
 

 
 
 

 
 

 
1. INTRODUCTION 

A variety of methods has been developed to solve the 
inverse problems of partial differential equations, such as 
Pulse Spectrum Technology (PST), the best perturbation 
method, the Monte Carlo method all kinds of optimization of 
regularization method. Based on the integral equation method 
is one of the main approaches to the study of the inverse 
problem, its basic idea is to attribute the inverse problem 
solving becomes an integral equation to solve the problem. 
Inverse spectrum method, Borg approximation method and 
the method based on the far field pattern is typical of this 
kind of method.  

2. Ill-POSEDANALYSIS 

Let’s analyze the ill-posed properties of the first kind 
Fredholm integral equation. We will consider the following 
form of the first kind Fredholm integral equation:  
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respectively.  

Supposing the solution of the equation is  1z t  when the 

right hand side of the equation is  xuu 1 , i. e.  
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It is not difficult to verify, for all real , N ,  

   2 1 sin( ) z t z t N t  is the solution when the right 

hand side of the equation is  
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Clearly, for any N , when   is sufficiently large,  
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can be arbitrarily small, as the same time, the distance of 

 1z t  and  2z t  
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may be arbitrarily large. This shows that the solution of the 
first kind Fredholm integral equation does not depend 
continuously on the right hand side, is ill-posed problem that 
does not have the stability.  

3. REGULARIZATION METHOD THEORY 

3.1 Tikhonov regularization method 

 
Aiming at the solution of the ill-posed problems, the 

Tikhonov regularization method of this paper plus of penalty 

after the objective function Kx y , and planning to come to 

find this new sub-minimum value from a theoretical point of 
view optimization problem is posedo or come to find this new 
sub-minimization values satisfy the equation in terms of the 
theory of integral equations of the second kind integral 
equation, i. e: For general bounded linear operator 

: K X Y , for any y Y , we need solve  x X  such 

that the function  
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can reach to the minimum., where 0  is the regularization 

parameter.  

Theorem 1: If space ,X Y are Hilbert space, the operator 

: K X Y is linear and bounded. For any y Y , there 

exists 0 x X satisfy 

 

0   Kx y Kx y                                                             (3) 

 

    Necessary and sufficient conditions for all x X  is 0x  

satisfy  
 

0

 K Kx K y                                                                      (4) 

 

where the operator : K Y X is the self-adjoint operator. 

Proof: First we prove sufficiency. That is we know 

0

 K Kx K y  and we need come to 0   Kx y Kx y . 

Calculated directly from the meaning of the questions 
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where 0, x x X . By assumption 0x  satisfy 0

 K Kx K y , 

according to the formula  
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We can come to the conclusion 0x  is the minimizer of 

Kx y .  

Secondly, we have to prove the necessity, which is 

knowing 0   Kx y Kx y , i. e 0x is the minimizer of 

Kx y , we need inferr 0

 K Kx K y . By assumption, foa 

any 0, k x X , we choose to 0 x x kz , then we have 
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0 x x kz into the above formular, we have  

 

  00 2 Re , 0,    k K Kx y z z X .  

 
Because of the arbitrary z, 

 0 00     K Kx y K Kx K y  is holding.  

Tikhonov regularization method for solving ill-posed 
problem is the most universal and theoretically a better 
method. Overdetermined linear system of finite-
dimensional Kx y , but for infinite dimensional systems, 

solving minimization problem is still sick, so we should relax 

the requirement Kx y  be  
2 2

   J x Kx y x , and 

then solve this new function’s minimizer. Where  J x  is 

called Tikhonov functional, the second is called stable 
functional. In general case, when confronted with solving 
linear ill-posed problem, we often take use of Tikhonov 
regularization method, whose core idea is to use the norm 

2
x  including a priori information which is relation to the the 

prior information of solution such as boundary and 
smoothness and so on. Its essence is determined as follows 

solutions 

x of the minimization functional:  

 

 
2 2

   J x Kx y x .  

 
For solving the same problem, select the functional 

stability is not the only, it depends on the restriction for the 
appendix solution. Therefore, the regularization Solutions 
regularization operator will be different.  

According to the previous theorem, the Tikhonov 
regularization method. There is also the following theorem:  

Theroem 2: If space ,X Y are Hilbert space, the operator 

: K X Y is linear and bounded. Then  

(1) There exists a unique minimizer 
x  for the 

minimization functional  
2 2

   
Y X

J x Kx y x  

in space X .  

(2) By (1), there exists minimizer x  satisfy  

 
    x K Kx K y                                                            (5) 

 
See proof in [2].  

To discuss the extremum of functional  J x , we give the 

definition of the minimizing sequence.  

Definition 1: Let X be a metric space, M  is a subset of X . 

And asuume the functional 1: J M R  exists previous 

supremum and infimum. We call the sequence  nz M  is 
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the minimizing sequence of, if  lim


n
n

J z d  and 

 inf



z M

d J z  hold on.  

In general, the sequence  nz  may not exist limits. Even if 

its limit z  exists, z M  and 

     lim lim 

 
 n n

n n
J z J z J z  may not hold on. In the 

regularization operator configuration aspects, Tikhonov had 
discussed in detail the transformation method based on 
variational principle of the method and means of integrating 
its implementation in the image space, he constructed through 
the introduction of a stable functional regularization operator, 

as for above functional 
X

x is the stable functional.  

Tikhonov functional consists of two items: Correspondence 
preceding the original problem, the latter corresponding to 
the prior information. Minimization of the functional 
requirements of the residual norm is small and approximate 
solutions to better meet the balance between these two a 
priori information. About regularization operators can take 
advantage of the existence of Hilbert space Lax-Milgram 
theorem establishment.  

3.2 Regularization parameter selection 

L curve criterion is based on log-log scale to describe the 

contrast curves , x  and ,  Kx y , and then on the basis 

of the comparison results to determine the regularization 
parameters. As show below the picture. In the vertical part of 
the L curve, the regularization parameter is samall, 

,  Kx y is also small, regularization solution is coincide 

with the data after disturbance, in contrast, , x  is sensitive 

to the change of the regularization parameter, Therefore, the 
vertical part of the state belong to the less regular 
dissemination of data errors dominate the total error;In the 
horizontal part of the curve L, the regularization parameter is 
large, regularization error is main, with the increase of  , 

,  Kx y  is also become larger but not as   with , x , 

therefore, the horizontal part belonged to the regular state. 
We can choose regularization parameter in the upper corner 
of the L curve, i.e. from the vertical to the horizontal corner 
to select. For the upper corner, people often choose the point 
of maximum curvature of the L curve as the upper corner L. 
Let  
 

   log , log  
    u Kx y v x ,  

 
then curvature function of the L curve is 
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K
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If we know the parameters of expression curve, then we 

can find the maximum value directly to the curvature function 
to give the corresponding regularization parameter. Otherwise, 
we can cubic spline interpolation methods to determine the 
approximate upper corner, so select regularization parameter.  
 

4. NUMERICAL EXAMPLE 

Consider the following integral equation:  
  

 
1

0
1 ( ) ,0 1   

ts tts e x s ds e t                                            (6) 

 

 
Figure 1. L curve 

 
From the analysis to know, this problem is ill-posed and its 

unique solution is ( ) 1x t , we hope to achieve through their 

regularization method regular solution is approximately equal 
to the exact solution.  

First the operator 
2 2: (0,1) (0,1)K L L is given by the 

following formular 
 

      
1

0
1 

tsKx t ts e x s ds                                                (7) 

 

and the operator K  is adjoint operator, i. e  K K . We can 

prove K  is one to one and continuous. For the numerical 

calculation of Kx , the integral equations are discretized in 

this discussion based on the discrete method of quadrature 
rules, the following two kinds of method we use Simpson’s 

rule, and / , 0,1, it i n i n , we replace  ( ) iKx t  by the 

fololwing formular 
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where 
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
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


  


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

j

j or n
n

w j n
n

j n
n

                                        (9) 

Next, we should use two methods to solve it.  
 

4.1 Tikhonov regularization methods 

When writing in a matrix form discrete form we will 

simply note Ax b , general notice the corresponding 

coefficient matrix asymmetric, we have the corresponding 
discrete Tikhonov equation 
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2  

   x A x Ay                                                              (10) 

 

where   1    n

iy y R is the disturbed right hand side. 

 expiy i n uniformly distributed random vector and 

satisfy  
 

 
2

2
0

1
:

1

  

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


n

i i

i

y y y y
n
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Below we will give the general Tikhonov regularization 

method is applied to get ten group the average results of 
numerical calculation, and we will give the discrete norm of 

the error between exact solution   1x t  and Tikhonov 

approximate solution , x . In figure 2, we choose 0  , only 

for small enough  , Simpson rules of discrete error can lead 

to bigger, and when 810  , for different discrete parameter 

8n  and 16n , the error is also different.  

 

 
 

Figure 2. 0   error figure 

 

 
Figure 3. n=16 Tikhonov error figure 

 
    Below we give the residual norm reconciliation between  
the picture norm.  

 
 

Figure 4. n=16 residual norm and solution norm figure 
 

In figure 3, let 16n , and we note that the total error is 

reduced to a minimum and then increases with the increasing 
 . From the figure 4, the essence of the regularization 

method is to solve the original problem of conversion 
between the fit (the first term in the above formula) norm 
reconciliation (or semi-norm) Minimum (second term in the 
above formula) in the data achieve some compromise issue, 
which is in a regular problem at the heart of the main idea of 
Tikhonov regularization method, selecting   adequately is 

playing a important role in regularization methods, when is 

large, it equals to join a large amount regular, can make the 
desires of the solution of the norm or half norm is small, but it 

at the expanse of the cost of residual norm
2

Kx y . When 

  is small, it equals to add a small amount of regular, the 

obtained solution so that the residual is small, but the norm so 
that the solution cannot be minimized. One theory suggests 

that, the selection range of   is 1   n , where 1  n  

is singular values. Finally, we will give the general Tikhonov 
regualarization methods error figure when we use the 
stopping rule.  

 

 
 

Figure 5. n=16stopping rule error figure 
 

By comparison seen in the posterior Select next parameter 
stop criterion, the more likely to get the minimum optimal 
regularization parameters  , which can be obtained by 

minimizing functions.  
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4.2 Iteration Tikhonov regularization methods 
 
Since the exact solution has good smoothness, so we may 

assume smoothness index 2r , so we can use iterative 
Tikhonov regularization method to solve this equation, the 
same rule to use Simpson left discretized integral equations 
obtained discrete iterative equation 
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where  :
  iy y  is disturbed and discreted right hand side 

and satisfy exp( )iy i n  
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The figure 6 will shows us the error figure when the 

regularization parameter 0.001   iteration parameter 

1,2,3,4,5,6,7,8,9,100,200,m 300, 500, and the error 

0.0001,0.001,0.01,0.1  .  

 

 
 

Figure 6. n=16 iteration methods error figure 
 
 
 
From the figure 6, when the regularization parameter takes 

a fixed value, error estimation with the parameter m  

increases and then decreases to an optimal value and then 
increases, which fully reflects the positive effect of the 
iteration parameters. By comparing the obtained optimal 
convergence precision, iterative Tikhonov regularization 
method is equal to the higher than normal Tikhonov 
regularization method. This shows that the iterative Tikhonov 
regularization method selection parameter is more convenient 
to calculate faster, more accurate calculation, better stability 
advantages.  
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