

major effect on the solder stresses. Figure 5 shows the solder 

stresses along the elastic layer σ(x) at different D2/D1 values. 

In this figure, several scales of the stiffness ratio are tested for 

better observation. 

The findings of this figure can be concluded as, for D2/D1 

less 1.0 (Figure 5(a)), or for softer PCB compared to the IC 

package, the solder stresses are generally tensile stress for the 

range of 0.7L≤x≤0.9L. However, they become compressive 

stresses for x≥0.9 L and they are almost zero near the center of 

the electronic structure. 

Besides, for much lower PCB stiffness with respect to the 

package, solder stresses become much higher. For D2/D1 

between 1.0 and 2.0 (Figure 5(b)), or for almost equal stiffness 

of PCB and the IC component, things take a turn. Specifically, 

solder stresses are compressive 0.5L≤x≤0.8L and are tensile 

for x≥0.8L. 

Additionally, for little higher bending stiffness ratio, solder 

stress rises slightly. A common observation in Figure 5(a) and 

Figure 5(b), for an equal PCB and package stiffness (D2/D1=1), 

solder stresses are equal to zero, as the relative deflection 

between the PCB and the component vanishes. This can be 

mathematically observed as the boundary conditions of Eq. 

(10) go to zero, hence no loading is applied. 

For much larger bending stiffness ratios, shown in Figure 

5(c), solder stresses are still compressive for 0.5L≤x≤0.7L, and 

tensile near the edges (x≥0.8L) of the structure. Again, for 

stiffer PCB systems, solder stresses are rising accordingly. 

However, the effect of D2/D1 vanishes for very high PCB 

stiffness, with respect to the package stiffness, or for 

D2/D1≥4.0. One more important result from Figure 5, is that 

for all D2/D1 ratios, the maximum solder stress occurs at the 

edge of the structure or at x=L=1.0. Such maximum solder 

stresses are investigated closely in Figure 6. In this figure, 

solder stresses at x=L or σ(L) are plotted versus the D2/D1 

ratios for several solder layer stiffness (K) values. 

 

 
 

Figure 6. Solder maximum stress as a function of 𝐷2/𝐷1 

ratio at different solder stiffness systems 

 

The results of this figure states that solder maximum 

stresses for compliant PCB structures (D2/D1<1), are very high 

compressive stresses. However, for stiffer PCB’s, maximum 

tensile stresses are much lower and the effect of D2/D1 ratio 

diminishes for D2/D1>3.0, for any solder stiffness 

configuration. Thus, the present paper recommends the use of 

relatively stiff circuit board structure, compared to IC package, 

for lower solder stresses and hence for longer fatigue life, or 

service life, for electronics in mechanical bending loading 

environments. 

Figure 7 presents the effect of the solder stiffness on corner 

solder stresses at several D2/D1 ratios. The results here states 

that maximum solder stresses are proportional solder stiffness 

and for the case of solders with axial deformations only, the 

effect is linear. Again, for compliant PCB’s solder stresses are 

very high compressive stresses while for stiffer boards the 

solder stresses are lower and are tensile in nature. For this 

reason, the present work recommends the use of relatively 

compliant solder configurations in electronic devices prone to 

mechanical bending for longer service life of the electronic 

system. 

 

4.2.2 Solders with Both Axial and Flexural Deformations 

Here, the effect of solder bending stiffness is considered 

(Km≠0) in the analysis. Figure 8 depicts the effect of D2/D1 

ratios on solder stress along the coupled beams length. Similar 

results of Figure 5 were observed. Specifically, for compliant 

PCB systems, solder stresses are high and compressive. 

Additionally, for stiff PCB’s, solder stresses get tensile and 

lower. Besides, for much higher bending stiffness ratios, 

solder stresses reach a constant value. This effect holds true 

even for several solder bending stiffness to axial stiffness 

(Km/K) configurations, as shown in Figure 9.  

 

 
 

Figure 7. Effect of solder axial stiffness on the maximum 

stresses of the corner solder interconnect 

 

The effect of Km/K on solder maximum stress is plotted in 

Figure 10. Here, in contrast to Figure 7, the effect of solder 

bending to axial stiffness ratio is inversely proportional and 

the effect is nonlinear. In other words, for higher Km/K ratios, 

corner solder stresses are becoming lower. This can be 

mathematically discussed by dividing solder bending stiffness 

(𝐾𝑚 = 𝐸𝑠𝐼𝑠/𝐿𝑠𝑝
2) by solder axial stiffness (𝐾 = 𝐸𝑠𝐴𝑠/𝐿𝑠𝑝

2), 

thus: 

 
𝐾𝑚
𝐾
=
𝐼𝑠
𝐴𝑠

 (22) 

 

Remembering the definition of the radius of gyration (𝑟𝑔) of 

a given section: 
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𝑟𝑔 = √
𝐼𝑠
𝐴𝑠
= √

𝐾𝑚
𝐾

 (23) 

 

Instead of researching each solder joint cross-section related 

parameter, it is now more convenient to only test the cross 

section radius of gyration. In mechanics point of view, is used 

to describe the distribution of cross sectional area in a column, 

i.e. solder, around its centroidal axis with the mass of the body. 

Generally, it is another measurement too for the structure 

stiffness. 

 

 

 

 
 

Figure 8. Effect of D2/D1 ratio on solder stress along the 

beam length (a) D2/D1 less than 1, (b) D2/D1 is between 1 and 

2, (c) D2/D1 is greater than 2. Here solder deformations are 

both axial and flexural 

 
 

Figure 9. Solder maximum stress as a function of D2/D1 ratio 

at different solder bending to axial stiffness ratios 

 

 
 

Figure 10. Effect of solder bending to axial stiffness on the 

maximum stresses of the corner solder interconnect 

 

 
 

Figure 11. Effect of solder bending to axial stiffness on the 

solder stresses along the length of the electronic assembly 

 

Thus, for a solder with a cross-section of a relatively large 

radius of gyration, solder stresses are slightly lower. In 
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structural mechanics point of view, radius of gyration 

describes the distribution of a cross-sectional area around its 

centroidal axis. Thus, for larger radius of gyration values, 

solders become stiffer geometrically, which results in higher 

solder resistance for deformations, strains, and stresses, 

accordingly. A similar behavior was observed in Figure 11. 

This figure shows lower solder stresses along the coupled 

beams length for larger solder bending to axial stiffness ratio. 

Based on the previous discussions, the present paper highly 

recommends the geometric design of solders to have large 

cross-sectional radius of gyration configurations for lower 

solder stresses and hence, longer fatigue and service solder life. 

 

 

5. CONCLUSIONS 

 

This paper presented an accurate numerical solution for the 

analysis of the two elastically coupled beams problem using 

the finite difference method. In this study, two cases were 

discussed, solders with axial deformations only and solders 

with both axial as well as flexural deformations. In this 

solution, the numerical accuracy was ensured, and the results 

of this solutions were validated with literature data, for both 

cases studied. Finally, the effect of the key geometric and 

material parameters of the coupled beams system on solder 

stresses was thoroughly investigated. As a result, the present 

work recommends the design of electronic assemblies with 

stiffer printed circuit board configurations as well as the design 

of solder interconnects with relatively large radius of gyration 

to reduce the bending-induced solder stresses and hence 

prolonged service life. 
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NOMENCLATURE 

 

𝐷1, 𝐷2 Flexural rigidity of top, bottom beams (𝑁.𝑚2) 

𝐷𝑒  Effective flexural rigidity of top and bottom 

beams (𝑁.𝑚2) 

𝐾,𝐾𝑚 Axial, flexural stiffness of the elastic layer 

L Beam length (𝑚) 

𝑀𝑎 Applied bending moment (𝑁.𝑚) 

𝑀(𝑥) Distributed reaction moment in the elastic layer 

𝑢1(𝑥), 𝑢2(𝑥) Deflection of top, bottom beams 

 

Greek symbols 

 

𝜎(𝑥) Solder axial stresses (𝑃𝑎) 

𝛿(𝑥) Solder axial deflections (𝑚) 

𝜆1, 𝜆2 Partial differential equations dimensionless 

constants 
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