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Crispness is an important indicator of crunchy food. However, it cannot be easily quantified 

by sensory evaluation, due to the high subjectivity of evaluators; instrument measurement 

of this indicator requires much manpower and time. To improve the efficiency of food 

crispness prediction, this paper attempts to build a rapid, convenient, and accurate crispness 

analysis model. Starting with the fracturing sound of crunchy food, the authors collected the 

fracturing acoustic signal, conducted wavelet denoising, analyzed the eigenvalues in time 

and frequency domains, and constructed crispness prediction models based on multiple 

linear regression (MLR) and neural network, respectively. Through fracturing test and 

acoustic test, cluster analysis was adopted to select the typical eigenvalues of acoustic signal, 

including the peak amplitude of power spectral density (PSD) curve, amplitude difference, 

and waveform index. Based on these eigenvalues, a crispness analysis model was 

established, and used to predict the crispness of four kinds of food, namely, potato, sweet 

potato, carrot, and turnip. The results show that the BP neural network had a smaller relative 

error than the MLR; when the threshold was 5%, the BP neural network maintained a 

prediction accuracy of >90%, and achieved 100% prediction accuracy on two types of food. 

To sum up, this paper reveals the relationship between the food chewing sound features and 

food quality, laying the theoretical basis for the research of food chewing sound mechanism. 
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1. INTRODUCTION

In recent years, crunchy food has gained immense 

popularity among consumers, which kicks off a wave of 

research on crunchy food. Crispness, as an indicator of the 

freshness, maturity, and hygiene of food, directly reflects food 

quality. Sensory evaluation is a critical method to assess 

crispness. But this approach is susceptible to the preference, 

physical condition, and cultural difference of evaluators, and 

unable to quantify the value of crispness. The mechanics 

research on crispness mainly relies on the texture analyzer, 

which consumes much manpower, material, and time. To 

evaluate crispness, this paper tries to correlate the crispness 

with the food chewing sound features. 

The research on the relationship between crunchy food 

quality and acoustic features can be traced back to the last 

century. Some of the latest researches are as follows: Dias-

Faceto et al. [1] combined texture analyzer with acoustic 

detector to simulate our chewing of crunchy food and sense 

the food texture, and discovered the significance correlation 

between force curve parameters and acoustic curve parameters 

through experiments. Through three-point bending test and 

cutting test, Carsanba et al. [2] found that the number of force 

peaks and acoustic pressure peaks during food fracturing are 

strongly correlated with crispness. Zadeike et al. [3] learned 

that fast and nondestructive acoustic technology is an effective 

tool to monitor the food quality in the process of baking. From 

the angle of molecular motion, Roudaut et al. [4] explained the 

impact of moisture on bread crispness, and identified the direct 

relationship between the fracturing acoustic intensity and 

crispness. Chen et al. [5] developed a sound detector to detect 

the mechanical and acoustic curves at the fracturing of six 

types of biscuits, observed sudden pressure drops at the 

appearance of acoustic signal, and noticed the correlation 

between the second-order derivative of the mechanical curve 

and the acoustic curve, indicating that the energy of the 

biscuits is released to the air in the process of fracturing. Using 

a multifunctional texture analyzer, Taniwaki and Kohyama [6] 

analyzed the mechanical properties and acoustic features, and 

evaluated the crispness of potato chips, with a special focus on 

the acoustic features near the main fracture point; the results 

verified the assumption that the crispness of potato chips can 

be felt when the food completely fractures, and confirmed that 

the force drop at the fracture point has an obvious 

correspondence with the acoustic pressure. Costa et al. [7] 

carried out mechanics and acoustic detections on 86 different 

varieties of apples, extracted 16 mechanical and acoustic 

parameters for principal component analysis (PCA), and 

demonstrated the correlation between acoustic features and 

crispness. Arimi et al. [8] examined the crispness of biscuits 

with different moisture activities, revealing that the area under 

the acoustic curve in the time domain decreases with the 

crispness of the food. 

Not many Chinese scholars have studied the quality and 

acoustic features of crunchy food. Yin [9] analyzed the 

correlation between acoustic signal features and hardness of 

apple, created an apple hardness prediction model based on 

acoustic features, and realized rapid nondestructive detection 

Traitement du Signal 
Vol. 38, No. 1, February, 2021, pp. 231-238 

Journal homepage: http://iieta.org/journals/ts 

231

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.380125&domain=pdf


 

of apple hardness. Wang [10] discussed the acoustic features 

of carrot at fracturing, noted the good correlations between 

waveform index, signal strength, fracturing stress, fracturing 

energy, and elastic modulus, and then modeled the relationship 

between fracturing acoustic features of carrot. 

The frequency domain map of the acoustic signal is very 

helpful for crispness detection. De Belie et al. [11] evaluated 

apple crispness by analyzing the amplitude, energy, and 

frequency in the chewing sound frequency domain map 

through fast Fourier transform (FFT). Srisawas and Jindal [12] 

analyzed the acoustic signal domain maps of several types of 

puffed food, and selected the eigenvalues for crispness 

evaluation.  

A common way to determine the amplitude, frequency, and 

phase of sine wave is to convert time domain map to frequency 

domain map through Fourier transform [13, 14]. Wavelet 

denoising offers a popular and widely used tool to process 

frequency domain maps. Huang et al. [15] captured the 

frequency features of seismic waves accurately through 

wavelet denoising. Nguyen et al. [16] removed the noise from 

electrocardiogram signal, thereby eliminating contrasts and 

improving diagnosis accuracy. Khullar et al. [17] proposed a 

novel three-dimensional (3D) wavelet denoising algorithm, 

which removes the noise from functional magnetic resonance 

imaging (fMRI) data with the aid of wavelet transform and 

signal estimation theory. To enhance the weak echo signal of 

the laser radar, Xu et al. [18] reduced the noise amplitude 

through wavelet denoising, and established a probability 

detection model of laser radar. 

In general, there is not yet a mature evaluation model of 

food quality based on chewing sound signal. Jessop et al. [19] 

studied the relationship between the electromyogram of 

masseter and acoustic curve during chewing, and constructed 

a feasible food quality evaluation model based on the features 

of the two curves. Zhang et al. [20] collected chewing sound 

signal of human, and developed a model to estimate food 

quality; But the model still requires a lot of manpower to 

quantify food quality. 

The current evaluation methods for food crispness are 

largely fuzzy and subjective. There is no systematic, deep 

analysis of the acoustic features of crunchy food, not to 

mention quantifying the relationship between fracturing 

acoustic signal and crispness of food. Therefore, this paper 

presents a crispness prediction model based on chewing 

acoustic features. The work mainly covers five parts: 

collecting fracturing acoustic signal from crunch food; signal 

denoising; extracting eigenvalues in time and frequency 

domains, and analyzing their correlations with crispness; 

further screening of eigenvalues through cluster analysis; 

building prediction model. Based on acoustic signal features, 

the crispness prediction model saves the time, manpower, and 

material required for crispness evaluation, providing a rapid 

and convenient way to quantify the crispness of crunchy food. 

 

 

2. MECHANICAL TESTS 

 

2.1 Test materials 

 

The test materials include potato, sweet potato, carrot, and 

turnip, all of which were purchased from a fruit and vegetable 

market. 

 

2.2 Test instruments 

 

The test instruments include CT3 texture analyzer, sound 

sensor, Lenovo laptop computer, Dell laptop computer, self-

made sample table, and PHO70A drying box. 

 

2.3 Test methods 

 

The crispness was measured by texture analyzer through 

tests. The first peak on the force curve during the first 

compression was taken to characterize the stress on the food 

during fracturing.  

To establish the relationship between the fracturing acoustic 

signal and crispness of each sample, the moisture gradient of 

each sample was configured, and the sample was dried. Firstly, 

each sample was divided into blocks of 2cm×1cm×1cm, and 

then dried for 5-10min at 60℃, until no acoustic signal was 

captured at the fracturing of the sample. In this way, 10 

moisture gradients were obtained for potato, 8 for sweet potato, 

7 for carrot, and 7 for turnip. 

As shown in Figure 1, CT3 texture analyzer was selected for 

mechanical tests. The sensor was placed at 4cm away from the 

acoustic source. To mimic chewing, a bionic indenter was 

chosen as the probe [21]. During the tests, each sample was 

compressed only once at the speed of 1mm/s. The test distance 

was 6mm, and the trigger point load was 0.1N. Ten parallel 

tests were conducted on each sample.  

 

 
 

Figure 1. Food crispness test instruments  

 

 

3. COLLECTION OF FRACTURING ACOUSTIC 

SIGNAL  

 

 
 

Figure 2. Force curve and time domain map of acoustic 

signal at sample fracturing 

 

During the mechanical tests, the sensor was connected to 

the computers, and the acoustic signal was collected by Adobe 

Audition 3.0. The captured force map and acoustic map were 

merged into the same figure on MATLAB (Figure 2). It can be 
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seen that the acoustic curve reached the highest amplitude, as 

the force curve arrived at its peak; the amplitude of acoustic 

signal gradually increased with the degree of compression. 

Hence, it was hypothesized that the crispness of a type of food 

can be perceived when the food completely fractures, and the 

acoustic signal have much to do with the force at the fracturing. 

Since the acoustic signal are related to force signal, which 

strongly correlate with perceived crispness, it is possible to 

predict food crispness based on acoustic signal. 

 

 
 

Figure 3. Time domain map of acoustic signal 

 
 

Figure 4. Frequency domain map of acoustic signal 

 

The sample length of the sound card was set to 16bit. 

Figures 3 and 4 present the time and frequency domain maps 

of the collected acoustic signal, respectively. 

Wavelet denoising was performed on the acoustic signal 

with the default threshold. By the ddencmp function of 

MATLAB, the default threshold for the signal was obtained. 

Then, the original acoustic signal was subject to eight-layer 

wavelet decomposition, using db2 wavelet basis. Figure 5 

shows the time and frequency domain effects of wavelet 

denoising. 

 

 
 

Figure 5. Time and frequency domain maps of acoustic signal before and after wavelet denoising 

 

As shown in Figure 5, the wavelet denoising reduced the 

noise in the original acoustic signal, making the signal purer, 

and revealed more characteristic peaks. 

 

 

4. FEATURE EXTRACTION OF FRACTURING 

ACOUSTIC SIGNAL  

 

4.1 Selection of time domain features  

 

(1) Extraction of time domain features 

The following time domain features were acquired through 

MATLAB programming: signal strength, maximum short-

term frame energy, amplitude difference, pulse factor, 

waveform index, and attenuation time. 

 

The signal strength (unit: dB) refers to the total energy of 

the discrete acoustic signal at all sampling points. Let x(n) be 

the discrete acoustic signal. Then, the signal strength (E) can 

be calculated by: 
 

21
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where, N is the number of sampling points. 

The maximum short-term frame energy (unit: dB) refers to 

the highest energy among the frames divided from the acoustic 

signal via FFT. Let x(n) be the time series of a frame of 

acoustic signal. Then, the maximum short-term frame energy 

(Emax) can be calculated by: 
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max max ( )E x n=  (2) 

 

The amplitude difference (unit: dB) refers to the difference 

between the maximum and minimum amplitudes of the 

acoustic signal in the time domain. Let x(n) be the discrete 

acoustic signal. Then, the amplitude difference (D) can be 

calculated by 

 
max ( ) min ( )D x n x n= −  (3) 

 

The pulse factor refers to the ratio of the maximum 

amplitude to the absolute value of amplitude of the acoustic 

signal in the time domain. Let x(i) be the discrete acoustic 

signal. Then, the pulse factor (Y1) can be calculated by: 
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where, x(n) is the maximum value of x(i). 

The waveform index refers to the ratio of energy to root-

mean-square of amplitude of the acoustic signal. The 

waveform index (Y2) can be calculated by: 
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   (5) 

The attenuation time (unit: s) refers to the time for the 

acoustic signal to decay from the maximum amplitude to 0.1 

times of the amplitude in the time domain. Let x1=max|x(n)| be 

the maximum amplitude of acoustic signal; l1 be the number 

of sampling points corresponding to x1; l2 be the number of 

sampling points corresponding to x2=0.1x1; fs be the sampling 

frequency. Then, the attenuation time (t) can be calculated by: 
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=  (6) 

 

(2) Correlation analysis between time domain features of 

acoustic signal and food crispness 

The above six time domain features were extracted from 

potato, sweet potato, carrot, and turnip with different crispness 

values. Then, the authors analyzed the correlations between 

these eigenvalues with food crispness. It was discovered that 

sample crispness is strongly correlated with signal strength, 

maximum short-term frame energy, amplitude difference and 

waveform index, but not clearly correlated with pulse factor or 

attenuation time. The correlation coefficients are listed in 

Table 1. Therefore, signal strength, maximum short-term 

frame energy, amplitude difference and waveform index were 

chosen as the final time domain features. 

 

Table 1. Correlation coefficients between time domain features of acoustic signal and food crispness 

 
 Signal 

strength 

Maximum short-term 

frame energy 

Amplitude 

difference 

Pulse factor Waveform 

index 

Attenuation 

time 

Potato 0.83 0.79 0.78 0.41 0.86 0.03 

Sweet potato 0.75 0.76 0.89 0.02 0.88 0.38 

Carrot 0.97 0.92 0.92 0.00 0.95 0.49 

Turnip 0.95 0.90 0.94 0.03 0.97 0.03 

 

4.2 Selection of frequency domain features  

 

(1) Extraction of frequency domain features 

The time domain map of acoustic signal was converted into 

power spectral density (PSD) map through Fourier transform. 

The eigenvalues were extracted from the PSD map to analyze 

their correlation with food crispness. Through MATLAB 

programming, the following frequency domain features were 

obtained: peak PSD amplitude, peak location, PSD. 

Let Ai be the amplitude of PSD curve. Then, the peak PSD 

amplitude (Xmax) can be calculated by: 

 

max max( )iX A=  (7) 

 

During the plotting process, the ordinate value of 

10*log10(xi) was converted to the unit of dB. All ordinate 

values obtained were negative. Thus, the absolute value of the 

peak was chosen for correlation analysis against food 

crispness. 

The peak location refers to the frequency corresponding to 

the peak PSD amplitude. 

Let Ai be the amplitude of PSD curve. Then, the PSD (unit: 

dB) (G) can be calculated by: 
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(2) Correlation analysis between frequency domain features of 

acoustic signal and food crispness 

 

Table 2. Correlation coefficients between frequency domain 

features of acoustic signal and food crispness 

 
  Peak PSD amplitude Peak location PSD 

Potato 0.88 0.00 0.92 

Sweet potato 0.73 0.00 0.89 

Carrot 0.88 0.00 0.84 

Turnip 0.94 0.00 0.97 

 

The above three frequency domain features were extracted 

from potato, sweet potato, carrot, and turnip with different 

crispness values. Then, the authors analyzed the correlations 

between these eigenvalues with food crispness. It was 

discovered that sample crispness is strongly correlated with 

peak PSD amplitude and PSD, but not correlated with peak 

location. The correlation coefficients are listed in Table 2. 

Therefore, peak PSD amplitude and PSD were chosen as the 

final frequency domain features. 

 

 

5. SCREENING OF TIME AND FREQUENCY DOMAIN 

EIGENVALUES 

 

The time and frequency domain features were further 

screened through system clustering. The clustering methods 
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include inter-class clustering and clustering in R, using 

Pearson correlation coefficient. The screening results are 

presented in Figure 6. 

 

 
 

Figure 6. Tree diagram of cluster analysis on time and 

frequency domain features  

 

Figure 6 provides the three diagram of cluster analysis on 

time and frequency domain features for the acoustic signal. 

When the distance was set to 20, the eigenvalues fell into two 

classes: the first class includes peak PSD amplitude and PSD; 

the second includes amplitude difference, waveform index, 

maximum short-term frame energy, and signal strength. 

When the distance was set to 15, the eigenvalues fell into 

three classes: the first class includes peak PSD amplitude and 

PSD; the second includes amplitude difference; the third 

includes signal strength, waveform index, and maximum 

short-term frame energy. 

When the distance was set to 10, the eigenvalues fell into 

four classes: the first class includes PSD; the second includes 

peak PSD amplitude; the third includes amplitude difference; 

the fourth includes signal strength, waveform index, and 

maximum short-term frame energy. 

When the distance was set to 5, the eigenvalues fell into five 

classes: the first class includes PSD; the second includes peak 

PSD amplitude; the third includes amplitude difference; the 

fourth includes signal strength; the fifth includes waveform 

index, and maximum short-term frame energy. 

For the features allocated to the same class, the mean of the 

square of the correlation coefficient between each feature in a 

class and every other feature in the same class was calculated, 

and the maximum value was taken as the typical eigenvalue: 

 
2

2

1

r
R

m
=

−

  (9) 

 

where, r is the correlation coefficient between a feature in a 

class and another feature in that class; m is the number of 

features in the class. 

After system clustering, the approximate matrix and 

clustering table were obtained (Table 3 and Table 4). 

 

Table 3. Approximate matrix 

 
Case Signal 

strength 

Maximum short-

term frame energy 

Amplitude 

difference 

Waveform 

index 

Peak PSD 

amplitude 

PSD 

Signal strength 1.000 .471 -.040 .502 -.088 -.402 

Maximum short-term frame energy .471 1.000 .034 .913 -.312 -.491 

Amplitude difference -.041 .032 1.000 .072 -.012 -.054 

Waveform index .502 .913 .072 1.000 -.423 -.545 

Peak PSD amplitude -.088 -.312 -.012 -.421 1.000 .361 

PSD -.041 -.491 -.054 -.545 .362 1.000 

 

Table 4. Clustering table 

 
Order Cluster portfolio  Cluster of first appearance Next order 

 Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2  

1 2 4 .916 0 0 2 

2 1 2 .487 0 1 4 

3 5 6 .365 0 0 5 

4 1 3 .022 2 0 5 

5 1 5 -.293 4 3 0 

 

The results of the above empirical formula show that, if the 

features are divided into two classes, waveform index and 

peak PSD amplitude should be chosen; if they are divided into 

three classes, peak PSD amplitude, amplitude difference, and 

waveform index should be chosen; if they are divided into four 

classes, PSD, peak PSD amplitude, amplitude difference, and 

waveform index should be chosen; if they are divided into five 

classes, PSD, peak PSD amplitude, amplitude difference, 

signal strength, and waveform index should be chosen. 

Through the analysis, the optimal eigenvalues could be 

obtained when the distance is shorter than 15. Thus, the final 

eigenvalues were chosen as: peak PSD amplitude, amplitude 

difference, and waveform index. 

6. FOOD CRISPNESS PREDICTION MODEL BASED 

ON TIME AND FREQUENCY DOMAIN FEATURES 

 

6.1 Multiple linear regression (MLR) model 

 

(1) MLR model construction 

MLR was performed on the eigenvalues of peak PSD 

amplitude, amplitude difference, and waveform index, which 

were obtained through system clustering. Then, the MLR 

equations for potato, sweet potato, carrot, and turnip can be 

obtained as: 

 

1 1 2 388.166 0.782 0.775 0.043y x x x= − − −  (10) 
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2 1 2 3111.482 0.105 0.982 0.447y x x x= + − −  (11) 

 

3 1 2 3127.842 0.145 1.481 5.031y x x x= − − +  (12) 

 

4 1 2 352.313 0.416 0.412 2.431y x x x= + − +  (13) 

 

where, x1 is waveform index; x2 is the peak PSD amplitude; x3 

is the amplitude difference. 

The MLR equations have significant linear correlations, 

when the significance level is 0.05. The chi-squared values (R2) 

of formulas (10)-(13) were obtained as 0.93, 0.92, 0.92, and 

0.90, respectively. 

 

(2) Model prediction results 

By the MLR equations, the predicted values and relative 

errors of potato, sweet potato, carrot, and turnip were obtained 

(Table 5). As shown in Table 5, the relative error of crispness 

prediction for potato was 2.78% at the maximum and 0.63% 

at the minimum, averaging at 1.70%; the relative error of 

crispness prediction for sweet potato was 11.23% at the 

maximum and 0.18% at the minimum, averaging at 3.28%; the 

relative error of crispness prediction for carrot was 18.47% at 

the maximum and 0.91% at the minimum, averaging at 7.13%; 

the relative error of crispness prediction for turnip was 3.46% 

at the maximum and 0.18% at the minimum, averaging at 

1.316%. Although the relative error was greater than the ideal 

relative error on a few samples, the prediction effect was 

acceptable for most samples. 

 

Table 5. Prediction results of MLR equations 

 
 Sample number 1 2 3 4 5 6 7 8 9 10 

Potato 

Actual value (N) 28.38 33.38 35.71 38.11 39.82 42.96 45.02 47.94 49.32 54.22 

Predicted value (N) 28.56 33.75 34.88 38.97 40.33 41.81 45.34 46.95 48.77 55.73 

Relative error (%) 0.63 1.11 -2.32 2.26 1.29 -2.68 0.71 -2.07 -1.12 2.78 

Sweet potato 

Actual value (N) 30.46 40.12 45.29 47.43 50.37 54.34 59.29 64.75 68.56 71.68 

Predicted value (N) 33.88 40.96 44.48 46.08 50.46 52.83 61.28 62.23 66.18 70.82 

Relative error (%) 11.23 2.09 -1.79 -2.85 0.18 -2.78 3.36 -3.89 -3.47 -1.20 

Carrot 

Actual value (N) 17.64 19.65 22.12 27.59 28.25 36.25 39.53 40.78 50.43 55.53 

Predicted value (N) 15.49 23.28 25.27 28.57 30.42 33.98 37.89 40.41 45.52 53.42 

Relative error (%) -12.2 18.47 14.24 3.55 7.68 -6.26 -4.15 -0.91 9.73 3.8 

Turnip 

Actual value (N) 17.71 21.37 23.25 24.92 28.38 30.08 32.52 37.82 38.96 41.96 

Predicted value (N) 18.05 21.31 23.18 25.43 28.43 31.12 33.08 37.53 39.65 41.71 

Relative error (%) 1.92 -0.28 -0.3 2.05 0.18 3.46 1.72 -0.77 1.77 -0.6 

 

Table 6. Prediction results of BP neural network 

 
 Sample number 1 2 3 4 5 6 7 8 9 10 

Potato 

Actual value (N) 28.38 33.38 35.71 38.11 39.82 42.96 45.02 47.96 49.32 54.22 

Predicted value (N) 29.11 33.85 35.92 37.32 40.11 42.97 44.81 47.41 49.28 52.86 

Relative error (%) 2.57 1.41 0.59 2.08 0.73 0.02 0.47 1.15 0.08 2.51 

Sweet 

potato 

Actual value (N) 30.44 40.12 45.27 47.43 50.35 54.32 59.29 64.75 68.54 71.68 

Predicted value (N) 32.88 41.36 45.54 46.75 52.32 54.16 59.83 63.82 68.44 70.06 

Relative error (%) 8.02 3.09 0.6 1.43 3.91 0.29 0.91 1.44 0.15 2.26 

Carrot 

Actual value (N) 17.64 19.65 22.12 27.59 28.23 36.22 39.53 40.76 50.43 55.53 

Predicted value (N) 16.56 18.73 22.68 27.72 30.53 35.42 41.01 42.34 50.52 56.05 

Relative error (%) -6.12 -4.68 2.53 0.47 8.15 -2.21 3.74 3.88 0.18 0.94 

Turnip 

Actual value (N) 17.89 21.36 23.23 24.92 28.38 30.08 32.53 37.92 38.95 41.98 

Predicted value (N) 18.08 21.58 23.2 25.31 28.63 30.68 32.38 38.99 40.17 41.46 

Relative error (%) 1.06 1.03 -0.13 1.57 0.88 1.99 -0.46 2.82 3.13 -1.24 

 

6.2 BP neural network  

 

(1) BP neural network construction 

Figure 7 explains the workflow of prediction by BP neural 

network. The number of hidden layer nodes directly affects the 

performance of the BP neural network. Here, this number is 

determined in two steps: narrowing down the range of the 

number by empirical formula; determining the number 

through trial and error. 

Since there are 3 nodes on the input layer and 1 on the output 

layer, the number of hidden layer nodes was limited to [1, 12] 

by empirical formula. Then, the number was finalized by 

comparing the mean squared errors (MSEs) of the network 

with different number of hidden layer nodes. In this way, the 

number of hidden layer nodes was determined as 10, 12, 12, 

and 7 for the BP neural networks of potato, sweet potato, carrot, 

and turnip, respectively. Through trail and error, the total 

number of nodes in the network was set to 100. 

 
 

Figure 7. Workflow of BP neural network 
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(2) Model prediction results 

By the BP neural network, the predicted values and relative 

errors of potato, sweet potato, carrot, and turnip were obtained 

(Table 6). 

As shown in Table 6, the relative error of crispness 

prediction for potato was 2.57% at the maximum and 0.02% 

at the minimum, averaging at 1.16%; the relative error of 

crispness prediction for sweet potato was 8.02% at the 

maximum and 0.15% at the minimum, averaging at 2.21%; the 

relative error of crispness prediction for carrot was 8.15% at 

the maximum and 0.18% at the minimum, averaging at 3.29%; 

the relative error of crispness prediction for turnip was 3.13 % 

at the maximum and 0.13% at the minimum, averaging at 

1.43%. Judging by the relative errors, BP neural network 

performed better than MLR in prediction. 

 

6.3 Comparison between the two models 

 

To find the better model for predicting sample crispness, the 

MLR model and BP neural network were separately applied to 

predict the crispness of 10 groups of samples. Each group was 

predicted by each model three times, and the mean of the three 

predictions was taken as the final result. To evaluate the 

prediction accuracy of each model, the threshold of relative 

error was set to 2% and 5% in turn (Figure 8). 

 

 
(a) Threshold: 2% 

 
(b) Threshold: 5% 

 

Figure 8. Prediction accuracies of the two models 

 

As shown in Figure 8, BP neural network achieved better 

prediction results than the MLR model in most cases. When 

BP neural network was selected, the prediction effect was 

better at the relative error threshold of 5%: the prediction 

accuracy was as high as 90% for sweet potato and carrot, and 

100% for potato and turnip. 

 

7. CONCLUSIONS 

 

This paper constructs crispness prediction models for potato, 

sweet potato, carrot, and turnip based on their fracturing 

acoustic features. The main conclusions are as follows: 

(1) For the MLR model, when the threshold of relative error 

was set to 2%, the prediction accuracy was 50% for potato, 

30% for sweet potato, 10% for carrot, and 70% for turnip; 

when the threshold of relative error was set to 5%, the 

prediction accuracy was 100% for potato, 100% for sweet 

potato, 40% for carrot, and 100% for turnip. 

(2) For the BP neural network, when the threshold of 

relative error was set to 2%, the prediction accuracy was 70% 

for potato, 60% for sweet potato, 30% for carrot, and 70% for 

turnip; when the threshold of relative error was set to 5%, the 

prediction accuracy was 100% for potato, 90% for sweet 

potato, 90% for carrot, and 100% for turnip. 

The above data show that BP neural network with the 

relative error threshold of 5% was the optimal model for 

predicting food crispness. 

 

 

ACKNOWLEDGMENT 

 

This work is supported by Science and Technology 

Research Planning Project, Department of Education, Jilin 

Province, China (Grant No.: JJKH20210177KJ). 

 

 

REFERENCES  

 

[1] Dias-Faceto, L.S., Salvador, A., Conti-Silva, A.C. (2020). 

Acoustic settings combination as a sensory crispness 

indicator of dry crispy food. Journal of Texture Studies, 

51(2): 232-241. https://doi.org/10.1111/jtxs.12485 

[2] Çarşanba, E., Duerrschmid, K., Schleining, G. (2018). 

Assessment of acoustic-mechanical measurements for 

crispness of wafer products. Journal of Food Engineering, 

229: 93-101. 

https://doi.org/10.1016/j.jfoodeng.2017.11.006 

[3] Zadeike, D., Jukonyte, R., Juodeikiene, G., Bartkiene, E., 

Valatkeviciene, Z. (2018). Comparative study of ciabatta 

crust crispness through acoustic and mechanical methods: 

Effects of wheat malt and protease on dough rheology 

and crust crispness retention during storage. LWT, 89: 

110-116. https://doi.org/10.1016/j.lwt.2017.10.034 

[4] Roudaut, G., Dacremont, C., Le Meste, M. (1998). 

Influence of water on the crispness of cereal-based foods: 

Acoustic, mechanical, and sensory studies. Journal of 

Texture Studies, 29(2): 199-213. 

https://doi.org/10.1111/j.1745-4603.1998.tb00164.x 

[5] Chen, J., Karlsson, C., Povey, M. (2005). Acoustic 

envelope detector for crispness assessment of biscuits. 

Journal of Texture Studies, 36(2): 139-156. 

https://doi.org/10.1111/j.1745-4603.2005.00008.x 

[6] Taniwaki, M., Kohyama, K. (2012). Mechanical and 

acoustic evaluation of potato chip crispness using a 

versatile texture analyzer. Journal of Food Engineering, 

112(4): 268-273. 

https://doi.org/10.1016/j.jfoodeng.2012.05.015 

[7] Costa, F., Cappellin, L., Longhi, S., Guerra, W., 

Magnago, P., Porro, D., Gasperi, F. (2011). Assessment 

of apple (Malus × domestica Borkh.) fruit texture by a 

combined acoustic-mechanical profiling strategy. 

0%

20%

40%

60%

80%

Potato Sweet
potato

Carrot Turnip

P
re

d
ic

ti
o

n
 a

cc
u
ra

cy

BP neural network MLR

0%

20%

40%

60%

80%

100%

Potato Sweet
potato

Carrot Turnip

P
re

d
ic

ti
o

n
 a

cc
u
ra

cy

BP neural network MLR

237



 

Postharvest Biology and Technology, 61(1): 21-28. 

https://doi.org/10.1016/j.postharvbio.2011.02.006 

[8] Arimi, J.M., Duggan, E., O’sullivan, M., Lyng, J.G., 

O’riordan, E.D. (2010). Effect of water activity on the 

crispiness of a biscuit (Crackerbread): Mechanical and 

acoustic evaluation. Food Research International, 43(6): 

1650-1655. 

https://doi.org/10.1016/j.foodres.2010.05.004 

[9] Yin, M. (2019). Research on rapid detection method and 

device of apple hardness based on acoustic 

characteristics. Shandong Agricultural University. 

[10] Wang, X. (2017). Characteristics of mechanical acoustic 

behavior and Micromorphology of carrot. Jilin 

University. 

[11] De Belie, N., Harker, F.R., De Baerdemaeker, J. (2002). 

Ph-postharvest technology: Crispness judgement of royal 

gala apples based on chewing sounds. Biosystems 

Engineering, 81(3): 297-303. 

https://doi.org/10.1006/bioe.2001.0027 

[12] Srisawas, W., Jindal, V.K. (2003). Acoustic testing of 

snack food crispness using neural networks. Journal of 

texture studies, 34(4): 401-420. 

https://doi.org/10.1111/j.1745-4603.2003.tb01072.x 

[13] Taniwaki, M., Hanada, T., Sakurai, N. (2006). Device for 

acoustic measurement of food texture using a 

piezoelectric sensor. Food Research International, 39(10): 

1099-1105. 

https://doi.org/10.1016/j.foodres.2006.03.010 

[14] Maruyama, T.T., Arce, A.I.C., Ribeiro, L.P., Costa, 

E.J.X. (2008). Time–frequency analysis of acoustic noise 

produced by breaking of crisp biscuits. Journal of Food 

Engineering, 86(1): 100-104. 

https://doi.org/10.1016/j.jfoodeng.2007.09.015 

[15] Huang, D., Cui, S., Li, X. (2019). Wavelet packet 

analysis of blasting vibration signal of mountain tunnel. 

Soil Dynamics and Earthquake Engineering, 117: 72-80. 

https://doi.org/10.1016/j.soildyn.2018.11.025 

[16] Nguyen, T.N., Nguyen, T.H., Ngo, V.T. (2020). Artifact 

elimination in ECG signal using wavelet transform. 

Telkomnika, 18(2): 936-944. 

https://doi.org/10.12928/telkomnika.v18i2.14403 

[17] Khullar, S., Michael, A., Correa, N., Adali, T., Baum, S. 

A., Calhoun, V.D. (2011). Wavelet-based fMRI analysis: 

3-D denoising, signal separation, and validation metrics. 

Neuroimage, 54(4): 2867-2884. 

https://doi.org/10.1016/j.neuroimage.2010.10.063 

[18] Xu, X., Luo, M., Tan, Z., Pei, R. (2018). Echo signal 

extraction method of laser radar based on improved 

singular value decomposition and wavelet threshold 

denoising. Infrared Physics & Technology, 92: 327-335. 

https://doi.org/10.1016/j.infrared.2018.06.028 

[19] Jessop, B., Sider, K., Lee, T., Mittal, G.S. (2006). 

Feasibility of the acoustic/EMG system for the analysis 

of instrumental food texture. International Journal of 

Food Properties, 9(2): 273-285. 

https://doi.org/10.1080/10942910600596399 

[20] Zhang, H., Lopez, G., Tao, R., Shuzo, M., Delaunay, J. 

J., Yamada, I. (2012). Food Texture Estimation from 

Chewing Sound Analysis. In HEALTHINF, 213-218. 

https://doi.org/10.5220/0003771802130218 

[21] Chen, L., Sun, Y.A., Liu, J.J., Xie, G.P. (2014). Influence 

of bionic indenter on food 'texture based on 

electromyographic signal. Journal of agricultural 

machinery, 45(08): 248-253, 281. 

https://doi.org/10.6041/j. issn.1000-1298.2014.08.040 

  
 

 

238




