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Voice disguise is a major concern in forensic automatic speaker recognition (FASR). 

Classifying the type of disguise is very important for speaker recognition. Pitch disguise is 

a very common type of disguise that criminals try to attempt. Among the different types of 

disguises, high pitch and low pitch voices show more distortion. The features that are robust 

for high pitch and low pitch voices are different. Moreover, the effect of disguise on male 

and female voices are also different. In this work, we classified high pitch and low pitch 

disguised voices for male and female voices using a novel set of features. We arranged Mel 

frequency cepstral coefficients (MFCC), ΔMFCC, and ΔΔMFCC features as three-

dimensional features, and these are given as the RGB equivalent spectrogram inputs to 

pretrained AlexNet deep convolutional neural network (DCNN). We fused the AlexNet 

output features with corresponding MFCC correlation features. These fused features are the 

proposed novel features for disguise classification. Classification using neural network (NN) 

and support vector machine (SVM) classifiers are performed. Simulation results show that 

classification with SVM classifier using these novel features gives improved accuracy of 

98.89% compared to 95.99% accuracy obtained by using DCNN output features using 

traditional spectrogram inputs. 
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1. INTRODUCTION

Disguised speech samples are often found in forensic 

scenarios like anonymous calls, threatening calls, 

blackmailing, kidnapping, police calls, bribery, terrorist 

activities etc. [1-5]. Automatic speaker recognition (ASR) 

from disguised speech is a highly challenging task and relevant 

concern in forensic applications [2, 5-9] since the speakers 

intentionally modify their voice by several means. ASR in 

forensic applications is called forensic automatic speaker 

recognition (FASR). A very elaborate study of voice disguises 

is presented in the studies [8, 10, 11]. The study [8] reveals 

that voice disguise is a highly complex problem in forensics. 

Voice disguise changes the vocal source and vocal tract 

properties of voice. The extent of variation in these properties 

depends on the type of disguise applied to a voice, the gender 

of the speakers and to a minute level on the individual speakers 

also. Perrot et al. [11] observed that using different disguises 

at the same time is a serious issue, but in forensics mostly the 

impostor uses a specific disguise only. In forensic scenarios, 

they also try to detect the disguise and type of disguise by 

using specific features. Speaker recognition problem from 

disguised voice mainly involves three steps: 

1. Identifying the disguised voices

2. Classifying the type of disguise

3. Speaker recognition by performing preprocessing

and robust feature extraction particular to that type of disguise. 

Comparatively more works are done in the first and third 

stages of the problem. But very few works are concentrated on 

the second stage. Classifying the type of disguise can also 

include identifying the gender, age etc. which will aid in 

improving the performance of the third stage [8]. After 

identifying the type of disguise, speaker recognition can be 

done by extracting robust features for that type of disguise or 

by training using speech with the same type of disguise. This 

will improve the speaker recognition accuracy. 

Speaker recognition from disguised voices significantly 

reduces the performance of the ASR system [4, 12, 13]. It is 

shown [3, 12] that some feature extraction methods and 

classification methods improve the recognition performance 

of ASR systems for disguised voices. The effect of disguise on 

ASR was evaluated by asking the subjects to do voice 

modification of their choice [14]. Majority of the subjects had 

chosen pitch disguise. The performance of the ASR system 

was reduced significantly with disguised test voices. The 

authors remarked that if the training is done with disguised 

voices, then the error can be reduced significantly. 

Identifying whether a given test speech is disguised or 

original is the first step in ASR from disguised voices. In some 

works, deep features and neural network classifiers are used 

for this classification [15-18]. This classification is done in 

literature using both prosodic and cepstral features [16, 18-21]. 

Specific types of disguises are considered in most of the works 

like pitch disguised voices [16, 18-20], creaky voices [9, 17], 

mimicked voices [15, 21] etc. 

Some of the related works available in literature analyzed 

various voice features affected by disguise and also robust to 

disguise. Glottal plosive is identified as robust to deliberate 

disguise of voice [22]. Mathur et al. [2] observed voice 

disguise as a serious threat in forensic scenarios and examined 
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the variation of fundamental frequency, F0, under different 

disguise conditions. They observed the variation of F0 to be 

different in different types of disguises. Singh et al. [23] 

analyzed the formant variations in phonemes due to expert 

mimicking and observed that expert mimicking has complex 

variation of formants for some phonemes and none for some 

other phonemes. They suggest the study of spoofing invariant-

features to improve the biometric analysis of disguised voices. 

Hautamäki et al. [8] observed changes in average formant 

values when speakers tried to sound older or younger than 

their actual age. Leemann and Kolly [1] analyzed the impact 

of imitation of foreign dialect on suprasegmental temporal 

features like speaking rate and concluded high between-

speaker variation and low within-speaker variation of 

suprasegmental features are required for improving speaker 

recognition performance in forensic context. The authors point 

out that pitch and formants show high within-speaker variation. 

In case of mimicking which is an extreme case of disguise, 

imitators usually try to imitate F0 and formants and succeed in 

doing so [24, 25]. By analyzing speech spectrograms, Endres 

et al. [25] found that there is a strong variation in formant 

structure between normal and disguised voices. Even though 

the imitators were able to change their formant structure and 

fundamental frequency, they were not able to adapt it to match 

or even be similar to the imitated person. Vestman et al. [26] 

analyzed the use of one automatic speaker verification (ASV) 

system to find the closest person who could be imitated by an 

impersonator and using this they checked how other ASV 

systems could be attacked. In their study, they observed that 

attackers were able to considerably change their speaking rate 

compared to F0 and formants. So from all these studies, we 

can see that the type of features which change and those which 

remain robust depends on the type of disguise and many other 

factors. 

Voice disguise can be classified into deliberate and non-

deliberate and also into electronic and non-electronic [11, 20, 

27, 28]. Deliberate voice disguises are purposefully made 

voice disguises; non-deliberate disguises are those which 

happen unintentionally. Electronic disguises are made with 

some software and non-electronic ones are those which are 

made manually. Based on this, there are four broad types of 

voice disguises:  

1. Deliberate and electronic

2. Deliberate and non-electronic

3. Non-deliberate and electronic

4. Non-deliberate and non-electronic

In this paper, we address the problem of disguise

classification for deliberately electronic pitch disguised voices. 

We classify them into high pitch or low pitch voice. Pitch 

disguise classification can aid in speaker recognition 

performance in many ways like robust feature extraction, 

feature compensation, best feature selection, matched training 

etc. Apart from this, we also classify high pitch and low 

pitched voices into male and female voices. Classification of 

gender along with disguise classification can help significantly 

in the performance improvement of ASR from disguised 

voices. This is because, in many previous studies in literature, 

it is found that disguises affect male and female voices 

differently. Cross gender conversion increases the error rates 

in ASR systems with respect to the forensic scenario [10]. 

When a male tries to change his speech to female, some of the 

maleness remains [5]. Cross gender voice conversion causes 

more identification error rates compared to intragender 

conversions [10]. Gender classification can also be helpful in 

other speaker recognition aiding methods like using gender 

dependent background model set for normalizing the scores as 

done in the study [29]. So, in summary, disguises affect male 

and female voices in different ways. Knowing the gender will 

be helpful in the following stages of speaker recognition for 

many purposes, some of which are: extracting robust features 

specific to each gender, using the same gender speech for 

developing models for speaker recognition, minimizing the 

recognition error rates by removing opposite gender training 

models, removing features which undergo more distortion due 

to disguise which is specific to each gender, etc. So if we can 

determine whether the disguised voice is a male or female 

voice, then in the following stages of speaker recognition, this 

information can be used to improve speaker recognition 

performance. 

The remaining part of this paper is organized as follows. 

Section 2 discusses the related work available in literature. 

Proposed method is described in section 3. Section 4 explains 

the experiments and results and section 5 concludes the paper. 

2. RELATED WORK

A background study of the related methods and literature 

used in this work is presented here. 

2.1 Pitch disguise 

Changing pitch is a common disguise method done by 

criminals in forensic scenario [30]. Pitch disguised voices 

affect ASR performance significantly [4, 30]. Acoustic 

properties of disguised voices of 11 Chinese male speakers 

with raised and lowered pitch were investigated [30]. The 

authors indicate different abilities of speakers to adjust pitch. 

Very poor recognition rate was obtained for pitch disguised 

voices. High pitched voice has shown more degradation (only 

10% recognition accuracy) compared to low pitched voice 

(55%). The effect on parameters like intensity, vowel formant 

frequency, speaking rate, syllable duration, long term average 

spectrum (LTAS) etc. were found to be different for raised 

pitch and lowered pitch. 

As mentioned earlier, pitch disguise can be done by both 

electronic and manual (non-electronic) ways. Nowadays, due 

to technological advancements, there are lots of available 

software which can be used for this purpose. Voice changing 

software are widely used in audio forensics [18]. In the coming 

years, electronic means of disguise will be utilized to a large 

extent. Wu et al. [20] considered electronic means of pitch 

disguise and classified the speech into disguised or original 

speech using MFCC static and correlation features and a novel 

classification algorithm using support vector machines (SVM). 

Identification of weakly pitch shifted voice is performed in 

view of the forensic scenario [16]. We have also considered 

electronic pitch disguise in our work and extended the problem 

addressed in the study [20] for the classification of disguised 

voice into high pitch or low pitch voices. This is important 

because, in some previous works, it is shown that 

understanding the type of disguise can be utilized for 

improving the speaker recognition accuracy. Farrus [28] 

presents a very elaborate survey of existing works discussing 

the effect of deliberate/non-deliberate and electronic/non-

electronic types of disguise on ASR systems and their role in 

modifying voice features. They suggest that the understanding 

of disguise based altered features will assist in the design of 
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voice recognition systems. So, considering the need for 

disguise and gender classification for improving the 

performance of the speaker recognition stage, we propose a 

new set of features for the classification of disguise type and 

gender. The features are extracted from pretrained AlexNet 

DCNN model. Normally, for speech processing applications 

like speech emotion recognition, spectrograms are given as 

inputs to the pretrained models. But in our work, we give 

MFCC features, their delta values and delta values as 

equivalent to the spectrogram images. The pretrained DCNN 

output features are appended with the correlation features. 

These novel features give good classification accuracy as 

compared to the state-of-the-art methods.  

2.2 Gender and disguise type impact 

The features affected, extent of feature distortion, robust 

features etc. vary, depending on the type of disguise, gender of 

the speakers, age of the speakers and the individual speakers 

[4, 8, 13]. Hautamäki et al. [8] find that the extent to which F0 

and formants varied depends upon the speakers. Zhang and 

Tan [4] conclude that the effect of disguise on performance of 

ASR depends on the type of disguise. They considered 10 

types of disguises common in forensic case works in their 

study. San Segundo et al. [9] put forward a finding that speaker 

recognition is easier under falsetto than under creaky condition 

at least in female voices in forensic phonetics application to 

speaker identification. Cross gender conversion increases the 

error rates in ASR systems with respect to the forensic 

scenario [10]. 

Some works analyze the difference in feature variations due 

to disguise for different genders [5, 7]. Tavi et al. [17] suggests 

that the effect of speaker’s sex on creakiness should be treated 

carefully. González Hautamäki et al. [31] did an extensive 

study of how certain features are affected in male and female 

speakers differently in three voice conditions; modal, intended 

old and intended child. The features considered are formants 

F1-F4, bandwidths B1-B4, F0 and speaking rate. Prior to this, 

they analyzed the performance of ASR systems for males and 

females separately and found significant differences in the 

error rates. Identification rates were shown to be different in 

pitch lowered and pitch raised voices [32]. 10 types of 

disguises were considered and they analyzed the effect of 

disguise type on FASR performance [4]. They observed that 

depending on the type of disguise, the FASR performance 

varies. They also pointed out that some speakers can perform 

some types of voice disguise well and some speakers are well 

identified when performing certain types of disguise. Also, it 

is noted that raised pitch is more capable of defeating the 

FASR system. 

Matched training conditions of gender and disguise have 

been addressed in previous works and have shown 

improvement in speaker recognition accuracy under matched 

training conditions. Training with matched gender [33] and 

disguise type [34] was found to help the speaker recognition 

stage. FSR system performance was affected only marginally 

when the same type of disguise was used for training [34]. The 

authors state that the effects are severe if training data is 

assembled with normal speech only. In their work, they 

considered high pitch, low pitch and pinched-nose disguises. 

The degradation in performance was more in high and low 

pitched voices. Domain mismatch between training and 

evaluation data reduces the scores [35]. Prasad, S. and Prasad, 

R. [3] addressed the mismatch problem in forensic caseworks

by using multistyle training method and obtained improved 

performance. This was done by mixing speech of different 

speaking styles in different ways and using these for training. 

Above observations point to the necessity of classifying the 

gender of the speaker along with the type of disguise present 

in the voice. 

2.3 Discriminative features 

Extracting secondary features from speech is mainly done 

with spectrograms where a second set of features are extracted 

from a set of features derived earlier. Many speech 

applications like emotion classification [36-42], speech 

classification [43], sound event classification [44, 45], speaker 

recognition [46, 47], acoustic scene classification [48] use 

spectrograms as inputs to derive secondary features. SIFT 

features extracted from spectrograms are used for speech 

classification to perform speech classification [43]. Ren et al. 

[44] extracted local binary pattern (LBP) from the logarithm

of the Gammatone like spectrogram to do sound event

classification. Ajmera et al. [46] extracted Radon transforms

from speech spectrograms as features and obtained superior

performance for speaker identification. Features are derived

by dividing the spectrogram into 4 by 4 matrices for emotion

classification [38]. Hyder et al. [48] performed acoustic scene

classification using CNN super vector derived from

spectrogram images. Dennis et al. [45] carried out sound event

classification by quantizing the grey scale range of

spectrogram thereby limiting the effect of noise to certain

quantization regions. This was found to be effective for sound

event classification under mismatched conditions.

Discriminative features can be extracted from speech 

spectrograms by training DCNN with speech spectrograms 

[36, 37, 39-41, 47, 49]. Stolar et al. [40] used pretrained 

AlexNet to extract features from spectrogram for emotion 

classification. Discriminative features are learned from speech 

spectrograms for emotion recognition using CNN with 

rectangular kernels of varying shapes and sizes [37]. This 

method showed better performance compared to state-of-the 

art methods. A deep ResNet-based architecture is proposed for 

extracting features for speaker recognition [47]. Zheng et al. 

[41] also uses DCNN to learn features from log spectrograms.

The log spectrograms are split into non-overlapping segments

and given as input. The method showed superior performance

compared to using standard hand-crafted acoustic features for

emotion recognition.

A different approach is employed in the study [39] for 

emotion recognition using spectrograms. Here, instead of 

giving spectrogram images as inputs to DCNN, the authors 

extract static, delta and delta delta channels of log Mel-

spectrograms similar to red, green, blue (RGB) image 

representation to train the DCNN. The AlexNet DCNN model 

pretrained on the large ImageNet dataset is employed to learn 

high-level feature representations and authors observe that 

DCNN model pretrained for image applications performs 

reasonably well in affective speech feature extraction also. We 

extend this idea of high level feature extraction to the 

application of disguise classification in our work. In our work, 

instead of using spectrogram static and dynamic features, we 

train the DCNN using MFCC static and dynamic features. We 

show that the proposed features perform better than those 

secondary features obtained from spectrogram static and 

dynamic features. 
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Figure 1. AlexNet architecture 

Figure 2. Feature extraction 

2.4 Pretrained deep convolutional neural network 

We have used AlexNet pretrained DCNN network for 

extracting the secondary features from MFCC inputs. AlexNet 

is a convolutional neural network trained on ImageNet dataset. 

ImageNet dataset consists of 15 million images. The AlexNet 

network architecture is shown in Figure 1. It consists of 5 

convolutional layers followed by 3 fully connected layers. The 

last fully connected layer is connected to softmax layer, which 

does classification to 1000 classes. Basically, AlexNet is 

pretrained to classify images to 1000 classes. But it has shown 

very good performance in the case of speech classification 

applications also. Usually for classification of speech into 

various classes, AlexNet network is given speech 

spectrograms as inputs, which are equivalent to image 

representation. Spectrograms depict the intensity of speech for 

different time and frequency frames. Zhang et al. [39] used a 

different approach to give speech spectrogram input to 

AlexNet. They derived the delta and delta delta features of log 

Mel- spectrograms and represented them as 3-D equivalent for 

RGB representation of image. AlexNet then extracted the 

high-level feature representations from these inputs which 

resulted in good classification accuracy. In this paper, we 

employed well known MFCC features and their delta and delta 

delta representations as RGB equivalent which gave better 

performance than the corresponding spectrogram features. We 

took 25 dimension MFCC features. The number of frames 

varies for each speech utterance. So the size of MFCC features 

will be 𝑁 × 25 where 𝑁 is the number of frames in each speech 

signal. Now the size of delta and delta delta features will also 

be 𝑁  × 25. Now these three set of features; i.e., static and 

dynamic features; are arranged to get the 3-D RGB equivalent 

of an image. So the size of the 3D feature is 𝑁 × 25 × 3. The 

inputs are resized to 227×227×3 to match the AlexNet input 

dimensions. We took the output features from the fc6 layer, 

which is of dimension 4096. The correlation features of all 

static and dynamic sets of features are derived. Hence, the size 

of each of static and dynamic features becomes 1×300. These 

are appended to the fc6 output features resulting in the 

proposed feature set of dimension 4996. The feature extraction 

procedure is shown in Figure 2. 

3. PROPOSED METHOD

3.1 Multilevel feature extraction 

We proposed a novel set of features for high pitch and low 

pitch classification derived using pretrained AlexNet DCNN. 

Usually, for speech, the input data to DCNN are spectrogram 

images. We derived a new set of features by inputting a three 

dimensional feature matrix to the pretrained DCNN. The three 

dimensional RGB equivalent data is formed from the MFCC, 

their delta and delta delta feature coefficients. MFCC features 

are one of the most commonly used speech features. MFCC 

and their correlation features are used for disguise 

classification of electronic disguised voices [20]. Here, the 

authors classified the voice as original or disguised which is 

the first stage in speaker recognition from disguised speech. In 

this work, we classified the voice as high pitch or low pitch 

disguised voice. For this classification, the proposed novel 

features are shown to give better results compared to the 

features used in the study [20]. The features obtained from 

pretrained AlexNet are appended with the MFCC correlation 

features to get the final feature set. 

24 dimension MFCC features and the energy feature are 

used in this work. Their delta and delta delta features and their 

energy features are also derived. So the three dimensional 

matrix used as input to AlexNet is initially of size 𝑁 × 25 × 3. 

This is resized to 227 × 227 × 3, which is the required input 

image size for AlexNet. The output features of AlexNet are 

taken from the fc6 layer, which is of dimension 4096 as shown 

in Figure 2. This is appended with the correlation features of 

MFCC which are derived as explained in the study [20]. The 

general procedure of correlation feature extraction with 

reference to the study [20] is explained here. 

Let 𝐿 be the MFCC feature dimension and N be the number 

of frames in the speech signal. Let Vj be the set of jth feature

vector for all frames. We take it as the jth column of the feature 

matrix. Correlation coefficient 𝐶R
jj'

 between jth  and 𝑗′𝑡ℎ

feature vector is calculated as, 

𝐶𝑅𝑗𝑗′ =
𝑐𝑜𝑣(𝑉𝑗 , 𝑉𝑗′)

√𝑉𝐴𝑅(𝑉𝑗)√𝑉𝐴𝑅(𝑉𝑗′)
, 𝑖 ≤ 𝑗 < 𝑗′ ≤ 𝐿 (1) 
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Let set of all such correlation coefficients be denoted 

as CMFCC. Now, the same calculation is done for delta MFCC 

matrix and delta delta MFCC matrix. Let them be denoted 

asCΔMFCC and CΔΔMFCC. Now the total correlation features are: 

𝐶 = [𝐶𝑀𝐹𝐶𝐶𝐶𝛥𝑀𝐹𝐶𝐶𝐶𝛥𝛥𝑀𝐹𝐶𝐶] (2) 

The dimension of correlation coefficients for MFCC, delta 

and delta delta MFCC is 𝐿(𝐿 − 1)/2; each accounting for a 

total dimension of 3𝐿(𝐿 − 1)/2  dimension correlation 

features. 

Now, in our work, MFCC feature matrix of dimension 25 is 

taken and correlation coefficient of each column of this matrix 

with other columns are found according to Eq. (1). i.e., first 

column with second column, first column with third column... 

first column with last column. This gives 24 correlation 

coefficients. Next correlation of second column with third 

column, second column with fourth column... second column 

with last column is found. This gives 23 correlation features. 

Likewise we get 22, 21, ..., 2, 1 correlation features for the 

third, fourth, ... twenty three and twenty fourth columns of the 

matrix. So total dimension of correlation features for the 

MFCC matrix alone is 1+2+...+24 which is 300. The same 

procedure is repeated for delta and delta delta feature matrix 

also of same size. So the dimension of total correlation features 

becomes 3 times 300 which is 900. The final feature set is 

obtained by appending the pretrained AlexNet features of 

dimension 4096 with the MFCC correlation features to get a 

final feature dimension of 4996. The features extracted for 

comparison with Ref. [20] will be the 25 dimension MFCC 

mean features appended with 25 dimension mean delta 

features, 25 dimension mean delta delta features and 900 

dimension correlation features counting to a dimension of 975. 

3.2 Disguise classification framework 

The disguise classification algorithm is shown in Figure 3. 

In phonetics, voice pitch is measured in 12-semitone division 

i.e. -1 to -12 and +1 to +11 [20]. We have considered

semitones from -4 to -8 and +4 to +8. So there are total 10

levels or classes of pitch each for male and female speakers

resulting in 20 classes. We performed the classification of test

speech into these base classes initially from which they are

again classified into male or female high pitch or low pitch

classes. First we extracted MFCC features, their delta and delta

delta features from all speech samples of all speakers from

each of the pitch disguise classes. The static and dynamic

features of each utterance are arranged as a three dimensional

matrix which is equivalent to RGB image representation.

Pretrained AlexNet DCNN is used for deriving the secondary

features from the RGB equivalent three dimensional matrix

representing MFCC and delta delta features. AlexNet, which

is finely tuned by pretraining with more than a million images

from the ImageNet database, is very efficient in classifying

into 1000 image classes. We assume that using this model, we

can efficiently extract more discriminative features of speech.

The motivation behind this is the work [39] which shows

better performance of secondary features in improving

classification accuracy. Also, since secondary features derived

from spectrograms are well performing, we hope secondary

features derived from more acceptable MFCC features can

perform much better.

Figure 3. Disguise classification framework block diagram 
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The discriminative features derived from MFCC by training 

AlexNet DCNN are of dimension 4096, which is taken from 

the fc6 layer. Next, the pretrained AlexNet features are 

appended with the correlation features derived directly from 

the MFCC static and dynamic features resulting in a total 

feature dimension of 4996. We partitioned these features into 

train and test feature set. Classification is done and compared 

using a neural network (NN) classifier and a support vector 

machine (SVM) classifier in order to generalize the improved 

performance of the proposed feature set. The 20 classes of 

train and test speeches with corresponding labels are inputted 

to the classifier and the test speeches are classified into high 

pitch and low pitch male and female voices.  

3.3 Classifiers 

As mentioned in the previous section, classification of the 

fused DCNN extracted features is performed using the SVM 

classifier and NN classifier and performances are compared. 

Initial classification is done to different levels of pitch disguise 

and based on this classification the final low pitch and high 

pitch male and female classification is performed. 

3.3.1 NN classifier 

A fully connected feedforward neural network classifier 

[50] is shown in Figure 4. The inputs are the features and

corresponding labels of ten levels of pitch disguise. Gradient

descent back propagation method is used for minimizing the

error between the output matrix and the target matrix/labels by

adjusting the weights. After training the network, we get the

final updated weight matrix which represents the classifier for

classifying different levels of pitch disguise. Using this weight

matrix, the test samples are classified. The output is

thresholded by using the step activation function with

threshold value of 0.5 and depending on the maximum element

in the output matrix of the classifier, the level of disguise is

determined.

Figure 4. Neural network classifier 

3.3.2 SVM classifier 

The SVM classification algorithm is implemented by 

utilizing LIBSVM [51] through the MATLAB interface. SVM 

is a supervised type binary classifier based on structural risk 

minimization [52, 53]. Extension to multiclass classification is 

accomplished using the OAO (one against one) strategy. For 

an 𝑛  class problem, the OAO formulation will involve C2 

n  

binary SVMs; the decisions being fused using a majority 

voting scheme [54]. In this work, we utilize an OAO SVM 

scheme using the radial basis function (RBF) kernel. Equation 

for the RBF kernel transformation is given below. 

𝐾(𝑣, 𝑤) = 𝑒−𝛾|𝑣−𝑤|2
(3) 

where, 𝛾 is the RBF kernel parameter and 𝑣, 𝑤  are the data 

samples. RBF kernel is the typically employed transformation 

for dealing with non-linear data classification problems using 

SVM [55]. The training phase involves finding the optimal 

hyperplane separating the classes. In this phase, the optimal 

values for the variable parameters in the RBF kernel SVM - 

penalty parameter, 𝑐 and RBF kernel parameter, 𝛾 (since RBF 

kernel based SVM is used) are identified. 3 fold cross 

validation is performed on the training data for finding the 

parameters. Grid search is done in the ranges- [2−15, 215] and

[2−15, 215]  for 𝑐  and 𝛾  parameters respectively. Parameter

values associated with the best cross validation accuracy are 

identified through this process and training is performed for 

the SVM using these optimal values. The trained SVM model 

obtained is used to classify the test data samples [55]. Samples 

are generated by imposing both speaker independent and 

speech independent conditions. The utterances and speakers 

are selected randomly. Test samples are selected so that there 

is no overlap in the speech utterances also, aside from them 

originating from different speakers as to those considered in 

the training set. 

4. EXPERIMENTAL SETUP AND RESULTS

In pitch and gender classification, 20 base classes are 

considered - 10 levels of male classes and 10 levels of female 

classes. The aim of this work is to finally classify the speech 

into one of the four classes namely;  

(i) male high pitch

(ii) male low pitch

(iii) female high pitch

(iv) female low pitch

Among the 10 levels, levels corresponding to -4, -5,..., -8

semitones are considered as low pitch and +4, +5,..., +8 

semitones are considered as high pitch.  

4.1 Experiments 

The database used for the experiments is TIMIT (Texas 

Instruments Massachusetts Institute of Technology) database. 

TIMIT database consists of 630 speakers which includes 438 

males and 192 females with 10 different utterances for each 

speaker. For performing pitch disguise classification, the 

utterances are pitch disguised by ten disguise levels using 

Audacity software. The ten levels of disguise are from −4 to 

−8 semitones and +4 to +8 semitones. Each pitch level is

further divided gender wise thus generating 10 male and 10

female pitch classes. In order to have speech independent

testing, 5 speech utterances are used for testing and the

remaining 5 speech utterances for training.

Initially, pretrained AlexNet features are extracted from all 

train speech utterances and correlation features are appended. 

Same features are extracted from the test speech. We 

simulated and compared classification accuracy using two 

classifiers; SVM and neural network classifier. For SVM 

classifier, we input the train data features for 20 classes with 

labels and train the classifier. When test input comes, it is 

classified to one of the 20 classes. The NN classification also 
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follows a similar procedure. Here, we consider only a single 

hidden layer since adding more hidden layers did not show 

performance improvement. Using one hidden layer is 

generally found to be sufficient for most classification 

problems [50]. If large dataset is used, then more hidden layers 

may give improved performance. The activation function used 

for the output layer is step activation function. The final 

classification for the test speech is done as follows: 

(i) male classes corresponding to +4, +5,..., +8 semitones -

male high pitch

(ii) male classes corresponding to -4, -5,..., -8 semitones -

male low pitch

(iii) female classes corresponding to +4, +5,..., +8

semitones-female high pitch

(iv) female classes corresponding to -4, -5,..., -8 semitones

-female low pitch

4.2 Results and discussion 

Table 1 shows the percentage classification accuracy 

obtained for low pitch and high pitch classification for male 

and female speakers with NN classifier. We have compared 

the results with other features and the proposed novel features 

are shown to give better accuracy for individual classes as well 

as overall accuracy as shown in Table 1. The best accuracies 

are shown in bold numbers. One of the features with which we 

compared the proposed feature accuracy is MFCC + 

correlation features which have given improved results for 

performing pitch disguised or original speech [20]. But as 

shown in the table, these features perform comparatively poor 

when we use them for further classification into low pitch and 

high pitch classes for male and female speakers. There is an 

overall accuracy improvement of 2% for the proposed features 

with NN classifier. The second feature set with which 

comparison is done is the log Mel-spectrogram features. These 

features were shown to give good performance for emotion 

classification which is also a type of voice modification [39]. 

But compared to the proposed feature set they give poor 

classification accuracy. The proposed features give an overall 

accuracy improvement of about 3.7% with NN classifier. 

SVM classifier also identifies better classification for the 

proposed feature set with an improvement of 2.45% compared 

to MFCC + correlation features and 2.9% compared to log 

Mel-spectrogram features. This is tabulated in Table 2. We 

performed classification with two well-known classifiers to 

validate and generalize the effectiveness of the proposed 

features in classification compared to the most related features. 

Table 1. Classification accuracy (in %) with different feature 

sets for NN classification 

Class 

Features 

MFCC + 

Correlation 

log Mel-

spectrogram 

Pretrained + 

Correlation 

(Proposed 

features) 

Female low 

pitch 
94.50 95.10 98.10 

Female 

high pitch 
92.73 89.20 96.17 

Male low 

pitch 
99.03 96.73 99.63 

Male high 

pitch 
99.03 97.43 99.43 

Average 96.33 94.62 98.33 

Table 2. Classification accuracy (in %) with different feature 

sets for SVM classification 

Class Features 

MFCC + 

Correlation 

log Mel-

spectrogram 

Pretrained + 

Correlation 

(Proposed 

features) 

Female low 

pitch 

94.37 96.57 98.20 

Female 

high pitch 

93.07 91.90 98.13 

Male low 

pitch 

99.07 97.90 99.73 

Male high 

pitch 

99.27 97.60 99.50 

Average 96.44 95.99 98.89 

Table 3. Confusion matrix for classification using pretrained 

AlexNet fc6 layer+correlation features with neural network 

C1 C2 C3 C4 

C1 98.1 0 1.67 0.23 

C2 0.03 96.17 0.03 3.77 

C3 0.30 0 99.63 0.07 

C4 0.13 0.40 0.03 99.43 

Table 4. Confusion matrix for classification using pretrained 

AlexNet fc6 layer+correlation features with SVM 

C1 C2 C3 C4 

C1 98.2 0 1.80 0 

C2 0 98.13 0 1.87 

C3 0.27 0 99.73 0 

C4 0 0.50 0 99.5 

Tables 3 and 4 show the confusion matrices for 

classification with the proposed feature set with NN and SVM 

classifiers respectively. C1, C2, C3 and C4 are the four classes: 

female low pitch, female high pitch, male low pitch and male 

high pitch respectively. In all the features using both classifiers, 

we can see that C1 is misclassified mostly into C3 and C2 to 

C4; i.e.; male low pitch to female low pitch and male high 

pitch to female high pitch and vice versa. This may be due to 

some common features added or removed in both genders 

when pitch is raised to or lowered from original pitch. 

5. CONCLUSION AND FUTURE SCOPE

High pitch and low pitch classification system for both 

males and females are implemented in this work. A novel set 

of secondary features is derived for this classification and is 

shown to be more effective when compared to the state-of-the-

art features. The secondary features are derived by inputting 

primary set of most commonly used speech features to a 

pretrained DCNN. Usually, DCNN are given image inputs. 

Our major contribution here is deriving the secondary features 

from DCNN by training the DCNN using non-image input 

data and appending them with correlation features which gives 

the proposed novel feature set. Extraction of secondary 

features was done by giving an RGB equivalent representation 

for the primary features. 

The simulation results proved that we succeeded in deriving 

more robust secondary features as compared to the secondary 

features usually derived by giving spectrogram image inputs. 
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We used MFCC features for deriving the secondary features. 

We performed comparisons of results by using MFCC features 

as such and also with secondary features derived from log 

Mel-spectrogram inputs to DCNN. Also, classification using 

two classifiers; SVM classifier and NN classifier; was 

performed. For both classifiers, the proposed novel set of 

features outperformed the pitch classification done with other 

feature sets. 

Disguise classification is very important as far as speaker 

recognition from disguised speech is concerned; especially in 

certain critical applications like forensic automatic speaker 

recognition. We can enhance the speaker recognition 

performance with prior knowledge of disguise and gender type 

through several means; either by doing matched training or by 

extracting disguise and gender specific robust features or by 

analyzing the disguise and gender specific varying features. 

We can further extend our work for disguise classification by 

including more types of disguises and also for different types 

of distortions. Our future work also aims to classify disguise 

type for speech utterances degraded by other types of 

distortions since such combined distortions often occur in 

forensic automatic speaker recognition scenarios. 
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NOMENCLATURE 

𝑁 dimensionless number of frames of each 

speech signal 

𝐿 dimensionless number of MFCC features 

𝑉𝑗 dimensionless set of 𝑗𝑡ℎ  feature vector for

all frames 

𝐶𝑅 dimensionless correlation coefficient 

𝐶𝑀𝐹𝐶𝐶 dimensionless set of all correlation 

coefficients of MFCC feature matrix 

𝐶𝛥𝑀𝐹𝐶𝐶 dimensionless set of all correlation 

coefficients of delta MFCC feature matrix 

𝐶𝛥𝛥𝑀𝐹𝐶𝐶 dimensionless set of all correlation 

coefficients of delta delta MFCC feature 

matrix 

𝑛 dimensionless number of classes in SVM 

Greek symbols 

𝜈 dimensionless data samples 

𝜔 dimensionless data samples 

Subscripts 

𝑗 dimensionless 𝑗𝑡ℎ feature vector

𝑗′ dimensionless 𝑗′𝑡ℎ feature vector
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