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ABSTRACT. The aim of this study is to examine the robust control design based on coefficient 

diagram method with backstepping control combined with an observer for position control of 

the flexible joint manipulator. A simulation model with stability analysis was established 

where the parameters of the observer-controller are tuned by means of particle swarm 

optimization. Through this study, it was found that the proposed control scheme is effective, 

and the results indicate that ours approach ensures the asymptotic convergence of the actual 

joints positions to theirs desired trajectory, and robustness where the system is subjected to 

external disturbance and parameters uncertainties. 

RÉSUMÉ. Le but de cette étude est d’examiner la conception de contrôle robuste basée sur la 

méthode du diagramme de coefficients avec contrôle de la rétrogradation associé à un 

observateur pour le contrôle de la position du manipulateur joint flexible. Un modèle de 

simulation avec analyse de stabilité a été établi où les paramètres de l'observateur-contrôleur 

sont réglés au moyen de l'optimisation par essaims particulaires. Cette étude a montré que le 

schéma de contrôle proposé est efficace et les résultats indiquent que notre approche garantit 

la convergence asymptotique des positions articulaires actuelles vers la trajectoire souhaitée 

et une robustesse se présente lorsque le système est soumis à des perturbations externes et à 

des incertitudes sur les paramètres. 
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1. Introduction 

Flexible robot manipulators are widely used in industrial and space applications 

and enhances safety for service robots which interact directly with human bodies, 

the robust control problem of flexible robot becomes more complicated then rigid 

manipulator, many difficulties in flexible manipulators are also overcome hardly, 

such as high nonlinearity, elastic deformation and various uncertainties (Ali et al., 

2014). Various methods are established to design effective control of flexible joint 

manipulator such as fuzzy PID control (Yen et al., 2012), sliding mode tracking 

control and the robust control. The major limitation of these control method is that 

they require state measurement; nevertheless, in order to apply advanced concepts of 

control in flexible joint, the acquaintance of state variables is not usually available. 

This can be realised by means of state observers. Newly, a significant research 

activity has been dedicated to this kind of nonlinear systems observation. 

Backstepping controller (Sabiri, 2016; Benzineb, 2012) is the most frequently 

employed technique for controlling nonlinear systems and is very efficient but its 

performance depends on the nonlinear system modelling. The real systems are 

exposed to variation with time, so the equations used to model them can vary. As a 

result, the performance of classical backstepping controller can get worse. An 

improvement in controller, by introducing coefficient diagram method CDM 

algorithm (Mohamed, 2016; Mitsantisuk, 2013) can solve this problem. The 

resulting controller (CDM-backstepping) is used with nonlinear observer (Khan, 

2016; Furtat, 2016) to control a class of flexible joint robotic manipulators; this 

method of control assures recursively the globally asymptotic stabilizing controls by 

corresponding Lyapunov functions for subsystems.  

The use of optimization algorithms as alternative methods for tuning parameters 

of controllers has been a modern subject of research in systems control. If the 

optimization problem is convex, the overall minimum is assured. Conversely, for 

non-convex problems, there is no possibility of a global solution. In this context, 

particle swarm optimization (PSO) (Yushu, 2013; Hassani, 2016) can be used in 

order to find an optimal solution of problems considering simple trial operations, but 

good enough for enhancing the performance of the system when the controller can 

be designed and validated considering the system model via simulation. 

The paper is organised as follows. In the second section, two joints flexible 

manipulator state space model is presented. In the third section a brief description of 

the CDM controller for linear system. In the fourth section, the stability analysis of 

the closed loop system based on observer and CDM-backstepping is developed. In 

the fifth section PSO is briefly described. Then, optimum values of parameters 

control are obtained. In the sixth section, presents the simulation results and finally, 

the seventh section concludes the paper. 

2. Robot dynamic and state space model 

The equations of motion of two joints flexible robot can be described as (Yen et 
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al., 2012). 

( ) ( , ) ( ) ( )
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Figure 1. Two joints flexible manipulator 

The state space model of two joints flexible manipulator which is shown in 

Figure 1 can be represented as next formula: 
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Where  
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3. Robot dynamic and state space model 

CDM is a recent polynomial representation to create control systems with the 

lowest degree and can guaranties the stability and robustness without overshoot and 

with a preferred desired time response. 

The output of system to be controlled by CDM is represented as follows 

( ) ( ) ( ) ( )

( ) ( )
e e e

N s F s A s N s
y r d

P s P s

= +                                      (3) 

 

Figure 2. Block scheme of the CDM control  

The standard single input single output block scheme of the CDM control is 

exposed in Figure 2, P(s) is formulated as (Mohamed, 2015; Bernard, 2014). 
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The key parameters, T0=μ1/μ0 indicate the speed of system response in closed 

loop, however, the constants ( )2

1 1i i i iμγ μ μ− +=  and 
1 11 1i i iγγ γ−



+= + ,  1, 1i n −  

are indicative of stability and the shape of the time response, on the other hand, the 

variation of stability indices assure the robustness in the presence of the 

perturbations and parameters variations. The constants ts and T0 can be set as 

0 (2.5 3)sT t=   with 
1 2.5γ = , 2iγ = , 

0 nγ γ= =  , 2 ( 1)i n=  − . 

The values of γi prearranged for the standard form can be adjusted to provide the 

needed performance to provide the needed performance, so that γi>1.5γi
* for all 

i=1~(n-1). 

The polynomial F(s)=P(s)|s=0/N(s) is used to reduce the steady state error. 

4. Stability analysis of the control system 

The CDM-backstepping approach provides a methodical and recursive algorithm 

that combines the choice of a Lyapunov function with the design of a controller 

(Chen, 2016; Zhou, 2016). The most appealing point of it is to use the virtual control 

variable (Ba, 2016; Wang, 2016) to make the original high order system to be simple 

enough, thus the final control outputs can be derived step by step through suitable 

Lyapunov positive definite functions as shown in Fig 3, all nonlinearities can be 

cancelled by the actual control (Chang, 2010; Bossoufi, 2015). 

This part deals with the angular positions control by means of the proposed 

combined observer-controller of flexible manipulator whish considered a Lipschitz 

system by using Lyapunov function in four steps, which yields external disturbance 

parametric variation and noise rejections. 

The state space model given by equation (2) can be formulated as follows 
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and  11 21( ) 0 ( ) 0 0 0 ( ) 0 0
T

F x F x F x= . 

To propose the state observer, the Lipschitz condition on the vector of nonlinear 

function F(x) with respect to x must be guaranteed, such that 

( ) ( ) ˆ–-  x̂ κF x F x x ║ . 

The state-observer of the considered system given by (2) will be assumed to be 

of the next form  

 
ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ.

x Ax F x Bu ψ y y

y Cx

 = + + + −


=

 (6) 

Where the matrix ψ is given by  

 

11 12

81 82

h h

ψ

h h

 
 

=
 
  

 (7) 

Then defining the error ˆ
oE x x= −  consequently, its dynamics is given as 

 ˆ ˆ( ) ( ) ( )= ( ) ( )o o o oE A ψC E F x F x A E F x F x= − + − + −    (8) 

We can calculate the matrix gain ψ if the pair (A, C) is detectable (Khan et al., 

2016) and ( )oA A ψC= −  is Hurwitz (Furtat and Tupichin, 2016), in this case there 

are two symmetric positive definite matrices P and Q so as to verify the equality 

0 0

TA P PA Q+ = − .  

Consider the Lyapunov function candidate T

o o oV e Pe= , its time derivative is 

 
( )

( ) ( )
2 2

min

ˆ( ) 2 ( ) ( )

ˆ2 ( ) ( ) ( ) 2

T T T T

o o o o o o o o

T

o o o

V E A P PA E E P F x F x E QE

E P F x F x ς Q χ P E ω E

= + + − = −

+ −  − − = −
 (9) 

If we take ( )min ( ) 2 0ω ς Q χ P= −  , the asymptotic convergence of error Eo 

can be assured with 2 0o oV ωe −  . 

Consider the correspondent nonlinear observer for system specified by equation 

(5) is as the following form 

 
ˆ ˆ ˆ( ) ( )

ˆ ˆ=

x Ax F x Bu ψ y y

y Cx

 = + + + −



 (10) 



Performance improvement of flexible robot     491 

In the first step, the first error is defined
1 1

ˆ
dXZ X= − , 1 1 5

ˆ ˆ ˆ,
T

X x x=    and 

 1 2

T

d d dX x x=  Its time derivative is specified as
2 1 11 1 dd oZ X ψ EX X X+ −= − =  

with 
1 1 1

ˆ
oE X X= − ,  2 2 6

ˆ ˆ ˆ
T

X x x=   ， and 
11 12

1

51 52

h h
ψ

h h

 
=  
   

The first candidate Lyapunov function is selected as  

 
1 1 10.5 T

oV Z Z V= +  (11) 

Differentiate to get 
1 1 1

T

oV Z Z V= + , then one has 

( )2 2

1 1 1 1 2 1
ˆT T

o o d oV Z Z ω E Z X E X ω E − = + − − . 

We now choose the first desired control input as 
1 1 1 dφ λ Z X= − +  with 

1 0λ  , 

and 
2 2 1

ˆZ X φ= − , Differentiating to time the first Lyapunov function 
1V  gives 

( )
2

1 1 2 1 1

T

o d oV Z Z E X φ ω E + − + − . 

Where the second error 
2 2 2

ˆ
oE X X= −  and 

2X̂  is taken as control input. Then, 

the derivative of 
1V
 
is 

 
2

1 1 1 1 1 2 1 1 1

T T T

o oV λ Z Z Z Z Z ψ E ω E − + + −  (12) 

If we take in consideration the generic inequality

( )1 1

2

1 1 111 1 11/ 4T

o

T

oZ ψ E Z Z ψκ Eκ + , with κ1>0, one has 

( )

( )

2

1 1 2 1 1 1 1 1 1 1

2 2

1 2 1 1 1 1 1 1 1

( ) 1 4

( ) ( 4 )

T T

o o o

T T

o o

V Z Z λ κ Z Z κ ψ E ω E

Z Z λ κ Z Z ω ψ κ E

 − − + −

 − − − −
 

If we take 
2

1 14oω ψ κ  and λ1>κ1, with an appropriate choice of λ1 and κ1, we 

obtain 
1 1 1 1 2 1,    0T TV λ Z Z Z Z λ − +  . 

The time derivative of Z2 is given by 

 
2 2 1 1 2 1 1

ˆ ˆ- ( ) oZ X φ F X ψ E φ= = + −  (13) 

with 
1 1 1 1 2 1

ˆ
d d dφ λ Z X λ X λ X X= − + = − + +   and 

21 22

2

61 62

h h
ψ

h h

 
=  
 

. 

Select the second Lyapunov function as 
2 1 2 20.5 T

oV V Z Z V= + + , Its derivative is 

written as 
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2

2 1 2 2 1 1 1 1 2 2 2

T T T T

o oV V Z Z V λ Z Z Z Z Z Z ω E= + +  − + + −  (14) 

Substituting equation (13) into (14) gives 

 
2

2 1 1 1 1 2 2 1 2 1 1
ˆ( ( ) )T T T

o oV λ Z Z Z Z Z F x ψ E φ ω E − + + + − −  (15) 

Now, the desired control input 
2φ  

of 
3X̂  is chosen as 

2 3 1 1 2 2 1
ˆ ˆ( )φ X F x Z λ Z φ= − − − + . 

Defining the error 
3 3 2

ˆZ X φ= − , with 3 3 7
ˆ ˆ ˆ,

T
X x x=     

substituting the term of 
2φ  

in equation (15), then 
2

2 1 1 1 2 2 2 2 3 2 2 1

T T T T

ooV λ Z Z λ Z Z Z Z Z ψ E ω E − − + + − . 

Exploiting the generic inequality ( )
2

2 2 2 2 2 2 2 11 1/ 4T T

o oZ ψ E Z Z ψκ Eκ +  with 

2 0κ  , the previous equation can be restructured as 

 
( )

( )

2 2

2 1 1 1 2 3 2 2 2 2 2 2 1

2 2

1 1 1 2 2 2 2 3 2 2 1

( ) 1 4

4

T T T

o o

T T T

o

V λ Z Z Z Z λ κ Z Z κ ψ E ω E

λ Z Z λ Z Z Z Z ω ψ κ E

 − + − − + −

= − − + − −
 (16) 

Taking the constants 
2

2 24ω ψ κ , 
2 2λ κ  and 

2 2 2λ λ κ= − , then 

2 1 1 1 2 2 2 2 3

T T TV λ Z Z λ Z Z Z Z − − + .  

After that, calculate the time derivative of 
3Z , make available 

3 3 2 4 3 1 2
ˆ ˆ- oZ X φ X ψ E φ= = + − , where 3 3 7

ˆ ˆ ˆ,
T

X x x=     
and 

31 32

3

71 72

h h
ψ

h h

 
=  
 

. 

Taking the third Lyapunov function as follows
3 2 3 30.5 T

oV V Z Z V= + + , at that 

moment 

3 1 1 1 2 2 2 2 3 3 3

T T T T

oV λ Z Z λ Z Z Z Z Z Z V − − + + + , then 

 
2

3 1 1 1 2 2 2 2 3 3 4 3 1 2
ˆ( )T T T T

o oV λ Z Z λ Z Z Z Z Z X ψ E φ ω E − − + + + − −  (17) 

Taking 3 2 3 3 2φ Z λ Z φ= − + , in that case the time derivative of 3V  is given as 

 
2

3 1 1 1 2 2 2 2 3 3 3 3 3 4 3 3 1

T T T T T T

o oV λ Z Z λ Z Z Z Z λ Z Z Z Z Z ψ E ω E − − + − + + −  (18) 

With the law ( )
2

3 2 3 3 3 3 3 11 1/ 4T T

o oZ ψ E Z Z ψκ Eκ +  and 3 0κ  , the last 

equation can be reorganized as 

( )
2 2

3 1 1 1 2 2 2 3 3 3 3 4 3 3 3 3 3 11/ 4T T T T T

o oV λ Z Z λ Z Z λ Z Z Z Z Z Z ψ Eκ Eκ ω − − − + −++   
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As a result 

 
2 2

3 1 1 1 2 2 2 3 3 3 3 3 4 3 3 1( ) )/ 4(T T T T

oV λ Z Z λ Z Z λ Z Z Z Zκ κω ψ E − − − − + − −  (19) 

Taking 

2

3 34oω ψ κ  and 
3 3λ κ ,and 

3 3 3λ λ κ= − , This provide 

2 1 1 1 2 2 2 3 3 3 3 4

T T T TV λ Z Z λ Z Z λ Z Z Z Z − − − + .  

Choose the final Lyapunov function as follows 

 
4 3 4 40.5 T

oV V Z Z V= + +  (20) 

Define the desired control input 
3φ  such that  

 
4 4 3

ˆZ X φ= −  (21) 

Its derivative is expressed as 
4 4 3

ˆZ X φ= − .
  

After that, one has 
4 2 4 1 3

ˆ( ) oZ F X ψ E φ= + −
 
with 2 12 22

ˆ ˆ ˆ( ) ( ), ( )
T

F X F x F x=    .
 

Considering 
4

ˆζ X=  with
 4 4 8

ˆ ˆ ˆ,
T

X x x=    , this gives 
1 2

ˆ ˆ( ) ( )ζ G X G X u= +  where 

( )2 4 8
ˆ( ) ,G x diag a a= , 

1 2 4 1
ˆ( ) ( ) oG x F x ψ E= +

 
and

 
41 42

4

81 82

h h
ψ

h h

 
=  
 

.  

Then, the control law can be expressed as 

 0 1
ˆ ˆ( ) ( ) ( )o o o

du
A x u A x Z t

dt

+ =  (22) 

Where 

 
0 3 0 1

ˆ ˆ ˆ( ) ( ) - ( ) - ( )o o o oZ t C x φ B x ζ B x ζ=  (23) 

With 0
ˆ( )oA x , 1

ˆ( )oA x , 0
ˆ( )oC x , 0

ˆ( )oB x  and 1
ˆ( )oB x  are matrices. 

Consider the observer given by equation by (10), with the CDM control specified 

by equation (22) and (23) and suppose that the gains δ and Co0 are such that 

 
0 4 3

0
ˆ( ) ( ) ( )

t

o s oC δsign Z Z θ dθ Z H x +  (24) 

After that, we establish the control signal that guaranties the asymptotic 

convergence of the error Z4(t). 
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The matrices are selected as follows 

 
( )0 2

1 2

ˆ ˆ( )= ( )

ˆ ˆ( )= ( )

o o

o o

A x K dG x dt

A x K G x

 −


−

 (25) 

With 
2

ˆ( ) (0,0)dG x dt diag= , 
1 2( , )o o oK diag k k= .

  
Where the element of Ko are positive constant. 

After that, inserting equation (21) into (23) gives 1 1

4 0 0 3 0( )o o o oZ B C I φ B Z− −= − −  

and taking the matrix 
0 0 0 1 2

ˆ ˆ( )= ( ) ( , )o o o c cC x B x C diag c c= = and placing

1
ˆ( ) (0,0)oB x diag=  with 

1 2( , )δ diag δ δ= .  

Then  

 
0 4o oZ C Z= −  (26) 

After that, calculate the second derivative of Zo as 

 
0 3 0( ) ( )o o oZ t C φ t C ζ= −  (27) 

Inserting equation (22), (23) and employing (25) gives 

 
1 1

ˆ( ) ( ) o oζ t G x K Z= +  (28) 

With 1

1o oK K −= , Substituting equation (27) and (28), result in 

0 3 0 1 1
ˆ( ) ( ) ( ( ) )o o o o oZ t C φ t C G x K Z= − + , then 

 0 3 0 1 1
0

ˆ( ) ( ) ( ( ) ( ) )
t

o o o o oZ t C φ t C G x K Z θ dθ= − +   (29) 

Introducing equation (26) into (29) provides 

 4 2 4
0

ˆ( ) ( ) ( )
t

o oZ t H x K Z θ dθ= −   (30) 

With 2 0 1o o oK C K=
 
and 1 3

ˆ ˆ( ) ( )- ( )oH x G x φ t= , after that taking 
2 ( )o sK δsign Z=  

and 4 4
0

( )
t

sZ Z Z θ dθ=   gives 

2

4 3 4 4 1 1 1 2 2 2 3 3 3 3 4 4 4

T T T T T T

o oV V Z Z V λ Z Z λ Z Z λ Z Z Z Z Z Z ω E= + +  − − − + + −     

Therefore  

 4 1 1 1 2 2 2 3 3 3 4 3 2 4
0

ˆ( ( ) ( ) )
t

T T T T

o oV λ Z Z λ Z Z λ Z Z Z Z H x K Z θ dθ − − − + + −   (31) 

As a result
 4 1 1 1 2 2 2 3 3 3 ( )T T TV λ Z Z λ Z Z λ Z Z v t − − − +  Where 

4 3 0
ˆ( ) ( ( ) ( ))T

o o s sv t Z Z H x C δZ sign Z= + − , if ( ) 0v t  , then the derivative of the final 
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Lyapunov function is 
4 1 1 1 2 2 2 3 3 3

T T TV λ Z Z λ Z Z λ Z Z − − − . As a result 
4 0V  , this 

designates that the objective of angular positions control is finished. 

5. PSO algorithm 

PSO is a Bio-inspired evolutionary computation algorithm which is simple to 

implement for the reason that a few parameters should be tuned. The algorithm of 

PSO is implemented as follows. The unknown parameters are named the particles 

that construct the size of population. Beginning with a randomly initialization in 

positions and velocities in di dimensions where the solution exists. For each particle, 

evaluate its fitness function (MRSE). Then compare the MRSE of each particle with 

its best position. If current value is better than the previous best position, set the 

previous best position value to the current value and the previous best position 

among particles. 

The evaluation of the velocity of ith particle vai in the ith iteration is given as 

(Zhong et al., 2012). 

 ( ) 1 1 2 2  1  ( ( ) ( ( ) ( )) ( ( ) ))ai ai a besti ai a best aiv j Γ v j c r p j jp c r g p j−+ = + + −  (32) 

Where ( )  
2

21, 0 1r r  , 
1 2a aε c c= + , 4ε   and Γ  is specified by (Gupta, 

2015). 

 
2

2

4 4

Γ

ε ε ε

=

− − −

 (33) 

By using Γ, for any initial values of the particles, the PSO algorithm should 

discover the optimum solution.  

For the 
thi  particle a new position is then calculated according to the following 

equations (Moharam et al., 2016).  

 ( ) ( ) ( ) 1    1ai ai aip j p v jj+ = + +  (34) 

The PSO algorithm performs recurrently until the objective is attained. The 

number jmax can be set to a definite value as an objective of optimization. 

MRSE is used throughout tuning parameters of controller. It is given for the 
thi  

particle as follow 

 

4
2

1 1

1
( )k

k k

MRSE Z k
= =

 
=  

 
 

   (35) 

The parameter values of PSO are chosen as follows di=23, sp=120, jmax=120, 

ca1=2.1, ca2=2.1 and r1=r2=0.71. 

Figure 3 shows a scheme to control the position of flexible robot using PSO. 
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Figure 3. Block diagram of proposed control method 

6. Simulation results 

In order to demonstrate the feasibility, validity and effectiveness of the proposed 

controller, the simulation is carried out on the angular positions control of flexible 

manipulator, this system is supposed to follow a reference trajectory with the shape 

given in Figure 8 with the time span of 10s, while the mechanic parameters are in 

fact uncertain. The simulation result illustrated in Figure 4 to 13 shows the 

performance of the proposed control scheme, whose control objective is to ensure 

the asymptotic convergence of the tracking errors. Such simulation results reveal the 

performance comparison between conventional and optimized controllers. Purposely, 

the initial state is taken x(0)=[0 0 0 0]T, where the observed initial state is chosen as 

 ˆ(0) 4 0 0 0
T

πx = , which indicate that the observer error of the angular 

position has π/4 rad at t=0s. The nominal parameters of the concerned system are as 

follows:
1 2  0.5 m m kg= = ,

 1 2  0.3 l l m= = , 29.8 /g m s=  
2

1 2   0.1 .J J kg m= = ,
 

1 2
=100  . /s sK K N m rad= , 

21 0.9  . . /a aB B N m s rad= = . 

To have optimum performance, the gains of observer and controller are selected 

by the proposed method of optimization as given in Table 1. 

6.1. Scenario 1 

In the ideal case of numerical simulations, the initial errors are taken different to 

zero, not including any uncertainties, the controller performance is presented in 

Table 1 and Figure 4 to 9 and exposes the time angular positions of tracking for 

conventional and optimized controllers, from the results, It is concluded that the 

performance of the optimized controller is better than conventional controller in the 

transient responses without overshoot and or steady state error and assure still 

control efforts in the permitted values. 
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6.2. Scenario 2 

To verify the robustness of the suggested controller, an external disturbance is 

applied and assumed as a sinusoidal function with a period of 5s and amplitude of 

0.2 rad inserted to the torque input, where the mechanic parameters are assumed to 

be 15%  of uncertainties in length L and mass M, also, we introduce 6% of random 

noise in the measurements. 

The simulation result for the reference in the presence of these uncertainties 

shows, respectively, the angular positions and controls inputs. As seen from Figure 9 

to 13, the best performance obtained from the optimized controller in comparison to 

conventional controller appears in handling the external disturbances, uncertainties, 

as well, the effect of the noise on the positions, where the time responses converges 

asymptotically to zero with smaller settling times, without overshoots, with 

neglected steady state errors and by means of adequate controls effort. These results 

designate the effectiveness of the optimized controller. 

Table 1. Comparison of algorithms performance 

Algorithms Parameters of control ( )st s  J  

 

 

Conventional 

CDM-

backstepping 

1 2 3 1 2 1 2, , , , . ,

8,7.5,7,112,100,0.65,0.75

c c     =  

  

1

20 24

21 17

 
=  
 

 , 
2

22 15

35 16

 
=  
 

 ,

  

3

18 19

33 22

 
=  
 

 , 
4

12 16

34 13

 
=  
 


 

 

 

1
0.3st =

 

2
0.2st =

 
 

 

 

 

13.0  

 
 

 

 

PSO /CDM-

backstepping 

1 2 3 1 2 1 2, , , , . ,

9.2,8.1,7,80,70,0.61,0.67

c c     =  

  
 

1

15.1 18.0

17.2 15.3

 
=  
 

  , 

2

17.2 13.1

22.3 13.1

 
=  
 

 ,

  

3

16.2 14.1

25.1 13.4

 
=  
 

  ,
4

10.1 12.0

24.1 10.2

 
=  
 


 

 

 

1
0.1st =

 

2
0.1st =

 

 

 

 

 

10.3  
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Figure 4. Positions of the first joint, Scenario 1 

 

Figure 5. Positions of the second joint, Scenario 1 

 

Figure 6. Torques of the first joint, Scenario 1 
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Figure 7. Torques of the second joint, Scenario 1 

 

Figure 8. 2-D overview of tracking complicated trajectory, Scenario 1 

 

Figure 9. Positions of the first joint, Scenario 2 
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Figure 10. Positions of the second joint, Scenario 2 

 

Figure 11. Torques of the first joint, Scenario 2 

 

Figure 12. Torques of the second joint, Scenario 2 
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Figure 13. 2-D overview of tracking complicated trajectory, Scenario 2 

7. Conclusion 

In this paper, a nonlinear observer based on CDM-backstepping control was 

developed to control the angular positions of a two joints articulated flexible 

manipulator. The Lyapunov stability analysis was demonstrated to guaranties the 

asymptotic convergence of the trajectory tracking error of the entire system where 

the performance of the optimized controller using PSO was compared to the 

conventional controller. 

In fact, parameters of the observer-controller were optimized to enhance the 

performance and increase the accuracy of control approach. In simulation results we 

observed using performance criteria such as MRSE, that the setting time reach to its 

minimum values without overshoot, and very suitable control effort that is 

confirmed to have more optimal values when compared with conventional controller. 
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Nomenclature 

1q  : Link angle of the first joint 

2q
 
: Link angle of the second joint 

( )M q
 
: Generalized moment of inertia ( , )C q q q  is the centripetal and Coriolis 

             forces  

( )G q  : Gravitational forces,  

s
K  : Matrix of joint stiffness coefficients 

J  : Motor inertia matrix 

a
B  : Actuator damping matrix 

τ  
 
: Input torque 

1m  : Mass of the first link 

2m  : Mass of the second link 

1l  : Length of the first link 

2l  : Length of the second link 

g  : Gravity constant. 

er  : Reference input in CDM control 

ey  : Output in CDM control 

eu  : Control input in CDM control 

re  : Error signal in CDM control  

ed  : External disturbance in CDM control 

( )N s  : Numerator of the system transfer function  

( )D s  : Denominator of the system transfer function  

( )A s  : Denominator polynomial of the controller  

( )B s
 
: Feedback numerator polynomials of the controller  
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( )F s  :  Pre-filter  

( )P s
 
: Characteristic polynomial of the closed loop system 

iμ

 

: Coefficients of the characteristic polynomial 

0T
 
: Time constant   

iγ  
: Stability indices 

 
iγ
  : Stability limits 

 

st  : Settling time  
 

κ  : Constant Lipschitz.  

ψ  : Observer gain  

oE  : Estimation error
 

P , Q  : Symmetric positive definite matrices 

,  ω χ
 
: Positive constants  

1Z  : First tracking error 

1oE  : First estimation error 

dX  : Vector of desired position 

1ψ  : First matrix gain 

1 2 3 1 2 3 1 2 3,  ,  , ,  ,  , ,  ,  λ λ λ λ λ λ κ κ κ
 
: Positive constants  

1 2,  φ φ , 
3φ :  Stabilizing control law 

2Z  : Second tracking error 

2oE  : Second estimation error 

2ψ  : Second matrix gain 

3Z  : Third tracking error 

3oE  : Third estimation error 

3ψ  : Third matrix gain 

4Z  : Fourth tracking error 

3oE  : Fourth estimation error 

3ψ  : Fourth matrix gain 

11 82, ,h h
 
: Elements of matrix of observer gain  

ζ  : Auxiliary variable 

0
ˆ( )oA x , 1

ˆ( )oA x , 0
ˆ( )oC x , 0

ˆ( )oB x , 1
ˆ( )oB x : Matrix of Nonlinear gains of  

                                                                      Nonlinear CDM. 

1,  o oK K , 2oK , δ , 
0cC : Diagonal matrix

 

1 2,  c cc c ,
 1 2,  o ok k

 
: Constants  

id : Dimension of the problem space  

aip : Position of the particle 

bestip : Previous best position of the particle 
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bestp  : Previous global best position of particles 

1ac  : Cognitive parameters  

2ac
 
: Social scaling parameters 

1r , 
2r  : Pseudo-random numbers 

ε  : Constant 

Γ  : Constriction coefficient 

j  : Iteration number 

maxj  :  Number of iterations
 

MRSE : Mean of root of squared error 

 : Number of samples errors.  

ps
 
: Size of population 

1st  
: settling time of the first position 

2st  
: settling time of the second position 
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