
 

 
 
 

 
 

 
1. INTRODUCTION 

Advanced technologies with the trend of miniaturization 
requires cooling under extreme heating loads per unit volume 
[1]. The current literature shows that the overall thermal 
resistances can be minimized by altering the design of heat 
generating domain and/or extended surfaces when the 
temperature difference is constant. The current literature also 
shows the design corresponding to the maximum heat 
transfer rate is similar to the designs in the nature. For 
instance, Cetkin and Oliani [2] showed that the shape of the 
high-conductivity pathways inserted in a heat generating 
domain should be similar to the roots of plants. The shapes 
exist in the nature can be considered as designs with self-
assembly feature, however, it should be noted that the current 
literature also shows these structures were assembled such 
that the resistance to the flow is minimum [3]. Depending on 
the objectives of the structures, this flow can correspond to 
the flow of heat, fluid, and/or stress. Adrian Bejan stated 
Constructal Law in order to explain this phenomenon which 
can be quoted as; "For a finite-size flow system to persist in 
time (to live), its configuration must change in time such that 
it provides easier and easier access to its currents" (fluid, 
energy, species, etc.) [3-4]. The current literature shows the 
distinct flow configurations (such as river-delta [3], economy 

[5], sports[6], lungs [7], heat generating domain with high-
conductivity inserts [8], thermodynamic optimization [9] and 
many more) can be explained or designed in consideration 
with the constructal law. 

Here authors focus on the minimization of overall thermal 
resistances (heat transfer rate enhancement). Bejan and 
Almogbel documented the geometry of T-shaped fin 
structure which corresponds to the maximum heat transfer 
rate [10]. Lorenzini et al. documented the numerical 
simulation results of Ref. [10] in order to increase the 
practicality of the results for industrial applications [11].  
Biserni et al. documented the geometry of T-shaped fins that 
corresponds to the minimized maximum excess temperature 
where the fins are attached to a cylindrical heat generating 
body with constant heat generation rate [12]. Hazarika et al. 
revealed analytical solution to predict optimum design 
parameter of Constructal T-shaped fin for heat and mass 
transfer (condensation of moisture) [13]. The current 
literature also documents various T- and Y-shaped fin 
geometries corresponding to the minimum resistance to the 
heat flow relative to the different boundary conditions and 
constraints [14-16]. Furthermore, the effect of the inverted 
fins (cavities filled with high-conductivity inserts) on the 
maximum temperature and heat transfer rate were 
documented in the literature [17, 18]. On the contrary to the 
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fins, the inverted fins decrease the resistance to the heat flow 
in a conductive medium [19].  

Biserni et al. documented the shape of the optimized 
rectangular and T-shaped cavities, and then the thermal 
performance of these cavities was compared with each other 
[20]. In addition, there are studies about rectangular and T-
shaped cavities documented in the literature [21-22]. 
Lorenzini et al. documents the constructal Y-shaped cavities 
with genetic algorithms which correspond to the minimum 
peak temperature [23]. Lorenzini and Rocha documented the 
T- and Y-shaped cavity geometries optimized according to 
the constructal law [24]. Later, Lorenzini et al. documented 
the optimized complex geometries of T-Y-shaped cavities 
with lateral intrusions cooled by convection [25]. Lorenzini 
et al. uncovers what should be the length scales of the 
rectangular cavity inserted into a heat generating cylindrical 
body in order to achieve minimum excess temperature [26]. 

The current literature focuses on the geometry 
optimization of fins and cavities with constant convective 
heat transfer boundary conditions. However, alterations in 
the geometry of fins and cavities disturb the velocity field in 
the fluid flow region which affects the convective heat 
transfer coefficient. Here, the fluid flow and heat transfer 
parts of the convection problem were solved simultaneously 
in order to uncover the effect of shape on both the heat 
transfer surface area increment and the change in the fluid 
flow. Here, authors also document the shape of the fins and 
cavities corresponding to the maximum heat transfer rate for 
both parallel and cross flows. 

2. CROSS-FLOW 

2.1 T-shaped fins  

2.1.1 Model 

Consider a heat generating cylinder with attached T-
shaped fins in a two-dimensional unit element, Fig 1. The 
thermal conductivity of the heat generating domain, (q'''), 
with the size of π×R2 is kc. The thermal conductivity of the 
T-shaped fins with length scales of (L1, t1) and (L0, t0) are kt, 
and they are placed symmetrically upon the solid body. The 
area of the fluid domain is fixed, Hf×Lf, and assumed as 50 
times greater than the size of heat generating domain while 
Hf and Lf can vary. The thermal conductivity of the fluid is kf. 
The area fraction of T-assembly of fins over cylindrical solid 
body is φt=Nt (2L0 t0+L1t1)/πR2 where Nt is number of fins, 
and the area which is restricted by one T-shaped fin is ψ=2L0 
L1/πR2. Two edges of the fluid domain were described as 
inlet and outlet boundary condition with the size of Hf. 
Additionally, symmetry boundary condition was 
implemented on the remaining edges of the fluid domain 
with the length scale of Lf. Distance in between the tips of 
fins and the edges that symmetry boundary condition was 
kept constant as 2×R.   

In addition, the temperature difference between the fins 
facing each other is relatively small to yield a sensible 
radiative heat transfer between them. Therefore, the effect of 
radiative fluxes is assumed to be negligibly small in 
comparison to convective and conductive fluxes throughout 
the simulations. 

 
 

Figure 1. Heat generating domain with T-shaped fins 

 
Throughout the numerical study, Navier-Stokes and 

Energy equations were solved simultaneously in coupled 
form. The fluid flow is incompressible and laminar. Heat 
generation is uniform throughout the heat generating 
cylindrical domain. Isotropic materials with constant material 
properties were considered. With these simplifications in 
mind, Navier-Stokes and Energy equations for the fluid 
domain become 
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Here, x and y are spatial coordinates, and u and v are the 

velocity components corresponding to these coordinates, 
respectively. In addition, P, ρ, ν, cp are pressure, density, 
kinematic viscosity and specific heat at constant pressure of 
the fluid, respectively. 

Energy equations for the heat generating domain and the 
fins become 
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In order to deduce the dimensionless governing equations, 

the following non-dimensionalization parameters were 
selected 
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Dimensionless Navier-Stokes and Energy equations 

become 
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where Pr is Prandtl number. 

The conservation of energy at the interfaces between the 
cylindrical domain, fins, and the fluid domain require 
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where i and j are indexes representing fin (t), cylinder (c) and 
fluid (f). Therefore, the ratio of kj/ki corresponds to the ratio 
of thermal conductivities of the two domains connected at 
each interface. The ratio of the thermal conductivities 
between fin – cylinder, fluid – fin and fluid – cylinder are 
chosen as 200, 0.0005 and 0.01, respectively. 

Dimensionless Navier-Stokes and Energy equations were 
solved via a finite element software [27]. Quadratic shape 
functions were used for the discretization of the equations. 
Relative errors for the convergence of continuity, momentum 
and energy equations during the iterations were specified as 
10–7. Table 1 shows that the simulation results become 
independent of mesh size with 197458 number of mesh 
elements where the criterion is the maximum relative error 
for temperature being less than 10–4. Here, n and n+1 
represents the results for the coarse and finer meshes. 
 

Table 1. Mesh dependency test for T-shaped fin model with 
Re=100 and Nt=2 

 
No of Mesh 

Elements 
max

~
T

 
TTT

mmm ~~~
maxmaxmax


1  

2934 2.11357585 1.4045×10–1 

9282 2.41042735 5.0792×10–2 

69450 2.53285729 8.5639×10–4 

119168 2.53502641 6.0999×10–4 

197458 2.53657274 8.7208×10–5 

241470 2.53679395  

 
Figure 2 shows the validation of current numerical study 

relative to Ref. [12]. The change of the peak temperature 
according to different (t1/t0) and (L1/L0) ratios can be seen in 
the Fig. 2. It denotes that there is an optimal ratio (t1/t0) 
which varies with different (L1/L0) ratios under assumptions 
of the constant heat transfer coefficient and adiabatic outer 
surface of the heat generating cylinder. Figure 2 shows the 
results of the current study is in accord with the published 
results of Ref. [12]. 

 
 

Figure 2. Validation of the current results (fins) relative to 
the results of Ref. [12] 

 

2.1.2 Results 
Figure 3 denotes how the geometrical parameters affect 

the peak temperature with inserted T-shaped fins. The 
minimum peak temperature value corresponds to the 
minimum overall thermal resistance which is specified as the 
ratio of the temperature difference and the heat transfer rate 
(heat transfer rate is constant due to constant heat generation). 
The change of the peak temperature according to different 
values of the parameter ψ can be seen in the Fig. 3a. The 
shape of fins becomes thinner and longer while the parameter 
ψ increases. Figure 3a shows that thin and long fins have 
better thermal performance. Figure 3b shows that there is an 
optimal (t1/t0) ratio which corresponds to the minimum peak 
temperature when ψ=1. The optimal ratio increases as (L1/L0) 
ratio decreases from 2 to 0.02. Another parameter that affects 
the peak temperature is the number of fins, Nt. Figure 3c 
shows the effect of different (L1/L0) ratios on thermal 
performance when Nt equals to 2, 4 and 8. The thermal 
resistance is smallest when Nt equals to 8. While (L1/L0) ratio 
increases up to 2, the 4 fins correspond to higher thermal 
performance than 2 fins configuration. However, as this ratio 
increases from 2 to 5, 2 fins shows better thermal 
performance than the 4 fins configuration. The reason for 
this behavior is due to the thermal boundary layers formed at 
the fin which located closest to the fluid entrance. These 
thermal boundary layers behave similar to an insulation layer 
(due to decreased temperature difference on the fin surface 
and surrounding fluid) on the fins located at the top and 
bottom.  Increasing the L1/L0 ratio increases the thermal 
boundary thickness experienced on the top and bottom fins. 
The decreased temperature difference becomes more 
dominant on the heat transfer rate than the increase in the 
heat transfer surface area as L1/L0 becomes greater than 2 for 
4 fins.  

Figure 4 shows the temperature distribution and velocity 
streamlines of the configurations with Nt=4, L1/L0=0.5 and 
t1/t0=5, and L1/L0=5 and t1/t0=4. In Figure 4a, the length of 
tributaries is so long that it will form an almost closed square, 
therefore, the fluid cannot reach the heat generating cylinder 
and the stems easily. Therefore, the deficiency of circulation 
weakens convective heat transfer around the cylinder and the 
stems. In addition, Figure 4 shows that the fluid in between 
the two adjacent fins yields cavity type flow which can be 
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seen from the streamlines. Furthermore, Figure 4 shows that 
the convective heat transfer becomes more pronounced due 
to the cavity flow in between the adjacent stems as the L1/L0 

ratio increases. Therefore, even the tributary surface area is 
greater in Fig. 4a, the peak temperature is smaller in Fig. 4b. 

 

 
 

Figure 3. The maximum excess temperature relative to (a) ψ, 
(b) (t1/t0) for various (L1/L0), (c) (L1/L0) for various Nt 

 

 
 

Figure 4. Temperature distribution and velocity streamlines 
(a) L1/L0=0.5 and t1/t0=5 and (b) L1/L0=5 and t1/t0=4 

 

2.2 Cavities  

 
2.2.1 Model 

Consider a heat generating domain in which rectangular 
shaped cavities inserted, as shown in Fig. 5. There are two 
constraints; total area (A=π×R2) and total cavity area 
(Acv=Ncv×Hcv×Lcv) where Ncv represents the number of 
cavities.  

 

 
 

Figure 5. Heat generating domain with cavities 

 
The area fraction between the total cavity area and the 

total area is φcv=Acv/A. 
The fluid domain (Hf×Lf) is 50 times greater than total 

area of the heat generating solid and the cavities (π×R2) 
similar to the T-shaped fins of Fig. 1. Furthermore, the top 
and bottom edges of the domain are symmetry boundaries 
and the distance in between the heat generating domain and 
the symmetry boundaries is fixed as 3×R throughout the 
analyses. 

The conservation of mass, momentum and energy were 
solved in dimensionless form as shown in Eqs. (7) – (11) and 
described in details in Section 2.1.1. Here, the only 
difference is the absence of the fins. Therefore, the energy 
equation for the fin domain and conservation of the energy at 
the interface of the fin-fluid and fin-cylinder are absent.  
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Table 2. Mesh dependency test for cavities when Re=100 
and Ncv=4 

 
No of Mesh 

Elements  
max

~
T

 
TTT

nnn ~~~
maxmaxmax


1  

8518 2.2721845 6.076×10–3  

17840 2.2859904 7.949×10–3 

198516 2.3057642 3.930×10–5 

252246 2.30585479  

 
Mesh independency test was performed in order to 

uncover which mesh density corresponds to the criterion of 
maximum relative temperature being less than 10–4. Table 2 
shows the relation between the number of mesh elements and 
the maximum temperature in the domain.  

In addition, Figure 6 shows the comparison of the current 
results with the results of Ref. [26] where the effect of the 
cavity aspect ratio Hcv/Lcv on the peak temperature is 
documented. Figure 6 shows the results of the current study 
agrees with the published results of the Ref. [26]. 

 

 
 

Figure 6. Comparison of the results of current study and Ref. 
[26]. 

 
2.2.2 Results 

Figure 7 shows that there is an optimum aspect ratio 
(Hcv/Lcv) which minimizes maximum excess temperature, 
when Ncv equals to 2, 4 and 8. It can be seen from the Fig. 7 
that the optimal aspect ratio decreases as the number of 
cavities increases. Lower Hcv⁄Lcv ratio corresponds to thinner 
and longer cavity shape while the number of the cavities and 
φcv are fixed. For the same Hcv⁄Lcv, the shape of a cavity 
becomes thinner and shorter as Ncv increases. The cavity 
shape corresponds to the minimum peak temperature also 
becomes thinner and shorter when Ncv increases. Therefore, 
the optimal cavity shape for the 8 cavities configurations is 
the thinnest and shortest one among the all configurations, as 
shown in Fig. 7. 

 
 

Figure 7. The effect of Hcv/Lcv on the thermal performance 

 
Temperature distributions and velocity streamlines of the 

configurations that specified in Fig. 7 are given in Fig. 8. 
Figure 8 shows that both the peak temperature and the 
domain occupied by the peak temperature decreases as Ncv 
increases. In addition, the decrease in the peak temperature 
diminishes as the number of cavities increases. For instance, 
the peak temperature decreases 5% and 0.3% as Ncv increases 
from 2 to 4 and from 4 to 8. Velocity streamlines of Fig. 8 
show that the fluid in the cavities flows with different 
characteristics depending on their position. However, flow in 
the most of the cavities can be specified as open cavity flow. 
Only exception is the cases where the flow and the cavity are 
positioned along the same direction. In these cases, as the 
streamlines also show that the fluid enters to the cavity from 
its center and exits from its edge. Therefore, the results also 
show that the position of the cavity is another parameter 
which affects the convective thermal conductance (or 
resistance). 

 

 
 

Figure 8. Temperature distributions and velocity streamlines 
for the best performing designs in the Fig. 9. (a) Hcv/Lcv=0.42, 

(b) Hcv/Lcv=0.32, (c) Hcv/Lcv=0.24 
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The results of both T-shaped fins and cavities show that 
the overall thermal resistance can be minimized by 
uncovering the best performing designs. The best performing 
design exists due to the two-conflicting behavior of the area 
on the heat transfer rate. Heat transfer rate would be expected 
to increase as the surface area increases. However, this 
increase also increases resistance to the fluid flow which 
yields to a decrease in the convective heat transfer coefficient. 
Therefore, the design corresponding to the minimum peak 
temperature exists as summarized in Fig. 9. Figure 9 
documents the peak temperature relative to the Reynolds 
number for heat generating circular cylinders with only 
cavities, only T-shaped fins and without cavities and fins. 
The peak temperature is the greatest for the cylinder without 
fins and cavities and the smallest for the cylinder with fins. 
However, Figure 9 also shows that the difference in the peak 
temperature is the greatest with low Re number, and it 
decreases as the Re increases. For instance, the maximum 
difference in peak temperature is 60.08% and 21.57% for Re 
number 10 and 400, respectively. 

 

 
 

Figure 9. The effect of Re number on the peak temperature 
for the competing configurations in cross-flow 

3. PARALLEL-FLOW 

3.1 T-shaped fins  
 
3.1.1 Model 

Consider a 3-dimensional heat generating cylinder, 
π×R2×Wc, with four T-shaped fins, (L1, t1, Wt) and (L0, t0, 
Wt), inserted in a fluid domain with the scales of Hf×Lf×Wf. 
Length scales of the width of the geometry (Wt, Wf, Wc) 
equals to (6×R). Inlet and outlet surfaces are perpendicular to 
the cylinder’s base and top surfaces, i.e. fluid flows along the 
circular cylinder, the distance in between tip of fins and 
symmetry planes were kept constant as R/2 throughout the 
analyses for the sake of simplicity. Three-dimensional 
Navier-Stokes and Energy equations were solved 
numerically. The governing equations are similar to the 
equations discussed in Section 2.2.1. However, because the 
problem is three-dimensional, the conservation of the 
momentum along the width direction (z-direction) and the 
derivatives along that direction are inserted such as ∂w/∂z, 

w∂u/∂z, ∂2u/∂z2, w∂v/∂z, ∂2v/∂z2, w∂w/∂z, ∂P/∂z, ∂2w/∂z2, 
w∂T/∂z and ∂2T/∂z2. 

The non-dimensionalization parameters of Eq. (6) were 
used to non-dimensionalize the governing equations. 
Therefore, the dimensionless governing equations have the 
same format, i.e. the multiplication constants with the terms 
are the same. Please note that the conservation of the 
momentum along the z-direction is inserted, and the 
multiplication constant of the derivative terms along the z-
direction are the same with the terms are being summed with 
those derivatives.  

 
3.1.2 Results 

Figure 10 shows the effect of different parameters on the 
peak temperature. For instance, Figure 10a shows the effect 
on the thermal performance for different two L1/L0 ratios. 
The fins become slender (i.e., long and thin) as ψ increases. 
Schematic drawing of the heat generating cylinder with 
attached fins can be seen in Fig. 10c. Unlike the cross flow 
configurations, fluid is flowing along the cylinder. In 
addition, Figure 10a shows that decreasing ψ decreases the 
minimum peak temperature. Therefore, slender fins with 
thick stems corresponds to the smallest resistance for the heat 
flow. Furthermore, Figure 10a shows that the effect of ψ 
becomes more pronounced as the L1/L0 ratio increases. 
However, the peak temperature is minimum with the smallest 
L1/L0 ratio and ψ. Here, the smallest L1/L0 ratio was selected 
as 0.5 in order to eliminate the branches to overlap.  

Figure 10b shows the effect of t1/t0 on the peak 
temperature for various L1/L0 ratios when ψ is 1. Increasing 
the t1/t0 ratio decreases the peak temperature for all L1/L0 
ratios. However, increasing the t1/t0 ratio from 1 to 5 yields a 
steep decrease, then the effect of t1/t0 ratio on the peak 
temperature begins to diminish. In addition, this diminishing 
is more pronounced as L1/L0 ratio increases. Furthermore, 
Figure 10b also shows that the peak temperature decreases 
and t1/t0 ratio increases.  

Figure 10c documents the effect of L1/L0 ratio on the peak 
temperature with the optimized t1/t0 ratios of Fig. 10b. Figure 
10c explicitly shows that increasing the L1/L0 ratio increases 
the peak temperature which is inferred in Fig. 10b. In 
addition, Figure 10c also shows that the relation between the 
L1/L0 ratio and the peak temperature is power law with less 
than 1. Overall, Figure 10 documents that decreasing ψ and 
L1/L0 ratio and increasing t1/t0 ratio decrease the peak 
temperature in the heat generating cylinder. 

 

3.2 Cavities  

 
3.2.1 Model 

Consider a 3-dimensional cylindrical heat generating 
domain with the size of π×R2×Wc similar to the section 3.1.1. 
Four cavities (Ncv=4) were inserted into the heat generating 
domain with the size of Hcv×Lcv×Wcv. Fluid enters to the 3-
dimensinal unit flow domain which surrounds the heat 
generating cylinder, and then it flows along the cylinder, i.e. 
parallel flow. The top, bottom, left and right boundaries of 
the elemental flow domain which surrounds the cylinder was 
specified as symmetry boundaries because it is a 
representative elemental domain. In addition, the length of 
the heat generating domain (Wc) is fixed as six times the 
radius of the cylinder which is the same width specified in 
Section 3.1.1. The spacing in between the cylinder and 
symmetry boundaries were also fixed as 3/2×R. The 3-D 
conservation of mass, momentum and energy equations were 
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solved numerically in dimensionless form. The governing 
equations are similar to the equations solved in Section 3.1.1. 
However, as discussed in Section 2.2.1, due to the absence of 
the fins, the energy equation for the fins and the conservation 
of the energy at the fin interfaces diminish. 

 

 
 

Figure 10. The maximum excess temperature of 3-D domain 
with fins in parallel flow relative to (a) ψ, (b) t1/t0, (c) L1/L0 

  
3.2.2 Results 

Figure 11 shows how the length scales of the cavity affect 
the peak temperature in the heat generating domain where the 
volume of the cavities is fixed. Figure 11 shows that thinner 
and longer cavity shapes (i.e., low Hcv/Lcv ratios) correspond 
to low peak temperature values. Increasing the Hcv/Lcv ratio 
increases the peak temperature. However, increasing Hcv/Lcv 
from 0.1 to 0.8 increases the peak temperature around 4%. 

Figure 11 also shows that in parallel flow case the cavities 
begin almost near the origin of the cylinder provides the 
smallest peak temperature. Therefore, unlike in the cross-
flow case, the convective heat transfer coefficient is almost 
uniform and the shape optimization yields to decrease in the 
conductive resistances in between the cavity surface and the 
heat generating domain. Therefore, the results of Fig. 11 is in 
accord with the results of Ref. [26] where the convective heat 
transfer coefficient was specified for the cavity surfaces. In 
addition, unlike in the cross-flow cases, the peak temperature 
occurs in the middle of the cylinder because the cooling 
outside of the cylinder is uniform throughout the heat 
generating surface. 

 

 
 

Figure 11. The effect of Hcv/Lcv on the peak temperature 

 
 

4. CONCLUSIONS 

This study shows that the peak temperature of a uniformly 
heated cylinder can be minimized via using the rectangular-
shaped cavity or T-shaped fin with the fixed area fraction 
and the variable length scales for both the fins and the 
cavities. This study also shows that how the geometries of 
cavities and fins corresponding to the minimum peak 
temperature should be altered as the flow type changes (i.e., 
parallel and cross-flow). The minimization of the thermal 
resistances (temperature difference/heat transfer rate) yields 
heat transfer rate enhancement when the heat transfer is due 
to constant temperature difference. 

 For instance, the optimal fin geometry becomes long and 
thin for the cross-flow case while it has thick and short stem 
and slender tributaries for the parallel flow when Nt=4. In 
addition, the cavity geometry which minimizes the excess 
temperature for the cross-flow case is thicker and shorter 
than the one studied in the parallel flow case with the same 
number of cavities. In cross-flow case, the fins perform 20% 
better (20% decrease in the excess temperature) than cavities 
when Nt and Ncv are 4. Moreover, this difference increases 
up to 82% in parallel flow. This study also shows that 
increase in the number of the fins and/or cavities increases 
the thermal conductance, however, this increment decreases 
the effect of length scale ratios on the thermal performance. 
For instance, the peak temperature values of the best and the 
worst performing fin geometries yields 30.74 and 11.7% 
difference when Nt=2 and Nt=8, respectively. Likewise, for 
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the cavity models it becomes 7.4 and 5.8% with Ncv=2 and 
Ncv=8, respectively. Furthermore, as the number of fins and 
cavities increase the effect of new additions of fins or 
cavities on the thermal performance diminishes. Reynolds 
number also affects the thermal performance of the fins and 
cavities. Excess temperature decreases as the Re number 
increases due to the increase in convective heat transfer 
coefficient (heat transfer coefficient is a function of Re 
number). In addition, here authors also uncovered that using 
the constant convective heat transfer coefficient as a 
boundary condition corresponds to the parallel flow case 
when the cylinders are short enough to have almost constant 
convective heat transfer coefficient and negligible effect of 
the decrease in the temperature difference. Overall, this study 
documents the shape of the cavities and fins which 
corresponds to the maximum heat transfer rate for cross- and 
parallel-flows. There is a best performing design for a given 
set of flow type, constraints and assumptions. This result is in 
accord with the constructal law. 
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NOMENCLATURE 

 
A area of the cylindrical solid domain, m2, 

Fig. 1 
Acv total cavity area, m2 
cp  specific heat, J. kg-1. K-1  
H height, m 
k thermal conductivity, W. m-1. K-1 

L length, m 
m index of mesh test 
n normal vector 
N number of fins or cavities 
q''' heat source, W. m-3 
R radius of the cylinder, m 
t thickness, m 
T temperature, K 
u, v, w velocity components corresponding to the 

spatial coordinates, m. s-1 
W width, m 

 

Greek symbols 

 

 

 thermal diffusivity, m2. s-1 

µ dynamic viscosity, kg. m-1.s-1 
ν kinematic viscosity, m2 .s 
ρ density, kg. m-3 
φ volume fraction 
ψ area fraction circumscribed by one T-

shaped fin 

Subscripts 

 

0 tributary 
1 stem 
c cylinder 
cv cavity 
f fluid 
max maximum 
ref reference 
t fin 

Superscripts 

 

~ dimensionless 
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