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The field of rehabilitation robotics for upper limb assistance has grown rapidly in the 

past few years. Rehabilitation robots have direct contact with human joints, which 

presents a serious safety concern. In this paper, a novel design for a series elastic 

actuator (SEA) is presented for upper limb rehabilitation of sensorimotor dysfunctions. 

The proposed SEA ensures safety and robust torque control under various disturbances. 

The proposed SEA is modeled and simulated using MATLAB Simulink to obtain 

Input/Output driven data. For the proposed system, two modeling approaches, ARMAX 

and NN, are used along with comparative analysis for each model fitting. After SEA 

dynamic modeling, the PSO-tuned LQR controller is designed and implemented. 

Comparison parameters are then chosen to test the controller behavior during different 

applied disturbances. The chosen controller showed optimum set-point tracking 

performance, which is equivalent to upper limb movement. This research can be 

extended to develop and implement a test bench for upper limb rehabilitation. 
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1. INTRODUCTION

Robots are considered as potential assistants to humans in 

many life aspects. The need to recruit robots in many sensitive 

environments that require direct interaction with humans has 

increased dramatically in the last few years [1]. One of the 

emerging fields to use robotics is the medical field, 

specifically where robots are used to assist the patient recovery 

process [2]. Recovery assisting robots fall into three main 

categories: end-effector manipulators assisting in hand and 

wrist functions, cable driven robot that mobilizes the targeted 

limb through cables driven via motors, and exoskeleton that 

acts parallel to the moving limb [3]. Each of these architectures 

involves direct contact to a human body part that does not 

tolerate any unexpected motion error. Different approaches 

were followed to apply the optimum actuation technique that 

ensure safe human-robot interaction [4]. Regarding 

exoskeleton robots, research aimed to minimize the weight and 

the bulkiness of the device attached to the affected limb. One 

of the solutions was to use soft pneumatic powered muscles 

instead of rigid motors. Pneumatic muscle actuators (PAM) 

are considered as compliance actuators as it contains soft 

elements, as well as having high power-to-weight ratio [5, 6].  

In rehabilitation field, the continuous research aims to 

enhance the reaction of the used robotic assisting devices with 

the motion of human joints [7]. Elastic actuators provide the 

compliance concept that ensures high safety measures and 

comfort functionalities [8]. Series Elastic Actuator (SEA) is a 

type of Variable Impedance Actuator (VIA) and was first 

introduced in 1995 [9]. SEA is recognized as high-

performance torque control as well as high force generation 

[10]. Unlike rigid actuators, SEA uses the deflection of the 

elastic element as the spring to generate the required torque 

instead of being transmitted through the gearbox [11]. The 

structure of SEA offers precise force and velocity controls; 

however, the elastic element cause lack of position accuracy. 

The complexity of such system can be in choosing an 

accurate modeling technique that will capture the system non-

linearities and uncertainties. One of the powerful models is 

Artificial Neural Network (ANN) which is designed to 

simulate the working mechanism of the human brain in 

analyzing data. ANN is one technique of Artificial Intelligence 

(AI) that has the capability of self-learning and predicting the 

behavior of the system. ANN has become useful in multiple 

fields such as health care professions in which ANN has been 

used to predict certain diseases. Also, in fields such as 

predicting the behavior and efficiency of electromechanical 

system that are non-linear systems.  

Improvements done to SEA by Sensinger and Weir included 

having precise force control to increase safety while 

interacting with humans. This could be achieved by various 

methods such as using inertia reduction, joint torque control, 

and passive impedance modulations [12]. Another trial for the 

accurate controller on SEA was done by Wyeth. He introduced 

using the motor as a velocity source instead of being a torque 

source, this will allow having an internal velocity feedback 

loop. The experiments showed improvements in SEA 

performance while using cascaded Proportional Integral (PI) 

controllers. This method was also used to control the haptic 

manipulators by having accurate force control with high safety 

[13]. The same cascaded controller was used in addition to an 

inner velocity loop to control haptic manipulators [14]. The 

approach resulted in more accurate force tracking. 
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Due to the existence of elastic elements in series with the 

rigid motor, system behavior includes uncertainties and 

oscillations. Considering the sensitivity of SEA applications, 

designing a robust controller is crucial. Obtaining an accurate 

dynamic model is the initial step to design the desired 

controller. An adaptive controller enables the system to update 

the corresponding parameters online based on the changes in 

the operating conditions [15]. For SEA, the conventional 

controllers such as Proportional Integral Derivative (PID) fail 

to achieve accurate trajectory for dynamic joints, an adaptive 

controller using Radial basis function (RBF) neural network is 

proposed by Shao et al. [16]. A similar algorithm was used in 

Ref. [17] to predict and model muscle behavior to ensure safe 

interaction between the artificial joint and the human body. In 

[15], adaptive immersion and invariance (I\&I) are used to 

control the system relative to the varying operating parameters. 

Another technique is presented by Fotuhi and Bingul [18] to 

use feedforward PID controller, feedforward fuzzy controller, 

and fuzzy torque controller with friction compensation with an 

illustrative comparison. 

For the proposed SEA, two modeling techniques are 

presented along with a comparative analysis for the accuracy 

of system identification. System identification is conducted 

using Auto-Regressive Moving Average eXogenous model 

(ARMAX) for linear modeling, and for nonlinear modeling an 

Artificial Neural Network (ANN) technique is used. ARMAX 

model is mainly defined as a Single Input Single Output (SISO) 

model as it can be used to control single oscillation mode, yet 

it is used to model Multi Input Multi Output (MIMO) systems 

containing disturbances [19, 20]. Following the system 

modeling, a controller design phase took place. The proposed 

system controller is based on initially using Linear Quadratic 

Regulator (LQR) controller, then parameters' refinement is 

done using Particle Swarm Optimization (PSO) algorithm. 

This paper is organized as follows: the proposed SEA 

design and system dynamic modeling are illustrated in section 

2. Sections 3 and 4 present the followed techniques of linear 

and non-linear modeling, along with comparative analysis of 

the three techniques. After system modeling, section 5 

illustrates the designed controller for the system. The reached 

results were discussed in section 6. 

 

 

2. MODELING AND DESIGN OF THE PROPOSED SEA 

 

2.1 Design of series elastic actuator 

 

SEA is a rigid actuator that includes an elastic element at 

the output side of the motor. Reducing the stiffness of the 

actuator helps solve several problems such as backlash, and 

friction. There are various types of SEA, categorized based on 

the location of the elastic element within the actuation system. 

SEA configurations include the force sensing type (FSEA), the 

transmission force-sensing type (TFSEA), and the reaction 

force-sensing type (RSEA) [21].  

The FSEA categorization has the elastic element directly 

before the load side. The proposed model includes elastic 

elements as four springs with equal coefficients connected to 

a movable arm. The arm with the elastic elements is moved by 

the motor through a lead screw. The load then can act on the 

other side of the system and the deflection in the springs will 

happen accordingly. Table 1 shows a comparative study 

conducted on different SEA designs regarding the main design 

characteristics. 

 

Table 1. Characteristic features of selected robotic devices 

 
Published 

study 

Range of motion 

restriction 
Mechanical impedance Power transmission Joint misalignment 

Total 

weight 

[22] 

The device does not 

interfere with the 

natural range of 

motion. 

Mechanical impedance is 

kept to the minimum due to 

the DC motor and the 

compliant element stiffness. 

The torque is transmitted 

through a cable to relocate 

the motor away from the 

joint. 

Due to the relocation of 

the motor, no 

misalignment has 

occurred. 

Not 

specified 

[23] 

The system allows 

range of rotation 

equal to 93 for elbow 

joint. 

The stiffness of the linear 

spring reduces the 

mechanical impedance of 

the system. 

The torque is transmitted 

from the motor to a linear 

guide and to the joint via 

slider crank mechanism. 

The motor is attached to 

the joint, so there is 

misalignment. 

1.7 kg. 

[24] 

No interference with 

the natural range of 

motion. 

The cable selection provides 

low friction and minimized 

impedance. 

Torque is transmitted via 

flexible cable due to 

relocation away from the 

joint. 

No misalignment as the 

motor is not fixed on the 

joint. 

Not 

specified. 

[25] 

The SEA provides 

enough frequency to 

assist the movement 

of human joint. 

The usage of DC servo 

motor decreases the 

movement inertia to the 

minimum. 

The torque is transmitted 

through Bowden cable. 

No experiment on 

human joint was 

conducted. 

0.95 kg. 

[26] 

The design allows up 

to 180 degrees for the 

elbow joint rotation. 

The non-linearity of the 

designed stiffness is very 

low at the natural position, 

so the mechanical 

impedance is low. 

The torque of each motor is 

transmitted to the end 

effector through a flexible 

Bowden cable. 

The system is attached 

parallel to the elbow 

joint, so no 

misalignment occurred. 

0.9 kg. 

[27] 

No restriction on the 

movement were 

mentioned. 

The selected motor free 

shaft rotation during the 

Free Motion. 

Power is transmitted 

through gearbox and belt. 

No misalignment as the 

motor is not fixed on the 

joint. 

Not 

specified. 

 

2.2 Dynamic model 

 

The dynamics of the actuator are derived to simulate the 

model and study its behavior. The dynamic model of the 

system consists of three main parts; the stepper motor model, 

the lead screw transmitting the torque, and the mechanical 

system attached to the motor. 

The 2-phase stepper motor dynamic model consists of 

mechanical equations and electrical equations. The electrical 

circuit diagram for each phase is shown in Figure 1. Each 
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phase can be solved using RL circuit in addition to a back 

electromotive force (emf) representing phase one as a and 

phase two as b. The working principle of a two-phase motor 

can be described as if the rotor in Figure 2 is not magnetized. 

whenever one phase is energized, the rotor will rotate either 

clockwise or counterclockwise to align with the rotor teeth 

with the energized phase. 

 

 
 

Figure 1. Schematic view of motor winding circuits 

 

 
 

Figure 2. Phase distribution of a two-phase stepper motor 

 

The mathematical model for the electrical part of the stepper 

motor is derived based on the following equations: 

 

𝑒𝑎 = −𝑘𝑚𝜔𝑠𝑖𝑛(𝜃𝑁𝑟) (1) 

 

𝑒𝑏 = 𝑘𝑚𝜔𝑐𝑜𝑠(𝜃𝑁𝑟) (2) 

 
𝑑𝑖𝑎(𝑡)

𝑑𝑡
= (𝑘𝑚𝜔𝑠𝑖𝑛(𝜃𝑝) + 𝑉𝑎 − 𝑅𝑤𝑖𝑎)/𝐿𝑤 (3) 

 

where, ea and eb are the emf values for each phase winding, ia 

and ib are the phases current, km is motor torque constant, ω is 

the angular speed of the rotor, θ is the mechanical angle of the 

motor, p is the number of rotor teeth, R is the rotor resistance, 

and L is rotor inductance. 

 
𝑑

𝑑𝑡
𝑖𝑏(𝑡) = (𝑘𝑚𝜔 sin(𝜃𝑝) + 𝑉𝑏 − 𝑅𝑤𝑖𝑎)/𝐿𝑤 (4) 

 

𝑉𝑎 = 𝑉𝑚 sin(𝜃𝑝 + 𝜆 +
𝜋

2
) (5) 

 

where, Va is the phase voltage, Vm is the input voltage, and λ is 

phase shifts.  

 

𝑉𝑏 = 𝑉𝑚 sin(𝜃𝑝 + 𝜆) (6) 

 

For the mechanical equations: 

 

𝐽
𝑑

𝑑𝑡
𝜔(𝑡) = −𝑇𝑙 + 𝑖𝑎𝑘𝑚 sin(𝜃𝑝) − 𝑖𝑏𝑘𝑚 cos(𝜃𝑝) (7) 

where, J is the moment of inertia, and Tl is the load torque 

amplitude. Each phase in Figure 2 has a corresponding static 

torque represented by Ta and Tb. Each torque component has a 

contribution in the average torque value Tavr. The torque 

generated from each phase is calculated as follows: 

 

𝑇𝑎 = 𝑘𝑖𝑎 cos(𝜃𝑝) (8) 

 

𝑇𝑏 = −𝑘𝑖𝑏𝑐𝑜𝑠(𝜃𝑝) (9) 

 

The average torque generated by the motor is calculated as 

follows: 

 

𝑇𝑎𝑣𝑟 =
𝑇𝑎 + 𝑇𝑏

2
 (10) 

 

The next part of the system is the lead screw attached to the 

motor shaft. Using the result of Eq. (10), the moving force Fm 

acting on the middle plate M2 is calculated as follows: 

 

𝐹𝑚 =
2𝜋𝑛1000𝑇𝑎𝑣𝑟

𝑁
 (11) 

 

where, n is the speed in (rpm), and N is the lead screw pitch in 

(mm). The physical model for the proposed system is modeled 

as a mass-spring system and the acting forces are shown in 

Figure 3.  

The equation of motion for both masses are calculated as 

follows:  

 
(𝑀2 + 𝑀3)𝑥̈2 − 2𝐶1𝑥̇1 + (2𝐶1 + 𝐶2)𝑥̇2

− 4𝑘(𝑥1 − 𝑥2) = 𝐹𝑙𝑜𝑎𝑑  
(12) 

 

where, Mi is the mass for the corresponding plate, 𝑥̈𝑖, 𝑥̇𝑖 and xi 

are respectively the acceleration, speed, and displacement of 

each mass, C3 is the friction coefficient from the moving rods, 

K is the spring stiffness, and Fload is the force from the applied 

load. As shown, M1 is the middle plate on which Fm acts 

directly. The equation of motion for both masses are calculated 

as follows: 

 

𝑀1𝑥̈1 + 2𝐶1(𝑥̇1 − 𝑥̇2) + 4𝑘(𝑥1 − 𝑥2) = 𝐹𝑚 (13) 

 

where, Fm is the moving force acting on the middle plate. This 

force is calculated based on the parameters of the motor and 

the lead screw. C1 and C2 are the friction coefficients from the 

rod movement that acts as dampers in the system. 

 

 
 

Figure 3. Schematic view of the proposed SEA design 

 

As the proposed system has multiple inputs and outputs, it 

is required to minimize the order of the system’s differential 

equations using state-space representation. Eq. (14) shows the 
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genral form of state-space representation. To derive the state-

space model, the variables can be defined in more subtle 

representation as follows:  

 
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)

 (14) 

 

where, A is the state matrix, B is the input matrix, y is the 

system output, C is the output matrix, and D is the direct 

transition matrix.  

To derive the state-space model, define the state vector 𝑧 =
[𝑥1 𝑣1 𝑥2 𝑣2]𝑇 where, 𝑣1 = 𝑥̇1 and 𝑣2 = 𝑥̇2. 

Rearranging Eqns. (12) and (13), we obtain: 

 

𝑣̇1 = −
4𝑘

𝑀1

𝑥1 −
2𝐶1

𝑀1

𝑣1 +
4𝑘

𝑀1

𝑥2 +
2𝐶1

𝑀1

𝑣2 +
1

𝑀1

𝐹𝑚 (15) 

 

𝑣̇2 =
4𝑘

𝑀2 + 𝑀3

𝑥1 +
2𝐶1

𝑀2 + 𝑀3

𝑣1 −
4𝑘

𝑀2 + 𝑀3

𝑥2

−
2𝐶1 − 𝐶2

𝑀2 + 𝑀3

𝑣2 +
1

𝑀2 + 𝑀3

𝐹𝑙𝑜𝑎𝑑 

(16) 

 

State-space representation for a system is given by the 

following equations. Forming the state-space equations for the 

proposed system is shown in Eq. (19) and Eq. (20).  

where, the state matrix A and the input matrix B will be as 

follows:  

 

𝐴 =

[
 
 
 
 
 
 
0 1 0 0
−4𝑘

𝑀1

 
−2𝐶1

𝑀1

4𝑘

𝑀1

2𝐶1

𝑀1

0 0 0 1
4𝑘

𝑀2 + 𝑀3

2𝐶1

𝑀2 + 𝑀3

−4𝑘

𝑀2 + 𝑀3

𝐶2 − 2𝐶1

𝑀2 + 𝑀3

]
 
 
 
 
 
 

 (17) 

 

𝐵 =

[
 
 
 
 
 
0 0
1

𝑀1

0

0 0

0
1

𝑀2 + 𝑀3]
 
 
 
 
 

 (18) 

 

[

𝑥̇1

𝑣̇1

𝑥̇2

𝑣̇2

] =

[
 
 
 
 
 
0 1 0 0
−4𝑘

𝑀1

−2𝐶1

𝑀1

4𝑘

𝑀1

2𝐶1

𝑀1

0 0 0 1
4𝑘

𝑀2+𝑀3

2𝐶1

𝑀2+𝑀3

−4𝑘

𝑀2+𝑀3

𝐶2−2𝐶1

𝑀2+𝑀3

]
 
 
 
 
 

[

𝑥1

𝑣1

𝑥2

𝑣2

] +

[
 
 
 
 
0 0
1

𝑀1
0

0 0

0
1

𝑀2+𝑀3]
 
 
 
 

[
𝐹𝑚

𝐹𝑙𝑜𝑎𝑑
]  

(19) 

 

𝑦 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [

𝑥1

𝑣1

𝑥2

𝑣2

] (20) 

 

as xi and vi is the displacement and velocity corresponding to 

each mass, respectively. 

 

2.3 Motion analysis 

 

To study the actuator behavior under various cases, the 

CAD model shown in Figure 4 is tested and simulated under 

different constraints and conditions. SolidWorks is used to 

create a motion study that includes motor rotational speed, 

values for stiffness coefficients, and the applied load. As the 

proposed actuator is mainly designed to be used in upper limb 

rehabilitation robotics, the acting force on the actuator is 

calculated as follows:  

 

𝐹𝑙𝑜𝑎𝑑 = 𝑚𝑎𝑟𝑚𝑔 sin 𝜃 (21) 

 

where, marm is the forearm mass, g is the gravitational 

acceleration, 𝜃 is the elbow angle ranging from 30° to 150°. 

Regarding the spring coefficients, different random spring 

constants were chosen to study the effect of relatively high and 

low stiffness on the system behavior. Taking in consideration 

the standard vale ranges available in the local market. 

Similarly, a set of values regarding the motor rotational speed 

were used, and the system response was recorded for each trial. 

As the proposed actuator is mainly designed to be used in 

upper limb rehabilitation robotics, the actuator has to perform 

passive and active motion assisting the elbow joint. Upper 

limb muscles act in pairs as flexors and extensors. 

 

 
 

Figure 4. CAD model for the proposed SEA 

 

 
 

Figure 5. Schematic overview for the proposed system 

structure 

 

The flexor is the biceps muscle that moves to close the upper 

limb, and the extensor is the triceps muscle that opens the 

upper limb [28]. The actuator will operate while taking into 

consideration the angle of the elbow joint only. The angle of 

the shoulder complex will not affect the operation of the 

actuator, as the motion will be either flexion or extension of 

the elbow joint. According to the study [29], the average 

forearm mass range is 2.1 kg if the average mass of a whole 

body is 70 kg as the mass of the arm represents about 2.2% of 

the total body mass. As the arm will not be holding any other 

object, so the weight of the forearm itself is the only force 

acting on the actuator. Eq. (21) represents the load force 

caused by forearm movement. 
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Figure 6 shows the total stroke length while changing the 

values of both stiffness coefficients and motor angular velocity. 

In the figure, the chosen values are shown in Table 2. 

 

 
 

Figure 6. Displacement of actuator stroke 

 

Table 2. Motion analysis trials 

 

Test values 
Trial no. 

Trial 1 Trial 2 Trial 3 Trial 4 

Stiffness Coefficients (N/mm) 50 50 100 100 

Motor Velocity (rpm) 150 350 350 150 

 

 

3. LINEAR SYSTEM IDENTIFICATION OF THE 

PROPOSED SEA 

 

3.1 System identification 

 

System identification is an engineering method that helps to 

determine and derive the mathematical model for a system 

using the measured data. Using the system representation in 

Figure 5 the needed data for identification was generated. 

Table 3 shows the applied simulation parameters. The whole 

system is considered a Multiple Input Multiple Output 

(MIMO) system as it has two inputs and two outputs. The 

inputs for the system are the motor speed and PWM and the 

outputs are the velocity of M2 and M3. System state space is 

estimated based on imported inputs and outputs. The unknown 

variables and parameters of the analytical state-space with step 

input are estimated to be as follows: 

 

𝐴 = [

0.982 0.01388 −0.01608 −0.05286
−0.01316 0.7825 −0.05617 0.06703
0.06557 0.07432 0.9877 0.01564
0.02461 −0.2487 0.0568 0.813

] 

𝐵 = [

0 0
0.1918 0
0 0
0 0.000223

] 

𝐶 = [
4.849 0.2082 −0.05421 −0.1429
3.352 3.409 −0.1902 0.0202

] 

𝐾 = [

0.1609 −0.02134
−0.1962 0.2114
−0.1063 −0.4791
−1.165 0.4828

] 

 

The estimated model resulted in fitting accuracy equals 

0.530 for the first output and 0.728 for the second output, as 

shown in Figure 7. The graph shows the agreement between 

validation outputs and model outputs.  

 

Table 3. Simulation parameters for simulink model 

 
Parameters Value 

M1, M2, M3 0.2 kg 

C 0.01 N/(m/s) 

K 0.01 N/m 

Rotor inertia 0.45 g*m2 

Maximum step rate 50 Hz 

Full step size 1.8 deg 

 

 
 

Figure 7. Measured and simulated system outputs of state 

space model 

 

 

4. NONLINEAR SYSTEM IDENTIFICATION OF THE 

SEA 

 

4.1 ARMAX 

 

System modeling is defined in terms of transfer functions 

and differential equations. A generic linear model is 

represented in Eq. (22): 

 

𝑦(𝑡) = 𝐺(𝑞)𝑢(𝑡) + 𝐻(𝑞)𝑣(𝑡) (22) 

 

where, G(q) is the input function, u(t) relates the input to the 

output y(t), and H(q) is the noise function which relates the 

noise signal v(t) to the output y(t). 

ARMAX is one of the simpler models for parametric model 

estimation. ARMAX is an extension of Autoregressive with 

exogenous input (ARX) as it includes disturbance dynamics. 

ARMAX model is useful in cases when noises enter the 

system at the input [30]. The system model is described in 

ARMAX form as follows: 

 

𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡) + 𝐶(𝑞)𝑒(𝑡) (23) 

 

where, y(t) is the measured system output; u(t) represents the 

exogenous system input; e(t) is the disturbance or noises on 

the system; q-1 is the shift operator.  

The polynomial in Eq. (23) are defined as follows [31]:  

 

𝐴𝑎(𝑞
−1) = 1 + 𝑎1𝑞

−1 + ⋯+ 𝑎𝑛𝑎
𝑞−𝑛𝑎 

𝐵𝑏(𝑞
−1) = 𝑏0 + 𝑏1𝑞

−1 + ⋯+ 𝑏𝑛𝑏
𝑞−𝑛𝑏 

𝐶𝑐(𝑞
−1) = 1 + 𝑐1𝑞

−1 + ⋯ + 𝑐𝑛𝑐
𝑞−𝑛𝑐 

 

where, a1, ⋯, an are parameters of the Autoregressive part (AR), 

and n is the order of AR. The predictor equation for ARMAX 

is: 

𝑦̂(𝑡|𝑡 − 1) =
𝐵(𝑞)

𝐶(𝑞)
𝑢(𝑡) + (1 −

𝐴(𝑞)

𝐶(𝑞)
) 𝑦(𝑡) (24) 
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The prediction error is calculated as follows: 

 

𝑒(𝑡) =
𝐴(𝑞)

𝐶(𝑞)
𝑦(𝑡) −

𝐵(𝑞)

𝐶(𝑞)
𝑢(𝑡) (25) 

 

The ARMAX non-linear model is built using MATLAB 

embedded functions along with the generated data set. Figure 

8 shows the fitting accuracy of the ARMAX model compared 

with the actual measured data. 

 

 
 

Figure 8. Measured and simulated system outputs of 

ARMAX model 

 

4.2 Artificial neural network (ANN) 

 

Considering the system to be MIMO system, a suitable 

Artificial Neural Network (ANN) model is used to capture the 

system's nonlinearity. The ANN is one of the examples that 

are capable of estimating the non-linear phenomenon in a 

generated data set. ANN models are known to be a powerful 

tool in predicting a large class of nonlinear problems due to 

the parallel processing. The ANN type used in this application 

is feedforward netwek with backpropagation. Table 4 shows 

the paramters of the designed ANN model. A two input layers, 

two output layers, and 15 hidden layers ANN model has been 

used as shown in Figure 9. The network is trained using 

MATLAB with the Levenberg-Marquardt training algorithm. 

Figure 10 shows the obtained results from the training process 

on the generated data. 

 

Table 4. ANN design paramters 

 
Training algorithm Levenberg-Marquardt 

Number of input layers 2 

Number of output layers 2 

Number of hidden layers 15 

Number of epochs 3000 

Training ratio 70/100 

Validation ratio 15/100 

 

 
 

Figure 9. Structure of ANN with two input layers, two 

output layers, 15 hidden layers 

 
 

Figure 10. Measured and simulated system outputs of ANN 

model 

 

 

5. CONTROLLER DESIGN 

 

Before proceeding with the controller design step, the 

controllability analysis for the system should be conducted. 

The rank of the controllability matrix is calculated from 

system state space as follows: 

 

𝑟𝑎𝑛𝑘(𝑄) = [𝐵    𝐴𝐵    𝐴2𝐵   𝐴3𝐵] (26) 

 

5.1 Linear quadratic regulator (LQR) 

 

As a result of the analysis, the controllability matrix has full 

rank, thus, all four states are controllable. The objective of the 

proposed system is to follow the desired reference input using 

an appropriate controller. Based on the state space, Eq. (14), 

the cost function for the system is assumed to be as follows: 

 

𝐽 =
1

2
∫

𝑡

0

(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (27) 

 

where, Q is the semi-definite weight matrix and R is the 

symmetric weight matrix of state matrix x(t) and input matrix 

u(t). Obtaining a solution for the previous cost function is 

achieved using Riccati’s equation as follows: 

 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (28) 

 

As the main objective of LQR control is to obtain values for 

Q and R weight matrices, the Riccati’s Eq. (28) can be used in 

the case of having a simple SISO system. For the proposed 

MIMO system, obtaining the same values for the weighting 

matrices is challenging task, which may require an 

optimization algorithm [31]. 

 

5.2 Particle swarm optimization (PSO) 

 

The PSO is a simple tuning algorithm that mimics the 

behavior of living organisms, such as bird flocks. PSO is 

known for robustness in action, high efficiency that can be 

achieved with lower computational time compared to other 

metaheuristic algorithms [32]. The optimization strategy of 

PSO starts with the population initialization step, then each 

particle will search for a final solution within the pre-

determined range. The next step is to find the best solution, 

which depends on two factors: the global best and the local 

best. Calculating the global best with respect to all swarm 

individuals based on their past success experience is shown in 

Eq. (29). 
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Table 5. PSO simulation paramters 

 
Parameters Value 

Swarm size 10 

Number of iterations 1000 

Number of dimensions 2 

Lower band [1,1] 

Upper band [100,100] 

 

𝑣𝑖
𝑘+1 = ℎ × 𝑣𝑖

𝑘 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑥𝑖
𝑏 − 𝑥𝑖

𝑘)𝑐2 ×

𝑟𝑎𝑛𝑑 × (𝑥𝑖
𝑔

− 𝑥𝑖
𝑘)  

(29) 

 

The best solution resulted from the optimization process is 

calculated as follows: 

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (30) 

 

Table 5 shows the used simulation PSO parameters for 

applying the optimization algorithm to find the values of Q and 

R controller values. 

 

6. RESULTS AND DISCUSSION 

 

To find the optimum modeling approach, a comparative 

analysis is done for the used linear and non-linear modeling 

techniques. Figures 8 and 10 show the obtained values from 

each modeling approach. It is clearly seen that ANN model 

achieves higher fitting accuracy values for both system outputs. 

Another comparison approach was to calculate the error or 

each output for both simulated models. Tables 6 presents the 

RMSE and other statistical parameters of each output for ANN 

and ARMAX models, respectively. 

For SEA controller design, Figure 11 shows the results of 

applying both LQR controller and PSO-tuned LQR controller. 

A comparative analysis is conducted on both results based on 

Integral Square Error (ISE) and the weighted sum method is 

shown in Table 7. Based on the followed control approach, it 

was noticed that the PSO-tuned LQR controller is more robust 

as the system reached the set point faster than using only LQR 

controller. 

 

Table 6. Statistical analysis for ANN and ARMAX models 

 
Model Output Mean SD MAE RMSE NRMSE PearsonRp SpearmanRs 

M2 Velocity (ANN) 1.1494 0.6980 0.1882 0.2684 0.2376 0.9330 0.8881 

M3 Velocity (ANN) 1.1737 0.6242 0.0335 0.0612 0.0612 0.9952 0.8929 

M2 Velocity (ARMAX) 1.1298 0.7449 0.2762 0.3689 0.3242 0.8686 0.6797 

M3 Velocity (ARMAX) 1.1745 0.6183 0.0422 0.0603 0.0511 0.9953 0.8197 

 

 
 

Figure 11. Results of applying PSO tuned LQR controller on: (a) center mass position, (b) end-effector position, (c) center mass 

velocity, and (d) end-effector velocity 

 

Table 7. Comparison between LQR and LQR-PSO 

 
Controller ISE Weighted Sum Method 

LQR 1539.6 352.79 

LQR-PSO 1695.3 355.07 

 

 

7. CONCLUSION AND FUTURE WORK 

 

An innovative SEA for upper limb rehabilitation was 

introduced in this research work. The proposed actuator design 

consists of linear springs utilized with a stepper motor to 

provide more precise position and velocity control. The 

proposed design is categorized as FSEA based on the spring 
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placement between the motor and the applied load. The system 

was simulated while applying various load signals to study the 

system behavior. For the proposed SEA, three different 

modeling techniques were used based on input/output-driven 

data. A robust controller was designed to control the proposed 

SEA motion relative to the applied load signal. The controller 

was then tuned using PSO to obtain optimum values for LQR 

weight matrices. For future work, an optimization on the 

overall design to minimize the total weight of the system. An 

experimental setup will be developed for the optimized design 

to test the system behavior for further research. 
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