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ABSTRACT. This paper proposes a node fault diagnosis algorithm for wireless sensor network 

(WSN) based on rough set and optimized probabilistic neural network (PNN). Specifically, the 

energy consumption of the diagnosis was reduced through rough set reduction of fault 

attributes. The attribute combinations were selected based on the correlation degree between 

attributes in the post-reduction attribute combination, rather than subjective judgement. 

Besides, an optimized PNN was adopted as the fault classification model. Through simulations, 

it is proved that the proposed algorithm can accurately and efficiently complete the task of WSN 

node fault diagnosis, especially when the sample contains lots of redundancy and noises. The 

research results shed new light on the fault diagnosis of WSN nodes and the application of 

artificial neural networks. 

RÉSUMÉ. Cet article propose un algorithme de diagnostic des pannes de nœud pour un réseau 

de capteurs sans fil (WSN) basé sur des ensembles approximatifs et sur un réseau de neurones 

probabiliste (PNN) optimisé. Plus précisément, la consommation d'énergie du diagnostic a été 

réduite grâce à une réduction des ensembles approximatifs des attributs de défaut. Les 

combinaisons d'attributs ont été sélectionnées en fonction du degré de corrélation entre les 

attributs de la combinaison d'attributs post-réduction, plutôt que d'un jugement subjectif. De 

plus, un PNN optimisé a été adopté comme modèle de classification des défauts. Par des 

simulations, il est prouvé que l’algorithme proposé permet d’achever avec précision et 

efficacité la tâche du diagnostic des pannes de noeud WSN, en particulier lorsque l’échantillon 

contient beaucoup de redondance et de bruits. Les résultats de la recherche apportent un nouvel 

éclairage sur le diagnostic de défaut des nœuds WSN et l’application de réseaux de neurones 

artificiels. 

KEYWORDS: wireless sensor network (WSN), probabilistic neural network (PNN), fault diagnosis, 
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1. Introduction 

Wireless sensor network (WSN) is a self-organized network consisting of multiple 

low-cost sensor nodes, which are capable of data acquisition, processing and 

transmission. The network supports the real-time monitoring of the deployment 

environment, so that users can obtain necessary information anytime and anywhere 

(Hong et al., 2010). Thus, the WSN has been applied extensively in such fields as 

national defense, environment monitoring and health care (Li and Gao, 2008). 

Nevertheless, this network may suffer from dysfunction and even paralysis, owing to 

the complexity of the deployment environment and the defects of network nodes (e.g. 

proneness to damage and constraints on power, computing and storage capacity). 

Since most WSN faults are attributable to the fault of node modules, it is imperative 

to develop an effective and applicable fault diagnosis algorithm for these modules 

(Duh et al., 2013; Oh et al., 2012). Such an algorithm would extend the service time 

and ensure the stability of the entire network. 

Most WSN fault diagnosis methods are founded on one of the following three 

bases: statistical principles, classification (Zhang et al., 2015) and spatial features of 

the acquired data (Akbari et al., 2011; Banerjee et al., 2011). Typical examples are 

neural networks (Obst, 2009) and fuzzy reasoning (Sarkis et al., 2012; Khan et al., 

2012). These methods boast a good diagnostic effect but cannot locate mode modules 

other than sensors. To make up for the defect, a common strategy is to carry out node 

module diagnosis based on the correspondence between fault class and fault symptom 

of WSN nodes. By this method, a classification model can be established with fault 

symptoms as the attributes and fault classes as the outputs. Nevertheless, the 

diagnostic effect is still restrained by the redundant and irrelevant attributes in the 

fault sample. After all, there are always some noises in the data captured by the WSN, 

due to the defects of the network and the environment (Antoinesantoni et al., 2009). 

In addition to the diagnostic effect, the energy consumption is also negatively affected 

by these noises. Therefore, the reduction and elimination of noises are essential to the 

low energy consumption and high accuracy of the fault diagnosis. 

Reference (Lin et al., 2007) carries out rough set reduction of attributes and 

performs fault diagnosis based on full matching of attributes. However, attribute 

combination after the reduction is too subjective and the diagnosis effect is poor when 

the data are not completely reliable. Based on rough set and Bayesian method, 

Reference (Pan et al., 2009) filters out the redundant information in the original data 

and diagnoses node fault effectively. Nonetheless, the attribute reduction 

combinations are selected randomly, rather than optimized, for fault classification, 

and the parameters of the classification model are too complicated. Reference (Li et 

al., 2009) carries out node fault diagnosis by naïve Bayes and attribute reduction based 

on independent component analysis (ICA). Nevertheless, the number of post-
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reduction attributes is greater than that of rough ensemble, and is easily affected by 

data reliability. In general, the existing diagnosis algorithm have many problems, 

including but not limited to high subjectivity, incomplete diagnosis attributes, random 

selection of post-reduction attributes, and complex parameters of classification model. 

In view of the above, this paper proposes a node fault diagnosis algorithm for 

WSN based on rough set and optimized probabilistic neural network (PNN). 

Specifically, the energy consumption of the diagnosis was reduced through rough set 

reduction of fault attributes. The attribute combinations were selected based on the 

correlation degree between attributes in the post-reduction attribute combination, 

rather than subjective judgement. Besides, an optimized PNN was adopted as the fault 

classification model. The proposed method was proved effective and feasible through 

experimental analysis. 

2. WSN node fault diagnosis model 

2.1. WSN node fault classification 

As shown in Figure 1, a WSN node consists of four indispensable modules: sensor, 

processor, wireless communication and power supply. These modules jointly perform 

the tasks of the node by completing their own duties. Since each module has its own 

features, the node faults can be classified easily module by module. In this way, fault 

positioning is equivalent to the identification of fault-prone modules. Following this 

train of thought (Ma et al., 2011; Chen et al., 2010), this paper divides node faults into 

power fault, processor fault, wireless communication fault and sensor fault, 

considering the structure of WSN nodes.  

 

Figure 1. Structure of a WSN node 
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2.2. Fault diagnosis model 

In our fault diagnosis model, fault and its corresponding symptom are taken as 

samples. Each symptom corresponds to the feature attribute of a specific fault. The 

specific fault is a class attribute, which was used to construct the decision table. To 

eliminate redundancy, the original attributes of each sample was reduced by the 

improved discernable matrix, according to the theory of rough set reduction. This 

leads to multiple simplified attribute combinations. Bedsides, the dimension of the 

original feature space was reduced, and the noise interference in fault diagnosis was 

prevented. Then, the samples were reconstructed with the optimal attributes, and the 

PNN diagnosis model was established and optimized for fault diagnosis. The structure 

of the diagnosis model is illustrated in Figure 2. 

 

Figure 2. Structure of fault diagnosis model 

3. Attribute reduction and optimization 

3.1. Attribute reduction 

The attribute reduction was realized based on the rough set theory (Luo and Shao, 

2006; Chen et al., 2007). Let S =< U, R, V, f > be the decision table, where S is the 

knowledge expression system, U = {x1, x2 ⋯ xm}  is a domain, R = P ⋃ D  is the 

attribute set, V is the value range of m[i](xi) (V =∪ VR(m[i] ∈ R)) and f: U × R → V 

is an information function. Note that the knowledge expression system corresponds 
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to the WSN node fault diagnosis system; the P and D represent the condition attribute 

set and the decision attribute set, respectively, and the two sets correspond to fault 

symptom set and the fault class set, respectively; m[i](xi)is the value of the sample 

xj on the attribute m[i]. Each m ∈  R, x ∈  U, that satisfies f (x, m)  ∈  VR. CD (i, j) , 

is an element in the i-row and j-column recognizable matrix: 

𝐶𝐷 (𝑖, 𝑗) = {
𝑚[𝑘], d(𝑥𝑗) ≠ d(𝑥𝑖)

0      , d(𝑥𝑗) = d(𝑥𝑖)
                             (1) 

where {m[k]|m[k] ∈ P⋀m[k](xi) ≠ m[k](xj)}. 

Based on the improved discernible matrix, the attribute reduction can be realized 

through the following steps: 

(1) By the above definitions, create CD (i, j) against the fault sample decision table. 

(2) Simplify the matrix: remove the set of single fault attribute elements from the 

matrix and set their positions to zero. 

(3) When CD (i, j) ≠ 0 and CD (i, j) ≠ ∅, obtain Ti from row i of the matrix: 

𝑇𝑖 = ⋁ 𝑚[𝑖]𝑚[𝑖]∈𝐶𝐷 (𝑖,𝑗)                                               (2) 

(4) Find T through the conjunction of all Ti in (3): 

𝑇 = ⋀ 𝑇𝑖𝐶𝐷 (𝑖,𝑗)≠0，𝐶𝐷 (𝑖,𝑗)≠∅                                       (3) 

(5) Simplify the conjunctive result T and convert it into a disjunction method. 

𝑇′ = ⋁𝑇                                                                  (4) 

(6) Add the single attribute in (2) to each conjunct. Each conjunctive term in 

disjunctive normal form T′ represents an attribute reduction. 

3.2. Acquisition of optimal attributes 

The post-reduction results are often selected by the least reduced number of 

attributes (Chang et al., 1999), the simplest rules (Zhang et al., 2005), or the largest 

reduction (Wang, 2003). However, none of these methods consider the correlation 

between attributes. Inspired by the principle of least interest in relational database 

design, this paper takes the correlation degree between attributes as the metric (Li et 

al., 2002), and selects the reduction result with the smallest mean correlation degree. 

The selection process is described as S = (U, A, V, f ), a, b ∈  A . The correlation 

between attributes a and b can be expressed as: 

𝑟(𝑎, 𝑏) =
𝑐𝑎𝑟𝑑(𝑃𝑂𝑆𝑎(𝑏)∪𝑃𝑂𝑆𝑏(𝑎))

𝑐𝑎𝑟𝑑(𝑈)
                                 (5) 
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where 𝑐𝑎𝑟𝑑(∗) is the number of elements. It is clear that 𝑟(𝑎, 𝑏) is symmetric about 

𝑎 and 𝑏, and belongs to the range [0,1]. The value of 𝑟(𝑎, 𝑏) is positively correlated 

to the correlation degree between 𝑎  and 𝑏 . In other words, the size of 𝑟(𝑎, 𝑏) 

characterizes how closely the attributes 𝑎, 𝑏 each divide the equivalence classes. 

4. Fault diagnosis based on optimized PNN  

4.1. Fault diagnosis model based on PNN 

Proposed by Specht (Specht, 1990), the PNN is a neural network model capable 

of statistical classification.  The simple model is fast in learning and convenient for 

sample addition. The class density can be obtained by kernel density estimation 

(Evagorou et al., 2007), laying the basis for the classification of samples. The samples 

are classified by Bayesian minimum risk criteria, with full use of prior knowledge. 

However complex the problem is, the optimal classification solution can always be 

obtained. The PNN fault classifier can complete the fault diagnosis based on Bayesian 

decision theory and kernel density estimation. 

Let P = {A1, A2 ⋯ An} be the set of post-reduction fault attributes, with n being 

the dimension of sample data attribute; Let 𝐷 = {d1, d2 ⋯ dm} be the set of fault class, 

with m being the number of classes; Let P be the reduced fault attribute for diagnosis. 

Then, reconstruct the fault sample decision table X = {x1, x2 ⋯ xi} , where xi =

{a1, a2 ⋯ an, dj} is the single fault information. The terms a1, a2 ⋯ an represent fault 

symptoms, whose values correspond to Ai; the term dj represent the fault class.  

For the sample data X, the input layer firstly receives the data and then transfers it 

to the pattern layer. Then, the pattern layer and the summation layer compute the class 

density of x by the following formula: 

𝑃(𝑥|𝑑𝑖) =
1

𝑁𝑖
∑

1

(2π)
𝑙

2⁄ 𝜎𝑙
exp [

−(𝑥−𝑥𝑖𝑗)
T

(𝑥−𝑥𝑖𝑗)

2𝜎2 ]
𝑁𝑖
𝑘=1               (6) 

where 𝑖 = 1,2, ⋯ 𝑀, with 𝑀 being the total number of training samples; 𝑗 = 1,2 ⋯ 𝑁; 

𝑁𝑖 is the number of samples in class 𝑖, i.e. the number of hidden neurons in the 𝑖-th 

pattern of the PNN; 𝑙 is the dimension of the sample space; 𝜎 is the smooth factor; 𝑥𝑖𝑗  

is the 𝑗-th hidden center vector of the 𝑖-th pattern. 

Finally, the output layer exports the fault class corresponding to the maximum 

posterior probability by the following formula: 

𝜌(𝑥) = arg max{𝛼𝑑𝑖𝑃(𝑥|𝑑𝑖)}                                 (7) 

where αdi is the prior probability of di. 
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4.2. Optimization of fault diagnosis model 

The selection of the smooth factor σ directly bears on the classification effect of 

the PNN. At present, there is no effective method to estimate the smooth factor. Most 

existing approaches are empirical in nature (Specht, 1996). What is worse, the smooth 

factor has a limited effect when the sample size is rather small. To ensure the effect 

of fault diagnosis, the particle swarm optimization (PSO) (Wu et al., 2006) is 

introduced to optimize the selection of PNN smooth factor σ, and thus enhance the 

classification effect. In the PSO, the accuracy of fault diagnosis is set as the fitness 

function: 

𝐹𝑖𝑡 =
𝐹𝐶𝑝

𝐹𝐶𝑟
× 100%                                                (8) 

where FCp is the number of faults diagnosed by the model; FCr is the actual number 

of faults. 

The PSO optimization involves the following steps: 

(1) Input the feature data and class of the fault sample, and output the classification 

data. 

(2) Initialize the particle group and configure the initial parameters (e.g. number 

of particles, inertia weight and learning factor). 

(3) Set the optimal fitness and optimal position. 

(4) Initialize the network, map each particle as a PNN smooth factor, and construct 

the PNN. 

(5) Train and test the network. 

(6) Compare the fitness of each particle and that of individual extreme point, and 

determine whether the update is necessary. 

(7) Determine if the termination condition is satisfied. If yes, terminate the 

iteration; otherwise, update the speed and position of the particles and return to (3). 

The optimal solution for the mapped particles is the smooth factor. Then, the PNN 

should be inputted to complete the construction of the optimized fault diagnosis model. 

5. Simulation and analysis 

For the WSN node, the correspondence between fault symptoms and attributes is 

shown in Table 1, and that between fault symptoms and fault classes are shown in 

Table 2. According to the two tables, the fault sample decision table was created and 

recorded in Table 3. For the space limit, only a few fault samples are listed. However, 

the actual diagnosis uses all fault samples. The feedbacks on node faults were taken 

as the original data for simulation. The entire process involves attribute reduction, 

selection of optimal attribute, optimization of PNN and fault diagnosis.  
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Table 1. Correspondence between fault symptoms and attributes 

No. Type of symptoms 
Attribute 

value 

C[1] Did the node respond to the inquiry command? 
C[1]=1,No 

C[1]=2,Yes 

C[2] Did the node return a signal? 
C[2]=1,No 

C[2]=2,Yes 

C[3] 
Did the node effectively execute the command from the sink 

node? 

C[3]=1,No 

C[3]=2,Yes 

C[4] Is the temperature returned by the node is 0? 
C[4]=1, Yes 

C[4]=2, No 

C[5] Is the node temperature far from the mean value? 
C[5]=1, Yes 

C[5]=2, No 

C[6] Can the node transfer data to other nodes? 
C[6]=1,No 

C[6]=2,Yes 

C[7] Is the node temperature higher than normal? 
C[7]=1, Yes 

C[7]=2, No 

C[8] 
Is there a response to the change of the transmission frequency of 

the test node? 

C[8]=1,No 

C[8]=2,Yes 

 

The initial table of node fault sample decision was taken as sample information. 

Then, the discernible matrix 𝐶𝐷  was established according to the definition of 

discernable matrix. Using the attribute reduction algorithm, the minimum attribute 

reduction combinations 𝑅1 = {𝑐[2], 𝑐[3], 𝑐[5], 𝑐[8]} and 𝑅2 = {𝑐[3], 𝑐[4], 𝑐[5], 𝑐[8]} 

of the decision system were obtained (Table 3). According to the formula in Section 

3.2, 𝑟(𝑅1) = 1 and 𝑟(R2) = 0.8125 were derived, indicating that 𝑟(R1) was greater 

than 𝑟(𝑅2). 

Table 2. Correspondence between fault symptoms and fault classes 

No. Fault class Corresponding symptom 

𝑑1 No fault No fault symptom 

𝑑2 Power fault C[1], C[2], C[3],C[4], C[5], C[6], C[7],C[8] 

𝑑3 Sensor fault C[4], C[5],C[7] 

𝑑4 Processor fault C[1], C[2], C[3],C[6] 

𝑑5 Wireless communication fault C[1], C[2], C[3],C[6], C[8] 
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Table 3. WSN node fault sample decision table 

𝑈 𝑐[1] 𝑐[2] 𝑐[3] 𝑐[4] 𝑐[5] 𝑐[6] 𝑐[7] 𝑐[8] 𝐷 

1 2 2 2 2 2 2 2 2 𝑑1 

2 1 2 1 2 1 1 2 2 𝑑1 

3 1 2 1 2 1 1 1 1 𝑑5 

4 1 2 1 2 2 1 2 1 𝑑5 

5 1 1 1 1 1 1 1 1 𝑑2 

6 1 1 1 1 1 1 1 1 𝑑2 

7 2 2 1 2 2 2 2 2 𝑑4 

8 2 2 1 2 2 2 2 2 𝑑4 

9 2 2 2 1 1 2 2 2 𝑑3 

10 2 2 2 2 1 2 2 2 𝑑3 

11 2 2 2 2 2 2 2 2 𝑑1 

12 1 2 1 2 1 1 2 2 𝑑1 

13 2 2 1 2 2 2 2 2 𝑑4 

14 2 2 1 2 2 2 2 2 𝑑4 

15 2 2 2 1 1 2 2 2 𝑑3 

16 2 2 2 2 1 2 2 2 𝑑3 

17 1 2 1 2 1 1 1 1 𝑑5 

18 1 2 1 2 2 1 2 1 𝑑5 

19 1 1 1 1 1 1 1 1 𝑑2 

20 1 1 1 1 1 1 1 1 𝑑2 

 

According to the rule of merit, R2 = {c[3], c[4], c[5], c[8]} was identified as the 

optimal reduction. The fault sample complex table (Table 4) was reconstructed based 

on the optimal reduction R2. 

As shown in the reconstructed sample decision complex table, the optimal PNN 

input was 𝑅2 = {𝑐[3], 𝑐[4], 𝑐[5], 𝑐[8]} . Then, the fault diagnosis process was 

simulated in Matlab. Two combinations of reduction attribute 𝑅1 =
{𝑐[2], 𝑐[3], 𝑐[5], 𝑐[8]}  and 𝑅2 = {𝑐[3], 𝑐[4], 𝑐[5], 𝑐[8]}  were determined as the 

attributes for fault diagnosis, fault samples were reconstructed and the optimized 

diagnosis model was set up. The diagnosis results are depicted in Figure 3, where the 

two bars stand for the two different combinations of reduction attributes. 

As shown in the figure, the optimal attribute combination 𝑅2  slightly 

outperformed 𝑅1 in terms of diagnosis accuracy. The result validates the merit metric 

formula in Section 3.2. The use of the optimal combination overcomes the subjectivity 

and randomness in References (Pan et al., 2009; Li et al., 2009) and enhances the fault 

diagnosis effect. 
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Table 4. WSN node fault sample complex table 

𝑈 𝑐[3] 𝑐[4] 𝑐[5] 𝑐[8] 𝐷 

1 2 2 2 2 𝑑1 

2 1 2 1 2 𝑑1 

3 1 2 1 1 𝑑5 

4 1 2 2 1 𝑑5 

5 1 1 1 1 𝑑2 

6 1 1 1 1 𝑑2 

7 1 2 2 2 𝑑4 

8 1 2 2 2 𝑑4 

9 2 1 1 2 𝑑3 

10 2 2 1 2 𝑑3 

11 2 2 2 2 𝑑1 

12 1 2 1 2 𝑑1 

13 1 2 2 2 𝑑4 

14 1 2 2 2 𝑑4 

15 2 1 1 2 𝑑3 

16 2 2 1 2 𝑑3 

17 1 2 1 1 𝑑5 

18 1 2 2 1 𝑑5 

19 1 1 1 1 𝑑2 

20 1 1 1 1 𝑑2 

 

Figure 3. Effects of different attribute combinations 
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To verify the effect of the optimized PNN fault diagnosis model, the model was 

simulated with optimal and non-optimal smooth factors, respectively. The results of 

the two scenarios are compared in Figure 4, where the two blocks illustrate the results 

before and after the optimization, respectively. The results show that the optimized 

PNN model achieved a 4.5% more accuracy result than the non-optimized model. 

 

Figure 4. Results before and after optimization 

Finally, the proposed algorithm was contrasted with existing algorithms in 

References (Pan et al., 2009; Li et al., 2009; Ma et al., 2011). The simulation was 

conducted at different levels of data reliability, considering that the WSN data 

transmission is prone to external interference. The comparison results are shown in 

Figure 5 and Figure 6. 

 

Figure 5. Diagnosis accuracy of different algorithms 
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Figure 6. Decrement of diagnosis accuracy of different algorithms 

From Figures 5 and 6, it is clear that the proposed algorithm slightly outperformed 

the contrastive algorithms at the data reliability of 99.5%. With the decrease in data 

reliability, the accuracy of all algorithms exhibited a decreasing trend. However, the 

accuracy of the proposed algorithm remained at a high level and was less affected 

than that of the other algorithms. The good performance is attributable to the selection 

of attribute with the smallest correlation as the diagnosis attribute, rather than random 

selection. In this way, our algorithm reduces the impact of attribute correlation on 

fault diagnosis. Besides, the diagnosis effect is further improved by PNN optimization 

(Figure 3).  

By contrast, the algorithm of Reference uses the exact match of attributes after 

reduction. This strategy works well at high data reliability, but becomes less effective 

when the data are not so reliable. The algorithm of Reference yields biased diagnosis 

due to the subjectivity of some parameters. As for the algorithm of Reference, the 

diagnosis effect decreased with the data reliability, because the number of post-

reduction attributes is greater than that of rough ensemble.  

In general, the proposed algorithm manages to remove the redundancy of 

diagnosis attributes through attribute reduction, reduce the computing load and avoid 

misdiagnosis caused by redundant attributes. The algorithm works particularly well at 

a low level of data reliability. The diagnosis effect can be further enhanced through 

optimized PNN classification. 

6. Conclusions 

This paper proposes a node fault diagnosis algorithm for WSN based on rough set 

and optimized PNN. Specifically, the energy consumption of the diagnosis was 

reduced through rough set reduction of fault attributes. The attribute combinations 

were selected based on the correlation degree between attributes in the post-reduction 

attribute combination, rather than subjective judgement. Besides, an optimized PNN 
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was adopted as the fault classification model. Through simulations, it is proved that 

the proposed algorithm can accurately and efficiently complete the task of WSN node 

fault diagnosis, especially when the sample contains lots of redundancy and noises. 

The research results shed new light on the fault diagnosis of WSN nodes and the 

application of artificial neural networks. 

Acknowledgement 

This research was jointly supported by the Foundation of Jilin Province Education 

Department (JJKH20180985KJ) and Foundation of Jilin Provincial Science & 

Technology Department (20180622006JC, 20170101009JC). 

References 

Akbari A., Dana A., Khademzadeh A. (2011). Fault detection and recovery in wireless sensor 

network using clustering. International Journal of Wireless & Mobile Networks, Vol. 3, No. 

1, pp. 130-138. 

Antoinesantoni T., Santucci J. F., Gentili E. D. (2009). Performance of a protected wireless 

sensor network in a fire. Analysis of fire spread and data transmission. Sensors, Vol. 9, No. 

8, pp. 5878-5886. https://doi.org/10.3390/s90805878 

Banerjee I., Chanak P., Sikdar B. K. (2011). DFDNM: A distributed fault detection and node 

management scheme for wireless sensor network. Communications in Computer & 

Information Science, Vol. 192, pp. 68-81. https://doi.org/10.1007/978-3-642-22720-2_7 

Chang L. Y., Wang G. Y., Wu Y. (1999). An approach for attribute reduction and rule 

generation based on rough set theory. Journal of Software, Vol. 10, No. 11, pp. 1206-1211. 

Chen D., Wang C., Hu Q. (2007). A new approach to attribute reduction of consistent and 

inconsistent covering decision systems with covering rough sets. Information Sciences, Vol. 

177, No. 17, pp. 3500-3518. https://doi.org/10.1016/j.ins.2007.02.041 

Chen Y. J., Yuan S. F., Wu J. (2010). Research progress of fault diagnosis and fault-tolerant 

control in wireless sensor networks. Transducer and Microsystem Technologies, Vol. 29, 

No. 1 pp. 1-5. https://doi.org/10.3724/SP.J.1187.2010.00953 

Duh D. R., Li S. P., Cheng V. W. (2013). Distributed fault-tolerant event region detection of 

wireless sensor networks. International Journal of Distributed Sensor Networks, Vol. 3, pp. 

286-291. 

Evagorou D., Kyprianou A., Lewin P. L. (2007). Classification of partial discharge signals 

using probabilistic neural network. IEEE International Conference on Solid Dielectrics, 

Vol. 7, pp. 609-615. https://doi.org/10.1109/ICSD.2007.4290887 

Hong F., Chu H. W., Jin Z. K. (2010). Review of recent progress on wireless sensor network 

applications. Journal of Computer Research and Development, Vol. 47, No. s2, pp. 81-87.  

Khan S. A., Daachi B., Djouani K. (2012). Application of fuzzy inference systems to detection 

of faults in wireless sensor networks. Neurocomputing, Vol. 94, No. 10, pp. 111-120. 
https://doi.org/10.1016/j.neucom.2012.04.002 

Li J. Z., Gao H. (2008). Survey on sensor network research. Journal of Computer Research and 

Development, Vol. 45, No. 3 pp. 1-15. 



308     JESA. Volume 51 – n° 4-6/2018 

 

 

Li K., Liu Y. S., Wang L. (2002). An approach for attribute reduction based on rough set theory. 

Computer Engineering and Applications, Vol. 38, No. 5, pp. 15-16. 

Li Z. N., Fan T., Liu L. Z. (2009). Blind separation of the mechanical fault sources based on 

variational Bayesian theory. Journal of Vibration & Shock, Vol. 28, No. 6, pp. 12-16. 
https://doi.org/10.1109/MILCOM.2009.5379889 

Lin L., Dai C. L., Wang H. J. (2007). Rough set theory based fault diagnosis of node in wireless 

sensor network. Journal of Beijing University of Posts & Telecommunications, Vol. 30, No. 

4, pp. 69-73. https://doi.org/10.1631/jzus.2007.A1596 

Luo X., Shao H. (2006). Developing soft sensors using hybrid soft computing methodology: A 

neurofuzzy system based on rough set theory and genetic algorithms. Soft Computing, Vol. 

10, No. 1, pp. 54-60. https://doi.org/10.1007/s00500-005-0465-0 

Ma C., Liu H. W., Zuo C. D. (2011). Hierarchical fault models for wireless sensor networks. 

Journal of Tsinghua University, Vol. 51, No. S1, pp. 1418-1423. 

Obst O. (2009). Distributed fault detection in sensor networks using a recurrent neural network. 

Neural Processing Letters, Vol. 40, No. 3, pp. 261-273. https://doi.org/10.1007/s11063-

013-9327-4 

Oh S. H., Hong C. O., Choi Y. H. (2012). A malicious and malfunctioning node detection 

scheme for wireless sensor networks. Wireless Sensor Network, Vol. 4, No. 3, pp. 84-90. 

Pan J. L., Ye X. H., Wang H. X. (2009). Node fault diagnosis in WSN based on the rough set 

and bays decision making. Chinese Journal of Sensors and Actuators, Vol. 22, No. 5, pp. 

735-738. 

Sarkis M., Hamdan D., Hassan B. E. (2012). Online data fault detection in wireless sensor 

networks. 2nd International Conference on Advances in Computational Tools for 

Engineering Applications (ACTEA), Beirut, pp. 61-65. https://doi.org/10.1007/978-3-642-

16584-9_68 

Specht D. F. (1996). Probabilistic neural network and general regression neural network. Fuzzy 

Logic and Neural Network Handbook, pp. 301-344. 
https://doi.org/10.1109/ICIP.1994.413718 

Specht D. F. (1990). Probability neural networks. Neural Networks, Vol. 3, pp. 109-118. 

Wang G. Y. (2003). Calculation methods for core attributes of decision table. Chinese Journal 

of Computers, Vol. 26, No. 5, pp. 611-615. https://doi.org/10.1023/A:1021351800842 

Wu L. H., Wang Y. N., Yuan X. F., Liu Z. R. (2006). Research and application of compound 

optimum model particle swarm optimization. Systems Engineering & Electronics, Vol. 28, 

No. 28, pp. 1087-1090. https://doi.org/10.1360/jos172537 

Zhang J., Wang J. M., He H. C. (2005). A Novel feature reduct algorithm based on feature 

correlation. Computer Engineering and Applications, Vol. 41, No. 28, pp. 55-57. 

Zhang W., Han G., Feng Y. (2015). A novel method for node fault detection based on clustering 

in industrial wireless sensor networks. International Journal of Distributed Sensor 

Networks, Vol. 2, pp. 94-99. https://doi.org/10.1155/2015/230521 


