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 In this paper, the implementations and comparison of some classifiers along with 2D 

subspace projection approaches have been carried out for the face recognition problem. For 

this purpose, the well-known classifiers such as K-Nearest Neighbor (K-NN), Common 

Matrix Approach (CMA), Support Vector Machine (SVM) and Convolutional Neural 

Network (CNN) are conducted on low dimensional face representations that are determined 

from 2DPCA-, 2DSVD- and 2DFDA approaches. CMA, which is a 2D version of the 

Common Vector Approach (CVA), finds a common matrix for each face class. From the 

experimental results, we have observed that the SVM presents a dominant performance in 

general. When overall results of all datasets are considered, CMA is slightly superior to 

others in case of 2DPCA- and 2DSVD-based features matrices of the AR dataset. On the 

other side, CNN is better than other classifiers when it comes to develop a face recognition 

system based on original face samples and 2DPCA-based feature matrices of the Yale 

dataset. The experimental results indicate that use of these feature matrices with CMA, 

SVM, and CNN in classification problems is more advantageous than the use of original 

pixel matrices in the sense of both processing time and memory requirement. 
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1. INTRODUCTION 

 

The automatic recognition of individual faces is a 

challenging area for the pattern classification. Automated face 

recognition generally involves different stages, namely face 

detection, to decide the position and size of the facial images, 

feature extraction to determine the most discriminative 

properties of facial images and face classification to identify 

an unknown face according to models of faces in a face dataset. 

In many applications of face classification algorithms, images 

taken in a restricted location are controlled by illumination, 

least occlusion of facial images, regular background [1]. For 

more robust performance, a face classification system should 

be flexible in terms of the aspects of pose, lighting and 

expression.  

Subspace methods are usually utilized to attain feature 

space with low dimension among the existing face recognition 

techniques. There are both experimental and methodical 

reasons for utilizing low-dimensional subspaces to model 

image variations in individual faces under different 

illumination situations [2]. Subspace methods such as PCA, 

LDA and CVA are generally used in signal processing and 

computer vision areas as effective methods for both size 

decline and orientation of images [2-6]. There are also more 

efficient linear subspace analysis methods that use null-space 

face [7].  

The motivation under the PCA method is to obtain a 

subspace in which variation is maximized, meanwhile some 

undesirable variations (resulting from changes in illumination, 

facial expressions, presentation points, etc.) can be preserved 

in order to enhance the recognition rate [8]. Subspace methods 

such as Independent Component Analysis (ICA) [8, 9], 

PCA+Null Space [2] and Kernel PCA (KPCA) [10] are the 

variations or expansions of PCA to report statistical 

dependencies with higher order. Besides, Two Dimensional 

Principal Component Analysis (2D-PCA) is developed in 

order to easily deal with 2D data and the recognition 

performance obtained using 2D-PCA is superior to that 

obtained using 1D-PCA [6]. A new technique called Structural 

2D-PCA (S2D-PCA) that identifies the structural information 

for discrimination of images was proposed [11]. More 

recently, some authors [12] proposed the directional 2DPCA 

(D2DPCA) that can obtain features from the matrices in any 

direction. In order to efficiently utilize all the features obtained 

from D2DPCA, a D2DPCA bank performed in several 

directions was combined to produce a multi-directional 

2DPCA similarity score level combination method for face 

recognition. Besides 2D-PCA can be used with the K-Nearest-

Neighbor (K-NN) classifier in face recognition studies, it is 

also one of the effective image representation methods.  

Additionally, more effective solutions, specifically the 

Direct LDA (D-LDA) and Fisher’s LDA (FLDA) methods, 

had also been presented for face classification problems [13-

17]. In D-LDA, after the null-space of between-class 

covariance matrix, SB, is removed, the projection vectors 

minimizing the within-class scatter in the transformed space 

are chosen from the range space of SB. LDA overcomes the 

restrictions of PCA by using Fisher’s LDA (FLDA) [13]. Park 

and Sim [18] utilized FLDA for appearance-based face 

representation in order to implement their Modified Census 

Transform (MCT) based face recognition approach. While 

doing well in most cases, LDA-based methods frequently 
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unsuccessful to perform well when facial images are subjected 

to complex changes in viewing angles, lighting, or facial 

expression [15]. FLDA was used as a solution to one sample 

problem in face classification [19]. Moreover, the efforts had 

been geared up to deal with the small sample size (sss) 

problem in LDA using Two Dimensional Fisher Discriminant 

Analysis (2DFDA) [20]. 

Furthermore, Singular value decomposition (SVD) is an 

approach of defining and sorting dimensions in which data 

points exhibit the greatest variation. The uniform eigen-space 

SVD method was proposed to recognize faces on enhanced 

images [21]. Even though many systems have been used to 

determine faces, they are not effective for different 

illumination conditions and facial expressions; so it is required 

to find an alternative solution by combining different face 

recognition methods and feature extraction techniques.  

Nowadays, a great deal of efforts has been invested by 

developing the Convolutional Neural Network (CNN) based 

systems for face detection [22] or face recognition [23]. In a 

study, the local shallow CNNs [24] are performed on 

predetermined regions that are surrounding the five landmarks 

(left eye center, right eye center, nose apex, left and right 

corner of the mouth). The researchers believe that more 

meaningful and discriminative features would be extracted 

once the shallow CNNs are operated in different regions. After 

50% cross validation strategy, the verification performance 

was reported as 97.48% accuracy rate. Some researchers 

focused on the improving of learning capability of CNN 

features [23]. Two different loss functions, namely Compact 

Discriminative Loss and Advanced Compact Discriminative 

Loss, had been evaluated for maximizing the within class 

similarity and minimizing between class similarity. After 

using three well-known CNNs (LeNet [25], CNN-M [26] and 

ResNet-50 [27]), the best scores are achieved with pre-trained 

ResNet models. In a particular study [28], the authors wanted 

to see the influence of gender (men and women) and age 

(youth, middle and old) factors on face recognition. The 

impact of these factors are independently analyzed with a 

Multi-Task Cascaded Convolutional Networks (MTCNN) for 

male and female groups. It was found that there is a high effect 

of age factor for face recognition scores for men, whereas 

age’s influence is considerably low for women. The main 

drawback of CNN based face recognition can be explained 

since the weights of CNN are sensitive to noise in data. 

Therefore, a pre-trained model may produce unwanted 

classification scores if some pixels of samples are corrupted 

with noise. 

In this paper, the implementations and comparison of 

classification methods, K-Nearest Neighbor (K-NN) [6, 20, 

29], Common Matrix Approach (CMA) [30, 31], Support 

Vector Machine (SVM) and Convolutional Neural Network 

(CNN), are proposed for the classification of face images 

represented with the feature matrices extracted from the 

2DPCA, 2DSVD and 2DFDA methods. CMA can be 

considered as a 2D version of the Common Vector Approach 

(CVA) which is widely used in speech [32-34] and image 

processing [35-37] and also in motor fault diagnosis [38]. 

CMA finds a unique common matrix including the common or 

invariant features of each face class. Therefore, it is also 

flexible for the aspects of lighting and expression. SVM 

determines the optimal subplane that maximizes the distance 

between the hyperplane and the closest sample from 

hyperplane [39-43]. In addition, CNN finds optimal set of 

weights adjusted to the smallest training error rate after feed-

forward propagation and feed-backward propagation stages. 

Experimental findings show that the recognition rates obtained 

from the original images and feature matrices slightly differ 

from each other for AR-face dataset, the recognition rates 

obtained from the feature matrices are greater than those 

obtained from the original images for ORL and Yale databases. 

Eventually, it is found that the use of 2DPCA-, 2DFDA- and 

especially 2DSVD-based feature matrices remarkably 

decrease the processing time and memory necessity when 

compared with those obtained for original face matrices. 

This paper is organized as follows: The feature extraction 

methods 2DPCA, 2DSVD and 2DFDA are given in Section 2 

whereas Section 3 explains the theories of K-NN, CMA, SVM 

and CNN classifiers. The experimental studies are introduced 

in Section 4 and the conclusions are presented in Section 5. 

 

 

2. 2D ORTHOGONAL PROJECTIONS FOR FEATURE 

EXTRACTION 

 

In this study, three different methods referred as 2D 

orthogonal subspace methods were preferred for feature 

extraction from original face images. 

 

2.1 Feature extraction using 2DPCA  

 

The purpose of 2DPCA [6] is to project an image matrix 

onto a lower dimensional matrix. Assume that totally M 

images in a training process, the jth image in this process is 

indicated with mxn matrix 𝑨𝒋 , and the mean of all training 

images is indicated with 𝑨. The column-column covariance 

matrix 𝜱𝑪 can be computed by 

 

1

1
( ) ( )

=

= − −
M

T

jM
C j j

Φ A A A A

 

(1) 

 

The total scatter of images is characterized by the trace of 

𝜱𝑪. From this viewpoint, the following criterion are developed 

as 

 

( )( ) =J T

C
X X Φ X

 
(2) 

 

where, 𝑿 is a unit column vector. The optimal projection axis, 

𝑿𝒐𝒑𝒕, is the unit vector that maximizes 𝐽(𝑿); i.e., 𝑿𝒐𝒑𝒕 is an 

eigenvector of 𝜱𝑪 associated with the maximum eigenvalue. 

The optimal projection axes, 𝑿𝟏 , 𝑿𝟐, . . . , 𝑿𝒅 , are the 

eigenvectors of 𝜱𝑪 , associated with the maximum d 

eigenvalues (The selection process for d will be explicitly 

explained in the fourth section.). The projected feature vectors 

𝒀𝟏, 𝒀𝟐, . . . , 𝒀𝒅, namely the primary components of 𝑨𝒋, can be 

obtained as 

 

          1,2,...,= =k d
k j k

Y A X  (3) 

 

The obtained principal component vectors are laid together 

for constructing an mxd matrix 𝑩𝒋 = [𝒀𝟏 𝒀𝟐 . . .  𝒀𝒅], that is 

referred to as the feature matrix of 𝑨𝒋. 
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2.2 Feature extraction using 2DSVD 

 

In the 2DSVD method [29], both the column-column 

covariance matrix and the row-row covariance matrix of all 

training images are calculated. In other words, this method 

considers the spatial relationships among the pixels in two 

directions (vertical and horizontal) although 2DPCA takes the 

spatial relationships among the pixels in only horizontal 

direction into account [6].  

The image row-row covariance matrix 𝚽𝐑 can be evaluated 

by 
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1
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=

= − −
M

T

jM
R j j

Φ A A A A  (4) 

 

The total scatter of images is represented by the trace of 𝚽𝐑. 

By considering this viewpoint, the following criterion can be 

written: 

 

( )( ) =J T

R
P P Φ P  (5) 

 

where, 𝐏  is a unit row vector. A set of projection axes, 

𝐏𝟏, 𝐏𝟐 , . . . , 𝐏𝐞 , are the eigenvectors of 𝚽𝐑  corresponding to 

the first e maximum eigenvalues (The selection process of e 

will be explicitly explained in the fourth section.). The 

orthonormal eigenvectors, 𝐗𝟏, 𝐗𝟐, . . . , 𝐗𝐝, of 𝚽𝐂 (given in the 

previous subsection) corresponding to the maximum d 

eigenvalues are also used for 2DSVD. The feature matrix, 𝐁𝐣, 

of 𝐀𝐣 can be obtained as 
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It can be clearly seen that a lower-dimensional feature 

matrix for 𝐀𝐣 is obtained by this method when compared with 

that obtained by the 2DPCA. 

 

2.3 Feature extraction using 2DFDA 

 

The fundamentals of the 2DFDA method [20] are slightly 

different from those of both 2DPCA and 2DSVD methods. In 

order to implement 2DFDA, first of all, the between-class and 

within-class covariance matrices are calculated for all training 

images. Assume that totally M images in a training process of 

S classes, the average for all training images in ith class is 𝐀𝐢 

and the average of training images in all classes is 𝐀. The 

between-class covariance matrix (𝚽𝐁) can be evaluated by 

 

( ) ( )
1


S T

i

i=

= N i iB
Φ A -A A -A  (7) 

 

where, 𝑁𝑖 is the number of images in ith class. The within-class 

covariance matrix (𝚽𝐖) is given as: 
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where, 𝐀𝐣,𝐢 is the jth training image in ith class. The total scatter 

of images is represented by the trace of the Fisher’s criterion. 

By considering this viewpoint, the following criterion can be 

written:  
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where, 𝐑 is a unit column vector. A set of projection axes, 

𝐑𝟏 , 𝐑𝟐, . . . , 𝐑𝐟 , are the eigenvectors corresponding to the 

maximum f eigenvalues of (𝚽𝐖)−1𝚽𝐁 (The selection process 

for f will be explicitly explained in the fourth section.). The 

projected feature vectors, 𝐘𝟏 , 𝐘𝟐 , . . . , 𝐘𝐟, of the sample image 

𝐀𝐣, can be obtained as 

 

 1,2,...,= =k f
k j k

Y A R  (10) 

 

The obtained vectors are used to construct an mxf matrix, 

𝐁𝐣 = [𝐘𝟏 𝐘𝟐 . . .  𝐘𝐟], which is the feature matrix of 𝐀𝐣.  

 

 

3. CLASSIFIERS  
 

3.1 K-Nearest Neighbor (K-NN) classifier 

 

First of all, let us define the distance between two arbitrary 

feature matrices, 𝐁𝐢 and 𝐁𝐣, as the following: 

 

( )
2

1

,
=

= −
g

k
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i j k k
B B Y Y  (i, j = 1, 2, …, M) (11) 

 

where, 𝐘𝐤
𝐢  and 𝐘𝐤

𝐣
 are the kth column vectors of 𝐁𝐢  and 𝐁𝐣 , 

respectively. Suppose that the image feature matrices in the 

training set are indicated with 𝐁𝟏 , 𝐁𝟐, . . . , 𝐁𝐌. A test feature 

matrix, 𝐁𝐭𝐞𝐬𝐭, if 

 

( ) 
1
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=
j M

L distance 
test j

B B  and (12) 

 

( 1,2, , ) =iC i S
L

B  (13) 

 

then the test feature matrix 𝐁𝐭𝐞𝐬𝐭 belongs to the class Ci. In Eq. 

(13), 𝐁𝐋 indicates the feature matrix whose distance with all 

feature matrices in the training set is minimum. 
 

3.2 Common Matrix Approach (CMA) 
 

CMA is a 2D version of the Common Vector Approach 

(CVA) that is usually preferred in speech recognition [32, 34, 

38], speaker recognition [44], image processing [33, 37], and 

motor fault diagnosis [38]. In CMA, a common matrix, 

representing the unvarying features for each face class is 

calculated from the images in the training set by discarding the 

alterations in images of the same class.  
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Training Stage of CMA 

• Let us assume that the number of classes and images in 

the training set of class C are S and N, respectively. The 

matrix of the jth training image in class C is indicated with 

𝐀𝐣
𝐂. Each image has the same size of (mxn). 

• 𝐀𝐣
𝐂  is represented by the sum of the common matrix, 

𝐀𝐜𝐨𝐦
𝐂 , and the matrix which includes differences 

resulting from the illumination and facial expressions, 

𝐀𝐣,𝐝𝐢𝐟
𝐂 , 

 

= +C C C

j com j,dif
A A A  (14) 

 

• If the first image matrix in class C is selected as the 

reference matrix, all the difference matrices, 𝐃𝐤
𝐂 , 

pertaining to class C can be expressed: 

 

-=C C C

k k +1 1
D A A  for k = 1, 2, …, N-1 (15) 

 

Same process is repeated until the difference matrices of all 

classes are determined. 

• The difference matrices are orthogonalized by applying 

the Gram-Schmidt orthogonalization process [34] as in 

Eq. (16) so that 𝐖𝐤
𝐂  (the orthogonal matrices) and 𝐙𝐤

𝐂 

(orthonormal matrices) (k = 1, 2, …, N-1) are obtained. 
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In the Eq. 16, ⟨𝐃, 𝐖⟩ denotes the scalar product of 𝐃 and 

𝐖, and it is calculated as the 𝑡𝑟𝑎𝑐𝑒(𝐃𝐓𝐖). The matrices, 

𝐙𝟏
𝐂, 𝐙𝟐

𝐂 ,  . . . , 𝐙𝐍−𝟏
𝐂 , span the difference subspace for class C. 

• The projection of any image matrix 𝐀𝐣
𝐂 in the training set 

of class C onto the difference subspace of class C 

provides the difference matrix 𝐀𝐣,𝐝𝐢𝐟
𝐂  as  
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... ,

= −

− −

C C C C C C C
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• The common matrix, 𝑨𝒄𝒐𝒎
𝑪 , can be found by subtracting 

the matrix 𝑨𝒋,𝒅𝒊𝒇
𝑪  from the image matrix 𝑨𝒋

𝑪.  

 

= −C C C

com j j,dif
A A A  (18) 

 

Common matrices (𝑨𝒄𝒐𝒎
𝟏 , 𝑨𝒄𝒐𝒎

𝟐 , . . . , 𝑨𝒄𝒐𝒎
𝑺 ) for all classes 

are determined using the above procedure. 

 

Test Stage of CMA 

• A test image matrix,  𝑨𝒕𝒆𝒔𝒕 , is projected onto the 

difference subspace of class C. Then, the remaining 

matrix, 𝑹𝒕𝒆𝒔𝒕
𝑪 , can be obtained by subtracting this 

projection from 𝑨𝒕𝒆𝒔𝒕:  

, ,

,

= − −

− −

C C C C C

test test test 1 1 test 2 2

C C

test N-1 N-1

R A A Z Z A Z Z

A Z Z
 (19) 

 

• The decision is conducted using the following criterion 

for the classification:  
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arg min
 

= −
F

C S

K C C

test com
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where, K is the index of the class for which the distance 

‖𝑹𝒕𝒆𝒔𝒕
𝑪 − 𝑨𝒄𝒐𝒎

𝑪 ‖𝐹
2  provides the least value for 𝑨𝒕𝒆𝒔𝒕 . Thus, 

𝑨𝒕𝒆𝒔𝒕, is classified to that class. 

 

3.3 Support Vector Machine (SVM)  

 

In a briefly explained manner, SVM [39-43] is presented as 

a two-class classifier and it finds the best subrplane which 

maximizes the distance between the best hyperplane and the 

closest sample to this hyperplane. If the training set is defined 

as TS = {(𝒙𝟏, 𝐿1), (𝐱𝟐, 𝐿2), … , (𝐱𝑴, 𝐿𝑀)}  for a two-class 

problem, a test vector ( 𝒙𝒕𝒆𝒔𝒕 ) can be categorized by 

considering this decision function:  

 

( ) 
1

( ) = 
=

+
M

i i

i

f L b T

test i test
x x x  (21) 

 

In this Eq., 𝒙𝒊 (i = 1, 2, …, M) is a training vector and 𝐿𝑖 

(𝐿𝑖 ∈ {−1,1}) is the class label. Besides, 𝛼𝑖  are the nonzero 

constants which are solution of the quadratic programming 

problem, and b is a bias term. The sign of this decision function 

specifies the class to which 𝒙𝒕𝒆𝒔𝒕 is assigned. If one needs to 

use the SVM classifier in a multi-class problem (with S 

classes), “S(S-1)/2” classifiers are to be constructed [45]. In 

this study, the linear SVM classifier is performed [46].  

 

3.4 Convolutional Neural Network (CNN) 

 

The algorithms based on CNN were widely utilized to 

overcome the problems in image processing and pattern 

recognition tasks. The key motivation behind a CNN based 

learning methodology is to map the discriminative information 

to huge number and size of filters. Typically, a CNN algorithm 

[47] includes four common layers: convolution layers, 

pooling/subsampling layers, non-linear layers (activation) and 

fully-connected layers. The CNNs are able to produce optimal 

hierarchical features through backpropagation procedures. 

Since CNNs are successful in terms of performance, efforts 

have been geared up towards the replacement of traditional 

algorithms with CNN-based ones. 

In order to analyze the capability of CNN for face 

recognition, some experiments on low dimensional 

representations of images that are determined with 2DPCA, 

2DFDA and 2DSVD methods are conducted. Moreover, we 

have compared the performance of our shallow CNN with 

well-known methods after training and testing of both original 

images and their projections onto a subspace. Typically, the 

utilized CNN structure is 64-64-64-64-1 and the filter size is 

3x3 with stride 1. The output size after convolution remains 

same by padding zeros prior to convolution procedure at each 

layer. The tuned parameters for CNN are given 1x10-5 for 

learning rate, 16 for batch size and 100 for epoch. The different 
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combinations of batch sizes and epoch values are used to 

increase the accuracy of recognition. Also, the Rectified 

Linear Unit (ReLU) is chosen as an activation function in 

hidden layers. The optimization function is Adam.  

The Figure 1 shows our utilized shallow CNN model, which 

is performed on original and projected face data. The 

dimension of input data is preserved after convolution 

operations. The FC refers to the Fully Connected layer that 

holds the meaningful features to be activated for generating n 

(number of classes) distinct probability scores. At the last head 

of CNN, the 4096 features are transformed with Sofmax 

activation in order to get probability scores when assigning the 

input data to n distinct classes. The loss function is a 

categorical cross-entropy. For all methods, we have 

determined CNN structure as 64-64-64-64-1 in order to settle 

the memory overflow issue. The performance of CNN is 

measured with leave-one-out cross-validation strategy. The 

training procedure for particular cross-validations is repeated 

many times based on different combinations of batch-size and 

epoch value in order to get the highest accuracy score. All of 

experimental processes with CNN is performed in Python 

environment. 

 

 
 

Figure 1. Utilized CNN architecture 

 

 

4. PROPOSED FACE RECOGNITION SYSTEM 

 

The utilized 2D projection approaches based face 

recognition is summarized with Figure 2. One can observe that 

the dimension of a face sample is reduced after projecting onto 

the orthonormal subspaces obtained from 2DPCA, 2DSVD 

and 2DFDA methods. Utilizing these low dimensional face 

representations improve the classification performance, 

reducing the memory consumption. Besides, the 2D projection 

based dimension reduction strategy substantially reduce the 

training time of complex classifiers like SVM and CNN. 

Additionally, one can emphasize that the 2D projection 

approaches are boosting the generalization and interpretation 

of a trained model as well as removing the redundant 

information from face data. Also, we compare the 

performance of reduced face samples with original ones. 

 

4.1 Datasets 

 

AR Face Dataset: The AR face dataset was compiled by 

two scientists [48] and comprises of the RGB face poses of 

126 different persons: 70 of whom are men and the remaining 

56 are women. Some cropped face portions (100x85) from the 

original dataset are presented in Figure 3. The poses have 

different facial expressions and some of them were taken in 

distinct lighting conditions. Besides this, some of the faces are 

exposed to irregular occlusions. 

All facial images were taken in two completely distinct 

sessions. The elapsed time between two sessions was two 

weeks. 13 different poses were recorded for each person in the 

first and second sessions, respectively. Therefore, totally 26 

different poses with a dimension of 576x768 were recorded 

and represented in 24-bit in depth. 

 

 
 

Figure 2. Proposed 2D projection based dimension reduction 

technique for face recognition 

 

 
 

Figure 3. Face portions cropped from the original poses in 

the AR face dataset 

 

ORL Face Dataset: The ORL dataset [49, 50] comprises of 

the images of 40 different persons, each of which has 10 

images. The 10 images include variations in facial expression, 

facial position and some other details. All face images were 

mostly taken in the front position with a dark background. The 

images are represented in 8-bit gray levels with the size of 

92x112. The cropped versions of face samples have the pixel 

matrices with the size of 60x60. Some face samples from ORL 

dataset [24] are given in Figure 4.  

 

 
 

Figure 4. Some face samples from the ORL dataset 

 

Yale Face Dataset: The third dataset utilized in this study 

is Yale Face dataset and it contains 165 grayscale images of 

15 persons (14 of whom are men and the rest one is woman). 

11 poses per individual were recorded and each pose was shot 

in one of these conditions: center-light, wearing glasses, happy, 

left-light, wearing no glasses, normal, right-light, sad, sleepy, 

surprised, and wink. The cropped facial images have the pixel 

matrices with the size of 152x126 in the dataset as given in 

Figure 5. 
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Figure 5. Face portions cropped from the original poses in 

the Yale dataset 

 

4.2 Preprocessing stage 

 

Some operations were conducted on all images in the AR 

and Yale face datasets. Initially, all images were converted 

into gray-scale images. Then, the pixel values of images were 

normalized to a (0-1) range corresponding to (black-white) 

values. The portions including only faces of individuals are 

automatically cropped. These cropped face portions are 

resized to 100x85 for AR face dataset and 152x126 for the 

Yale face dataset. These pre-processing operations were not 

implemented for the ORL dataset because the images are 

already cropped in the downloaded ORL dataset. The only 

operation made for the ORL dataset was that all images were 

resized to 60x60. Finally, zero-mean and unit-variance 

matrices were obtained by subtracting the mean pixel value 

from each pixel and dividing by the standard deviation in the 

cropped image matrices, respectively. 14 images with different 

facial expressions and lighting situations were chosen per 30 

male and 20 female subjects, randomly selected for AR face 

dataset. Totally 700 (50 persons x 14 poses per person) faces 

were used in AR face experiments Meanwhile, the total 

number of faces used in the ORL experiments is equal to 400 

(40 persons x 10 poses per person) whereas the total number 

of faces used in the Yale dataset is 165 (15 persons x 11 poses 

per person). 

 

4.3 Obtaining 2DPCA-based feature matrices 

 

First of all, the image column-column covariance matrix 

with a size of nxn is computed (n is 85, 60, and 126 for the AR, 

ORL and Yale face datasets, respectively), an eigenvalue-

eigenvector decomposition was applied. Thus, n eigenvalues 

and n eigenvectors were found. After these n eigenvalues were 

decreasingly ordered, the eigenvectors associated with the 

maximum d eigenvalues were selected. We can select d so that 

the sum of the largest eigenvalues is less than a constant 

percentage L of the whole eigenvalue set [51]. Thus, we 

perform the rule that is asserted by Eq. (22) for evaluating d 

value. 

 

1 1= =

 
 

 
 

d n

i i

i i

L   (22) 

 

If L = 90%, a good performance is achieved while 

preserving a large amount of variance presented in the original 

space [52]. L = 90% gives the different number of eigenvalues 

for each leave-one-out step. The average number of these 

eigenvalues was equal to 12, 12, and 9 for the AR, ORL and 

Yale face datasets, respectively. A feature matrix, with a size 

of 100x12, 60x12, and 126x9 for the AR, ORL and Yale face 

datasets, respectively, was obtained by using Eq. (3). These 

size values (100x12, 60x12, and 126x9) obviously state an 

appreciable reduction compared to original face images. 

Therefore, a noticeable reduction in processing power and 

computational load were achieved since the sizes of the input 

matrices carry big importance for training and classification 

parts. These feature matrices were then used in different 

classifiers. 

 

4.4 Obtaining 2DSVD-based feature matrices 

 

The 2DSVD method was applied to extract the feature 

matrices. At first, an eigenvalue-eigenvector decomposition 

was applied on the image row-row covariance matrix with a 

size of mxm (m is 100, 60, and 152 for the AR, ORL and Yale 

face datasets, respectively). Thus, m eigenvalues and m 

eigenvectors were obtained from each dataset. After these m 

eigenvalues were decreasingly ordered, the largest e 

eigenvalues (e is equal to 12, 14, and 12 for the AR, ORL and 

Yale face datasets, respectively) whose summation is less than 

90% of total energy were chosen. An image column-column 

covariance matrix with a size of nxn was already found in the 

previous subsection. Again, the eigenvectors associated with 

the largest d eigenvalues were used in this method. Since the 

number of eigenvectors taken from the row-row and column-

column covariance matrices were e and d, respectively; the 

feature matrices of the face images have the size of exd (12x12, 

14x12, and 12x9 for the AR, ORL and Yale face datasets, 

respectively). This explicitly shows a remarkable decrease 

compared with the sizes of original face poses. This 

circumstance results in a drastically high reduction from the 

points of processing time. These feature matrices were then 

applied to four different classifiers.  

 

4.5 Obtaining 2DSVD-based feature matrices 

 

First of all, an eigenvalue-eigenvector decomposition on 

(𝜱𝑾)−1𝜱𝑩  was implemented so that n eigenvalues and n 

eigenvectors were computed. If these eigenvalues were 

decreasingly ordered, the maximum f eigenvalues (f is equal to 

5, 45, and 80 for the AR, ORL and Yale face datasets, 

respectively) whose summation is less than 90% of total 

energy were chosen (refers to Eq. (22)). A feature matrix (with 

a size of 100x5, 60x45, and 152x80 for the AR, ORL and Yale 

face datasets, respectively) was attained for each image using 

the eigenvectors corresponding to the maximum f eigenvalues. 

These size values obviously imply an appreciable decrease 

compared with the sizes of original facial image matrices for 

each dataset. Therefore, a clearly advantageous case in 

processing power and computational load were realized with a 

purpose of boosting classification performance. These feature 

matrices were then treated for utilized classifiers. 

 

 

5. PERFORMANCE EVALUATION 

 

The original face images, 2DPCA-, 2DSVD- and 2DFDA-

based feature matrices obtained from the AR, ORL and Yale 

datasets were separately classified using the K-NN, SVM, 

CMA and CNN classifiers. The number of nearest-neighbor is 

1 for K-NN classifier. Additionally, we have analyzed the 

performance of Large-Softmax concept for boosting the face 

recognition accuracy. The Additive Marging Softmax (AMS) 

[53] is integrated in place of Softmax layer in CNN. Instead of 

Categorical Cross Entropy, the loss function is chosen as 

Additive Margin Softmax Loss. Furthermore, the Random 

Forest (RF) classifier is applied to compare the performances 

of integrated learning versus single model learning. The 

motivation is that the decision made by multiple members may 

further boost the classification accuracy of system. For all 
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classifiers, the “leave-one-out” procedure was used since the 

number of images for each class is inadequate. Thus, this 

procedure was repeated 14, 10, and 11 times for the AR, ORL 

and Yale datasets, respectively. The average scores of “leave-

one-out” steps are comparatively presented in Table 1 for 

original face samples, and the other three types of feature 

matrices.  

In order to comprehensively compare the performances of 

classifiers together with the feature extraction methods, three 

datasets were considered as a benchmark evaluation. 

Experimental studies point out that the CMA and SVM 

classifiers are superior to the K-NN classifier for each type of 

feature matrices in all datasets. CMA gives remarkably high 

recognition rates only for 2DPCA- and 2DSVD-based feature 

matrices in the AR face dataset when compared with the SVM 

and CNN classifiers. However, SVM is more successful than 

CMA and CNN when considering the 2DFDA-based feature 

matrices and original images in AR and ORL face datasets and 

all feature matrices in ORL and Yale face datasets except 

2DPCA based feature matrices obtained from Yale face 

dataset.  

Further insights into the face classification could be 

emphasized by inspecting results that are obtained from the 

proposed shallow CNN model and AMS. When the average 

results of all three datasets in Table 1 are examined, for 

original samples, performance of AMS is superior to CNN. Of 

course, both Softmax and AMS provide good results in high 

dimensional data. It was observed that the accuracy of CNN 

with Softmax gives slightly better accuracy rates than ones 

obtained from 2D projections. It means that there is a negative 

tradeoff between reduced face representations and CNN 

performance. The key reason of this performance degradation 

can be explained that the CNN is not able to extract 

meaningful features once the face data is projected onto 

orthonormal subspace. The key reason of weakness of CNN 

can be attributed over-fitting or under-fitting cases reasoned 

by size of data or utilized hyper-parameters. To improve the 

performance of CNN, a crowded set of studies performed the 

fine-tuning idea on CNN features, which is widely preferred 

for boosting the CNN performance by dropping the last head 

of CNN (Softmax) and replacing with a new classifier and re-

training the activated features that are returned from the last 

FC layer [54-56]. Nevertheless, the CNN presents a steady 

performance for all original face samples. By zooming the 

results in the rows of Table 1, one emphasizes that the RF 

model gives remarkable results in ORL dataset. 

Comparing CNN and CMA, one may observe that CMA is 

dominant for 2DPCA, 2DSVD and 2DFDA feature matrices, 

when the average performance scores given in Figure 6 is 

considered. Results showed that a coupling of CNN model 

with well-tuned parameters could achieve nice recognition 

scores that are 97.6% and 94.5% accuracy rates in case of 

experiments with original samples and 2DPCA based features 

in Yale dataset, respectively. Moreover, during tests on 

original samples, we have found that the overall discriminative 

capability of CNN model was about 90.1% when the results 

for all datasets and classifiers are taken into consideration in 

testing stage. 

When inspecting the performance results shown in Figure 6, 

one can clearly say that the CMA and SVM are in a 

competition. AMS is superior to all classifiers for original 

samples. Among all classifiers, the K-NN is collapsed at all 

cases due to its short-sight classification methodology that 

works only with a distance based similarity estimation. When 

comparing the efficiency of 2DFDA, 2DPCA and 2DSVD 

features, one may note that the 2DFDA based features produce 

more valuable identification scores that resembles to those 

determined from original samples.  

The 2D projection method based comparison of classifiers 

can also be made according to their respective training and 

testing processing time. The training and testing time per one 

image for only the AR face dataset are comparatively given in 

Table 2. 

 

 
 

Figure 6. Performance comparison with average accuracy 

scores of all datasets for each approach 

 

Table 1. The detailed average recognition rates (%) obtained from each approach over datasets 

 
  Size N Classifiers 

KNN CMA SVM CNN AMS RF 

Original AR 100x85 50 83.9 97.4 97.6 95.4 95.9 91.3 

ORL 60x60 40 80.8 90.3 90.8 88.3 89.5 87.8 

Yale 152x126 15 83.6 89.1 90.4 97.6 98.2 87.3 

2DFDA AR 100x5 50 94.1 96.7 97.3 92.0 88.1 91.4 

ORL 60x45 40 64.3 91.3 91.9 85.8 78.3 93.4 

Yale 152x80 15 80.0 93.9 97.1 93.3 92.7 92.0 

2DPCA AR 100x12 50 86.6 97.4 90.1 92.0 87.7 65.0 

ORL 60x12 40 80.5 91.5 92.3 86.8 77.5 81.3 

Yale 152x9 15 86.1 85.5 90.1 94.5 91.5 75.5 

2DSVD AR 12x12 50 85.6 97.0 94.4 92.4 66.6 86.0 

ORL 14x12 40 80.8 92.5 93.2 82.0 69.5 93.3 

Yale 12x9 15 86.1 89.1 92.3 81.8 69.1 81.2 
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Table 2. Execution time per one image for the AR dataset 

 
 Method 

Size 

Time (sec) 

K-NN CMA SVM CNN 

T
ra

in
in

g
 

2DPCA 

(100×12) 

0.013 0.022 12.212 0.01 

2DSVD 

(12×12) 

0.0014 0.019 12.221 0.007 

2DFDA 

(100×5) 

0.020 0.026 13.464 0.01 

Original 

(100×85) 

0.057 0.083 21.831 0.14 

T
es

ti
n

g
 

2DPCA 

(100×12) 

0.005 0.141 0.090 0.03 

2DSVD 

(12×12) 

0.003 0.093 0.032 0.03 

2DFDA 

(100×5) 

0.004 0.107 0.077 0.03 

Original 

(100×85) 

0.033 0.918 0.597 0.04 

 

All experiments were employed in the MATLAB and 

Python Environment (for CNN). For all experiments, we have 

utilized a modest PC (Intel(R) Xeon(R) CPU E5-1620 v3 with 

3.50 GHz CPU, 24 GB memory and 4 GB GPU). Due to batch-

wise system evaluation, the training processing time of CNN 

is considerably lower than K-NN, CMA and SVM. The testing 

processing time of CNN are much less than that of CMA and 

SVM. 

 

 

6. CONCLUSIONS  

 

Automatic face recognition is important for many 

applications in computer vision and is a challenging area in the 

pattern classification. Even though many systems have been 

evolved for face recognition applications, face images still are 

not able to be quickly identified with high accuracy and low 

memory requirement under various lighting situations, and/or 

facial expressions so that new face recognition algorithms are 

required. 

The main purpose of this paper is to present a new face 

recognition system which combines the popular classifiers 

including K-NN, CMA, CNN, SVM, AMS and RF classifiers 

with the feature matrices obtained by using 2DPCA, 2DSVD, 

and 2DFDA methods. 2DPCA pays more interest to the spatial 

relationship between pixels in the horizontal direction, and 

projects the image onto the unit column vector to calculate the 

covariance; 2DSVD takes into account the spatial 

relationships between pixels in both the horizontal and vertical 

directions, and projects the image in both the horizontal and 

vertical directions to calculate the covariance; 2DFDA 

calculates the inter-class and intra-class covariances of all 

training images as a support to decrease the intra-class distance 

and increase the inter-class distance.  

In CMA, a common matrix, which is unique and includes 

the common or invariant features of that class, is calculated 

and it can be successfully utilized in image classification 

systems. Since CMA calculates and uses different class 

subspaces, it may also be applied rapidly. That is, only the 

common matrix of a class, whose training samples are changed 

(e.g. new face image/images insertion to that class), should be 

recalculated. This situation explicitly implies that it is not 

necessary to create subspaces and evaluate common matrices 

for other classes. In addition, linear SVM is very efficient in 

solving classification problems. It can model highly nonlinear 

relationships in high dimensional spaces and is more intuitive 

than other machine learning methods. However, training stage 

of a traditional SVM algorithm should be repeated if a new 

face image is inserted. Although the CNN is a parameter-free 

approach for classification tasks, but it suffers to capture the 

meaningful information from projected data. 

In almost all pattern classification systems, the working 

with original image pixel matrices is difficult since it 

significantly consumes memory and time. Therefore, feature 

matrices having relatively low dimension are more useful for 

many pattern classifiers. For this purpose, in this study, three 

types of subspace-based methods were applied to obtain 

feature matrices. Since the dimensions for these three types of 

feature matrices are very low compared to the original 

matrices, these feature matrices are very beneficial from the 

points of both processing time and memory necessity. 

Furthermore, these feature matrices can efficiently represent 

face images because the recognition rates obtained from the 

feature matrices and the original images slightly differ from 

each other. If one makes a comparison among the 2DPCA, 

2DSVD, and 2DFDA methods, the 2DFDA method is more 

useful and valuable since slightly higher recognition scores 

were found with remarkably lower dimensional feature 

matrices.  

In order to comprehensively compare the performances of 

classifiers together with the feature extraction methods, we 

have integrated three large data sets for face recognition, and 

compared the processing and classifier accuracy respectively. 

While increasing training, we have also analyzed a new 

influencing factor - pixel size, which revealed the advantages 

and disadvantages of these classifiers for data of different 

features. 

Experimental studies point out that the CMA and SVM 

classifiers are superior to the CNN and K-NN classifiers for 

each type of feature matrices in almost all datasets. However, 

the CNN gives the highest recognition scores for 2DPCA 

features and original face samples of Yale dataset. CMA gives 

remarkably high recognition rates only for 2DPCA- and 

2DSVD-based feature matrices in the AR face dataset when 

compared with the SVM classifier. However, SVM is more 

successful than CMA when the 2DFDA-based feature 

matrices and original images in AR face dataset and all feature 

matrices in ORL and Yale face datasets are used. Especially 

face classification system which combines the SVM classifier 

with the 2DFDA-based feature matrices seems to be the most 

plausible choice. In the future work, we will attempt to apply 

CMA classifier for face classification in videos by processing 

video frames as still images. 
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