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The current three-dimensional (3D) target detection model has a low accuracy, because the 

surface information of the target can only be partially represented by its two-dimensional 

(2D) image detector. To solve the problem, this paper studies the 3D target detection in the 

RGB-D data of indoor scenes, and modifies the frustum PointNet (F-PointNet), a model 

superior in point cloud data processing, to detect indoor targets like sofa, chair, and bed. The 

2D image detector of F-PointNet was replaced with you only look once (YOLO) v3 and 

faster region-based convolutional neural network (R-CNN) respectively. Then, the F-

PointNet models with the two 2D image detectors were compared on SUN RGB-D dataset. 

The results show that the model with YOLO v3 did better in target detection, with a clear 

advantage in mean average precision (>6.27). 
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1. INTRODUCTION

With the recent development of deep learning (DL), image 

processing technologies have emerged one after another, 

bringing considerable achievements in image-based target 

detection. However, not many scholars have applied DL to 

target detection of three-dimensional (3D) point cloud data. 

Compared with two-dimensional (2D) images, 3D point cloud 

data can accurately represent the surface information, [1] and 

some depth information [2] of the target. Because of its various 

sources, 3D point cloud data have attracted a growing attention, 

making it interesting to further apply DL to target detection of 

3D point cloud data. 

Currently, it is an open question how could 3D point cloud 

data be imported to neural networks by DL. To facilitate the 

importation, the literature [3] adopted the energy equation to 

obtain the 3D regression frame under the framework of the fast 

region-based convolutional neural network (R-CNN). 

However, there is yet no practical or effective detection 

method for occluded target. Under the architecture of faster R-

CNN, Literature [4] proposed a 3D region proposal network 

(RPN), which can effectively detect occluded targets. But the 

3D RPN is too slow to achieve real-time processing. Under the 

framework of you only look once (YOLO) network, Literature 

[5] drew the merits of relevant research [6-8], and came up

with a new CNN architecture. With a running rate of 50 frames

per second (fps), the new architecture reaches the standard for

real-time processing. Nonetheless, the architecture has errors

in the conversion between 3D and 2D coordinates, resulting in

large detection errors on small targets. Literature [9] proposed

the DenseFusion network, which covers the depth information

of each pixel in the image. The network greatly improves the

real-time processing speed, but does not perform well in small

target detection. Literature [10-12] converted point cloud data

into image information, and detected targets with fusion and

projection techniques [13-15]. However, the above approaches

are defected in target detection, because they more or less

ignore the disordered and local correlations in point cloud data.

This paper adopts the frustum PointNet (F-PointNet) [16] 

model to directly process the original point cloud data, and 

realize target detection of 3D point cloud data, without 

needing to convert the input data into point cloud data. 

Considering the restrictions on the features of point cloud data, 

this strategy does not generate an overlarge dataset after data 

conversion, avoids unnecessary calculations, improves 

resource utilization, and ensures better detection effect. 

2. F-POINTNET MODEL CONSTRUCTION

The F-PointNet generates a 2D area proposal from the 

original image, locates it in the 3D point cloud data, and 

thereby extracts the corresponding point cloud data. Then, the 

point clou data are processed by the segmentation network of 

PointNet [17], and 3D bounding box evaluation for 3D target 

detection.  

The basic architecture of F-PointNet (Figure 1) contains 

three modules: the frustum proposal module, the 3D instance 

segmentation module, and the non-modal 3D bounding box 

evaluation module.  

2.1 Frustum proposal module 

In this module, 2D image target detection technology is 

employed to classify the corresponding target in the image, 

extract the target area, and obtain the parameters of the 2D 

bounding box of the target. Then, the 2D target area is 

extracted and mapped to the 3D point cloud data, based on the 

depth information of the RGB-D image and the camera 

projection matrix. From the 3D point cloud data, the frustum 

containing the target is extracted. The specific procedure is 

summarized as follows: 

First, read the coordinates, images and labels of 3D point 

cloud, and the data on the related conversion matrix from the 

SUN RGB-D dataset [18-21]. Next, map the 2D bounding box 

to the 3D point cloud through the conversion matrix, and filter 
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out the point clouds outside the corresponding area in the 2D 

plane. After that, implement a series of coordinate conversions 

(Figure 2) and point cloud extractions/processing to extract the 

frustum 3D point cloud data corresponding to the target area. 

 

 
 

Figure 1. Basic structure of F-PointNet model 
Note: n is the number of point clouds of the frustum point cloud extracted by frustum proposal module; m is the number of point clouds of the target point cloud 
after instance segmentation; c is the number of point cloud channels; k is the number of target classes in point cloud. 

 

Each extracted frustum point cloud has a unique direction 

in the camera coordinate system. To facilitate data processing, 

it is necessary to convert the coordinate system of the frustum 

point cloud data from the camera coordinate system to the 

frustum coordinate system. As shown in Figure 2, the 

centerline of the frustum point cloud is rotated to a position 

orthogonal to the image plane; then, the point cloud 

coordinates are converted to the frustum coordinate system. 

 

 
 

Figure 2. Point cloud coordinates 

 

2.2 3D instance segmentation module 

 

As its name suggests, this module mainly semantically 

segments the point cloud. As shown in Figure 3, the module 

receives the point cloud data extracted by the previous module, 

implements semantic segmentation of the frustum point cloud 

data with the aid of the one-hot vector, which is generated 

through frustum extraction, and outputs the score of the class 

of the 3D point cloud. The output score is a binary score for 

the detection of target point cloud and other non-target point 

clouds (background point clouds or other messy point clouds). 

In this module, the mask operation combines the scores of 

semantic segmentation, removes non-target point clouds from 

the input 3D point cloud data of the frustum, and extracts the 

point cloud of the target instance. After that, the coordinates 

of the extracted target point cloud are converted from the 

frustum coordinate system (Figure 2(b)) to the mask 

coordinate system (Figure 2(c)), with the centroid of the target 

point cloud as the origin. During the conversion, the centroid 

coordinates of the target point cloud need to be subtracted 

from all the target point clouds, forming the point cloud data 

in the mask coordinate system. 

 

 
 

Figure 3. Structure of 3D instance segmentation module 
Note: n is the number of point clouds in the frustum point cloud; k is the number of target classes; mlp is multi-layer perceptron. 

 

2.3 Non-modal 3D bounding box evaluation module 

 

This module predicts the 3D bounding box of the target in 

the 3D point cloud, based on the target point cloud data in the 

mask coordinate system. The target centroid in the mask 

coordinate system obtained by the previous module is not the 

centroid of the real target. This is because, when the Velodyne 

Lidar sensor scans the target, the point cloud obtained is 
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merely part of the point cloud data of the target facing the radar 

direction. Therefore, the centroid position is adjusted with the 

help of a lightweight T-Net (Figure 4), combined with the 

global vector generated by the one-hot vector. The residual 

data related to the centroid adjustment are generated by the 

fully-connected layers. After that, the residual data are 

subtracted from all the point cloud data, producing the point 

cloud data in the local coordinate system (Figure 2(d)), with 

the real target centroid as the origin. 

After moving the target centroid and target point cloud 

through T-Net, all point clouds are converted to the predicted 

real target centroid as the origin of the local coordinate system, 

and then processed by the non-modal 3D bounding box 

evaluation module (Figure 5). After being processed by an 

MLP similar to T-Net, the FCs eventually output all the 

parameter information evaluated by the module, including the 

centroid coordinates, length, width, and height of the bounding 

box, residual error, heading angle, etc. 

 

 
 

Figure 4. T-Net structure 
 

Note: FCs are fully-connected layers; the numbers behind FCs are the number of output channels in each FC. 

 

 
Figure 5. Structure of non-modal 3D bounding box evaluation module 

 

2.4 Loss function 

 

In the entire model, multiple networks are adopted to train 

the 3D point cloud data, including the 3D instance 

segmentation PointNet network of the 3D instance 

segmentation module, and the T-Net and the PointNet network 

in the non-modal 3D bounding box evaluation module. The 

training losses of these networks are integrated into the loss L 

of the overall model: 

 

𝐿 = 𝐿𝑠𝑒𝑔 + 𝜆(𝐿𝑐1−𝑟𝑒𝑔 + 𝐿𝑐2−𝑟𝑒𝑔 + 𝐿ℎ−𝑐𝑙𝑠 + 𝐿ℎ−𝑟𝑒𝑔
+ 𝐿𝑠−𝑐𝑙𝑠 + 𝐿𝑠−𝑟𝑒𝑔 + 𝛾𝐿𝑐𝑜𝑟𝑛𝑒𝑟) 

(1) 

 

where, Lseg is the semantic segmentation loss in the 3D 

instance segmentation of the PointNet; Lc1-reg is the centroid 

conversion loss generated by the T-Net; Lc2-reg is the non-

modal centroid conversion loss of the 3D bounding box 

evaluation PointNet; Lh-cls and Lh-reg are the classification loss 

and semantic segmentation loss of heading angle of the 

network model, respectively; Ls-cls and Ls-reg are the 

classification and semantic segmentation losses of the 

bounding box size of the network predicting the 3D bounding 

box, respectively; λ=1 and γ=10 are model parameters; Lcorner 

is the total loss of the eight predicted corners of the 3D 

bounding box: 

 

𝐿𝑐𝑜𝑟𝑛𝑒𝑟 = 𝐿𝛿 (∑∑min {∑‖Pk
ij
− Pk

∗‖,

8

k=1

∑‖Pk
ij

8

k=1

12

j=1

8

i=1

− Pk
∗∗‖,}) 

(2) 

where, 𝑃𝑘
𝑖𝑗

 is the 3D vector of the k-th corner of the anchor box; 

i is the number of the bounding boxes of eight sizes in the 

anchor box; j is the number of the bounding boxes with twelve 

heading angles in the anchor box; k is the number of the middle 

corners of the 8 corners of the bounding box; 𝑃𝑘
∗  is the 3D 

vector of the k-th corner of the real 3D bounding box; 

‖𝑃𝑘
𝑖𝑗
− 𝑃𝑘

∗‖ is the distance between the k-th corner of the 3D 

anchor box and the k-th corner of the real 3D bounding box; 

𝑃𝑘
∗∗ is the 3D vector of the k-th corner of the 3D real bounding 

box after being flipped by the angle π (the distance between 

the predicted angle vector and the flipped vector needs to be 

calculated, because the dataset is enhanced by flipping in the 

experiment); ‖𝑃𝑘
𝑖𝑗
− 𝑃𝑘

∗∗‖  is the distance between the k-th 

corner of the 3D anchor box and the k-th corner of the flipped 

bounding box; 𝐿𝛿(𝑎) is the Huber loss function: 

 

𝐿𝛿(𝑎) = {

1

2
𝑎2, |𝑎| ≤ 𝛿

𝛿 (|𝑎| −
1

2
𝛿) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

 

where, a is the input of Huber loss function; 𝛿 is the control 

parameter of the angle loss of the entire network. In the Huber 

loss function, the angle loss is fitted from square error and 

linear error. Before predicting the 3D bounding box of the 

target point cloud, the authors predesigned eight anchor boxes 

with different lengths, widths and heights, and 12 anchor 

boxes with different heading angles, plus the boundaries 

between adjacent boxes. The heading angle difference 

between the boxes is 30°, and each anchor box contains 8 

corners. 
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3. STRUCTURAL OPTIMIZATION OF F-POINTNET 

 

3.1 2D image detector 

 

In 3D target detection, it is critical to choose a suitable 

algorithm for the 3D image detector. This paper selects 

YOLOv3 and faster R-CNN as the algorithms for 2D image 

detector. The former has delivered ideal experimental results 

on the SUN RGB-D dataset, as a 2D image detector. 

 

3.2 Parameter initialization 

 

Parameter initialization is an important step in neural 

network application. The main parameters to be initialized in 

our work are weights and bias. During network training, the 

bias is set to zero, but not all weights are initialized as zero. 

Otherwise, the network will have the same weights during 

model training, which will dampen the detection result. 

Therefore, two strategies were selected for parameter 

initialization: the Xavier method and the truncated normal 

distribution method. The Xavier method keeps the activation 

value of each layer consistent with the variance of the output, 

and ensures the uniform distribution of the generated 

parameters. The truncated normal distribution method 

guarantees the normal distribution of the initial values, and 

controls the difference between and average of all generated 

values below twice the standard deviation after taking the 

absolute value.  

Figure 6 shows the test results on target detection accuracies 

of the two different initialization methods. It can be seen that 

the Xavier method achieved faster convergence, better 

detection effect, and high efficiency than truncated normal 

distribution method. 

 

 
 

Figure 6. Target detection accuracies of different 

initialization methods 

 

3.3 γ2 regularization 

 

During model training on massive data, it is crucial to avoid 

overfitting and enhance the generalization ability of the model. 

Thus, a 𝛾2 regularization term was added to the original loss 

function: 

 

𝐶 = 𝐶0 +
𝛿

2𝑛
∑𝜔2  

 

where, C is the total loss of C0 after adding the weight 

attenuation term; C0 is the loss before adding γ2 regularization; 
𝛿

2𝑛
∑𝜔2 is the loss term after γ2 regularization; ω is the weight 

in the neural network; δ is the γ2 regularization coefficient; n 

is the number of training samples. 

The reduction of network loss drags down the weight of the 

network, making the network less complex and better 

performing in data fitting. The loss function after 𝛾2 

regularization can be defined as: 

 

{
 
 

 
 

𝐿 = 𝐿𝑠𝑒𝑔

+𝜆 (
𝐿𝑐1−𝑟𝑒𝑔 + 𝐿𝑐2−𝑟𝑒𝑔 + 𝐿ℎ−𝑐𝑙𝑠 + 𝐿ℎ−𝑟𝑒𝑔

+𝐿𝑠−𝑐𝑙𝑠 + 𝐿𝑠−𝑟𝑒𝑔 + 𝛾𝐿𝑐𝑜𝑟𝑛𝑒𝑟
) + ∁

𝐶 = 𝐶0 +
𝛿

2𝑛
∑𝜔2

  

 

Figure 7 shows the test results on target detection accuracies 

of different regularization coefficients. It can be seen that, 

when the weight attenuation term was zero, the highest 

detection accuracies were achieved on chair, desk, nightstand, 

and toilet; when the regularization coefficient was 0.01, the 

highest detection accuracies were achieved on bathtub, bed, 

bookshelf, and sofa; when the coefficient was 0.0005, the 

highest detection accuracy was achieved on dresser. 

 

 
 

Figure 7. Target detection accuracies of different 

regularization coefficients 

 

Overall, the best weight attenuation term should be set to 

0.01. Under this setting, the detection accuracies of chair, desk, 

nightstand, and toilet are slightly lower than the no-weight 

scenario, but those of bathtub, bed, bookshelf, and sofa are 

significantly improved. 

 

3.4 Dataset 

 

Most previous 3D detection studies focus on outdoor lidar 

scanning. The targets are well separated in space, and the point 

cloud has sparse (feasible for bird’s-eye projection), or dense 

pixels. The CNN can be easily applied on the indoor depth 

map of conventional images. However, a method designed for 

bird’s-eye view may not be possible for indoor environment, 

where multiple targets often throng in the same vertical space. 

Moreover, the large and sparse point clouds scanned by lidar 

may be difficult to apply to indoor focusing techniques. 

Fortunately, the F-PointNet is a general detection framework 

for outdoor and indoor 3D targets [22]. The network can 

achieve ideal performance was achieved on SUN RGB-D 

database [18], with a high mean average precision (mAP) and 

fast inference speed. 

 

 

4. EXPERIMENTS 

 

4.1 DL configuration  

 

The improved -PointNet detection algorithm was 

implemented under the DL framework TensorFlow. The 
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server platform was configured as follows: Intel ® CoreTM i7-

7700K CPU@4.2GHz processor, 16GB memory, 1T hard disk, 

8GB GeForce GTX 1080 GPU. 

 

4.2 Parameter analysis 

 

The model structure (Figure 1) is mainly composed of 3D 

instance segmentation network (Figure 3), T-Net (Figure 4), 

and non-modal 3D bounding box evaluation network (Figure 

5) [23]. The first network contains ten convolutional layers; 

the T-Net consists of several convolutional layers (the kernel 

outputs are 128, 128, and 256 pixels in size) and three FCs (in 

the MLP (128, 128, 256) layer); the third network involves 4 

convolutional layers and 3 FCs. The SUN RGB-D dataset was 

adopted for our experiments. There are 7,481 images and 748 

3D point cloud data files in the dataset. The dataset was 

divided by the Multi-View 3D networks (MV3D) method into 

a training set of 3,712 files and a test set of 3,769 files. The 

batch size was set to 32, i.e., each batch contains 32 point cloud 

data files as the network input [24]. 

In addition, the network training lasts 200 iterations, with 

the initial learning rate of 0.0001. To stabilize the network 

performance, the exponential decay method was adopted to 

reduce the learning rate by half for every 25,000 batches. The 

learning rate was kept constant after reaching 0.0001. 

 

4.3 Comparison of target detection accuracies 

 

The 2D image detector in F-PointNet was modified by 

YOLOv3 and faster R-CNN, respectively. Table 1 compares 

the detection accuracies of 3D point cloud data targets between 

the two modified methods. Obviously, the YOLOv3 model 

achieved higher accuracies on bed, bookshelf, chair, dresser, 

nightstand, sofa, table, and toilet than the faster R-CNN model, 

and slightly lower accuracies on bathtub and desk [25, 26]. 

 

Table 1. Comparison between YOLOv3 and faster R-CNN 

 
2D image detector Faster R-CNN YOLOv3 

Bathtub 58.0 43.6 
Bed 63.1 81.6 

Bookshelf 32.8 33.4 
Chair 62.2 64.4 
Desk 45.9 25.1 

Dresser 15.7 32.1 
Nightstand 27.1 57.5 

Sofa 51.8 61.6 
Table 51.4 51.3 
Toilet 70.6 90.7 
Mean 47.86 54.13 

 

Table 2. Comparison between different detection methods 

 

Methods DSS [19] 
COG 

[20] 

2D-driven 

method [21] 

F-PointNet 

[16] 

Our 

method 

Bathtub 44.2 58.3 43.5 43.3 43.6 

Bed 78.8 63.7 64.5 81.1 81.6 

Bookshelf 11.9 31.8 31.4 33.3 33.4 

Chair 61.2 62.2 48.3 64.2 64.4 

Desk 20.5 45.2 27.9 24.7 25.1 

Dresser 6.4 15.5 25.9 32.0 32.1 

Nightstand 15.4 27.4 41.9 58.1 57.5 

Sofa 53.5 51.0 50.4 61.1 61.6 

Table 50.3 51.3 37.0 51.1 51.3 

Toilet 78.9 70.1 80.4 90.9 90.7 

Runtime 19.55s 10-30min 4.15s 0.12s 1.42s 

mAP 42.1 47.6 45.1 54.0 54.13 

Further, the 2D image detector in F-PointNet was replaced 

with YOLOv3, and the modified model was compared with 

the original F-PointNet, deep sliding shape (DSS) network 

[27], clouds of oriented gradients (COG) [28], and 2D-driven 

method [4]. Table 2 presents the detection accuracies of these 

methods on 3D point cloud data targets. It can be seen that our 

model was more accurate on bathtub, bed, bookshelf, chain, 

desk, dresser, sofa, and table than the other methods, and was 

only slightly less accurate than the original F-PointNet on 

nightstand. Hence, the modification of the 2D image detector 

indeed improves the generalization ability of the model. 

 

4.4 Visualization of detection results 

 

The detection results of the modified F-PointNet model 

were visualized according to the 3D bounding box parameters 

outputted by the model. Figure 8 shows an image and the 

visualized point cloud data. In the image taken by the camera, 

the target area is marked by a 2D blue bounding box. The 

visualized data were zoomed in to clearly display the predicted 

3D bounding box. 

 

 
 

Figure 8. Image and point cloud visualization 

 

 

5. CONCLUSIONS 

 

This paper modifies the F-PointNet for the target detection 

of 3D point cloud data. The 2D image detector of the original 

network was changed into YOLOv3, and the test dataset was 

replaced with SUN RGB-D room. Experimental results show 

that the modified model can effectively detect targets of 3D 

point cloud data [28]. Therefore, the modified F-PointNet 

model is suitable for indoor robot navigation and many other 

fields. 

Of course, our model also has some shortcomings: (1) The 

detection results are greatly affected by target detection in 2D 

images. If the targets are severely occluded or dim, it is 

difficult to determine the 2D bounding boxes. (2) The 3D 

bounding box might be inaccurate, if the target point cloud is 

small [4]. To make our model more applicable to real scenes, 

the future research will try to make up for the defects with 

high-resolution images. 
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