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Fibre Metal Laminates (FMLs) are laminates consisting of metal layers and fibre 

reinforced composite layers. These laminates are designed to improve some specific 

properties of constituent metals and composites layers. Estimation of First Ply Failure 

(FPF) Loads of these FMLs is a part in the broad characterization of these materials. A 

numerical method is developed for the estimation of FPF when these laminates are used 

as simply supported plates subjected to uniformly distributed load. Various failure 

criterions are used to identify these loads. The proposed method has been validated with 

the results of exact (Navier) solution available in the literature. FPFs are estimated for 

different groups of FMLs based on Aluminum, Titanium and Magnesium layers. The 

results are presented in the form of non-dimensional FPF and deformation values for 

various aspect ratios. 
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1. INTRODUCTION

A hybrid composite laminate which consists of metal layers 

and fibre reinforced composite layers is called as Fibre Metal 

Laminate (FML). In 1978 Delft University of Technology has 

introduced first configuration of this group known as ARALL 

[1, 2]. In these thin high strength Aluminium alloy sheets and 

uni/bi-directional Aramid fibre laminas are alternately bonded 

together. The main motive of this approach was to reduce the 

weight and to improve the damage tolerance characteristics of 

materials used for aircraft construction. The improvements are 

also observed in other areas of fatigue, impact, corrosion and 

damage resistance, Various combinations of metal layers and 

reinforced composite layers are being studied [3]. 

Promising application of this group of material has attracted 

researchers for comprehensive characterization involving 

experimentation, development of analytical and numerical 

techniques for the prediction of its behavior under different 

loading conditions. Interlaminar failure behavior of GLARE 

laminates under short beam three-point bending load are 

investigated for different l/h ratios [4]. Works reported in the 

literature about impact resistance of FMLs was reviewed [5]. 

Some investigators have proposed numerical and analytical 

techniques, which can predict the behavior of FMLs like, 

stress-strain curve, delamination, impact resistance [5, 6]. It 

was observed from literature survey that, less information is 

available about FMLs behavior, when it is used as plate 

subjected to uniformly distributed loads on its surface. 

However, the analysis about transverse loading on a 

rectangular plate subjected to different boundary conditions is 

very essential to understand the behavior of FMLs properly, 

so that its uses can be extended. 

To identify the existing formulations, a brief literature 

survey is presented here to analyze the composite plates 

subjected to uniformly distributed loads. It is relevant since the 

FML is also a composite material and various methods of 

flexural analysis of composite plates are discussed in the 

literature [7-9]. For the last two decades research in this area 

is focused on the Flexure Analysis of simply supported 

rectangular composite plate. Solutions are arrived by 

combining with different failure criteria for identification of 

FPF [9-11]. Out of many such failures criteria, study shows 

Tsai-Hill failure criteria has been used by many researchers 

because of its simplicity in implementing in finding FPF loads 

[9, 12]. Majority of the work is focused on symmetrical cross-

ply laminates. A shear deformable finite element (FE) method 

was used to estimate the FPFs for laminates with different 

stacking sequences. The developed procedure is compared 

with the exact solution for various failure criterion [13]. In the 

similar way a 3D layer wise mixed FE model for thick 

composite laminated plates has been proposed to predict the 

FPF. Results from various 3D and 2D failure theories are 

analyzed [11]. FE models involves considerably more 

computation compared to Rayleigh-Ritz method. In context of 

the advantage of this method. 

Based on the literature survey the suitable steps in the 

present analysis have been identified as. a) Developing a 

numerical technique based on CLT to calculate stresses and 

deflections. b) Validation of proposed approximate procedures. 

c) Applying the procedures for FML.

In the present work CLT [14] coupled with Ritz

approximation has been used as a basis to develop a numerical 

technique to calculate stresses and deformations. FPF loads 

and transverse deflections for different aspect ratios are used 

to define the behavior of the plate. Various failure theories 

have been taken to arrive at the FPF loads of the FMLs. The 
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present analysis is also limited to cross-ply laminates in view 

of widespread applications in research and industry [2, 15-17]. 
 

 

2. NUMERICAL FORMULATION FOR 

CALCULATING STRESSES AND STRAINS 
 

By following the Classical Lamination Theory (CLT) 

procedure the governing differential equation for a symmetric 

cross-ply laminate rectangular plate subjected to uniformly 

distributed load q(x,y),can be expressed as [18]. 

 

𝐷11

𝜕4𝑤0

𝜕𝑥4
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤0

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤0

𝜕𝑦4

= 𝑞(𝑥, 𝑦) 

(1) 

 

In the present work Ritz approximation has been considered 

to develop general form of numerical solution for the above 

differential equation [19]. The rectangular plate is simply 

supported at the boundary and as shown in Figure 1. By 

solving the Eq. (1). The solutions for the approximate central 

deflections and strains can be obtained as. 
 

𝑤𝑜(𝑥, 𝑦) = ∑ ∑ 𝐶𝑗
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where, 𝜓𝑚(𝑥)is an approximate function, which satisfy these 

loading and boundary condition. and cos 𝛾𝑙 = 𝑛 × 𝑝𝑖 𝑏⁄ . 
 

 
 

Figure 1. Loading and boundary conditions of simply 

supported composite plate 
 

 

3. REVIEW OF FAILURE ANALYSIS 
 

As a composite material, the strength of FML depends on 

the properties of the materials used, arrangement of the layers 

in the laminate and on the stress induced due to the loading 

modes and boundary conditions. With the continuous increase 

of load on the laminate, the stresses in the individual laminas 

will also increase. These stresses depend on the arrangement 

of the laminas in the laminate and may vary in type and 

magnitude from lamina to lamina. When these stresses in any 

one of the lamina reaches a value that satisfies a selected 

failure criterion, that particular lamina can be considered as 

failed and the load on the laminate at that instant can be 

considered as First Ply Failure load. Identifying the nature of 

failure stress and mode of failure (matrix or fiber) are also the 

features of stress-strain analysis [20]. Different failure criteria 

are proposed in the literature and in the present work strength-

based theories of failure are considered to identify the FPF [11, 

13, 20]. These are briefly presented below. 
 

3.1 Maximum stress failure criterion 
 

According to the maximum stress failure criteria, failure of 

the material is assumed to occur if any one of the conditions 

satisfied. 
 

𝑓𝑖𝑏𝑟𝑒 𝑡𝑒𝑛𝑠𝑖𝑙𝑒  𝑚𝑜𝑑𝑒 (𝜎1 > 0) ,    𝜎1 ≥ 𝑆1𝑇 

𝑓𝑖𝑏𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑖𝑣𝑒 𝑚𝑜𝑑𝑒  (𝜎1 < 0),    |𝜎1| ≥ |𝑆1𝐶| 
𝑀𝑎𝑡𝑟𝑖𝑥 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑚𝑜𝑑𝑒  (𝜎2 > 0),    𝜎2 ≥ 𝑆2𝑇  

𝑀𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑚𝑜𝑑𝑒  (𝜎2 < 0 ),
|𝜎2| ≥ |𝑆2𝐶| 

(3) 

 

3.2 Hashin’s failure criterion 
 

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑓𝑖𝑏𝑟𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝜎1 > 0); (
𝜎1

𝑆1𝑇

)
2

+ (
𝜎12

𝑆12

)
2

≥ 1 

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒  𝑓𝑖𝑏𝑟𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝜎1 < 0); (
|𝜎1|

𝑆1𝐶

)  ≥ 1 

𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝜎2 > 0); (
𝜎2

𝑠2𝑇

)
2

+ (
𝜎12

𝑆12

)
2

≥ 1 

 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

(𝜎2 < 0); (
𝜎2

2𝑆13

)
2

+ [(
𝑆2𝐶

2𝑆13

)
2

− 1] (
𝜎2

𝑆2𝐶

) + (
𝜎12

𝑆12

)
2

≥ 1 

(4) 

 

3.3 Puck failure criterion 
 

  𝑡𝑒𝑠𝑖𝑙𝑒 𝑓𝑖𝑏𝑟𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝜎1 > 0);  (
𝜎1

𝑆1𝑇

) ≥ 1 

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒  𝑓𝑖𝑏𝑟𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝜎1 < 0); (
|𝜎1|

𝑆1𝐶

) ≥ 1 

𝑡𝑒𝑠𝑖𝑙𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝜎2 > 0);  
 

√(
𝜎12

𝑆12

)
2

+ (1 + 𝑃⊥𝑡

𝑆2𝑇

𝑆12

) (
𝜎2

𝑆2𝑇

)
2

+ 𝑃⊥𝑡 (
𝜎2

𝑆12

) ≥ 1 

𝑚𝑎𝑡𝑟𝑖𝑥 𝑠ℎ𝑒𝑎𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒   {

𝜎2 < 0

|
𝜎2

𝜎12

| ≤
𝑆2𝐴

𝑆12𝐴

;  

 
1

𝑆12

[√𝜎12
2 + (𝑃⊥𝑐𝜎2)2 + 𝑃⊥𝑐𝜎2] ≥ 1 

𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 {

𝜎2 < 0

|
𝜎2

𝜎12

| ≥
𝑆2𝐴

𝑆12𝐴

;   

−
𝑆2𝐶

𝜎2

[(
𝜎12

2(1 + 𝑃⊥2𝐶)𝑆12

)
2

+ (
𝜎2

𝑆2𝐶

)
2

] ≥ 1 

(5) 

 

𝑤ℎ𝑒𝑟𝑒 𝑆2𝐴 =
𝑆12

2𝑃⊥𝑐

[√1 + 2𝑃⊥𝑐

𝑆2𝐶

𝑆12

− 1] 
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𝑆12𝐴 = 𝑆12√1 + 𝑃⊥2𝐶 

𝑃⊥2𝐶 = 𝑃⊥𝑐

𝑆2𝐴

𝑆12

 

𝑤ℎ𝑒𝑟𝑒 𝑃⊥𝑐 𝑎𝑛𝑑 𝑃⊥𝑡  𝑎𝑟𝑒 𝑓𝑖𝑡𝑡𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 , 
 𝑑𝑢𝑒 𝑡𝑜 𝑙𝑎𝑐𝑘 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 , 𝑖𝑡 𝑤𝑎𝑠 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑡ℎ𝑎𝑡 . 

𝑃⊥𝑐 = 0.2 𝑎𝑛𝑑 𝑃⊥𝑡 = 0.3 [21] 
 

3.4 Tsai-Hill failure criterion 

 

(
𝜎1

𝑆1𝑇 𝑜𝑟 𝑆1𝐶

)
2

+ (
𝜎2

𝑆2𝑇  𝑜𝑟 𝑆2𝐶

)
2

− (
1

𝑆1𝑇
2  𝑜𝑟 𝑆1𝐶

2 )

2

𝜎1𝜎2 + (
𝜏12

𝑆12

)
2

≥ 1 

(6) 

 

3.5 Tsai-Wu failure criterion 

 

(
1

𝑆1𝑇

−
1

𝑆1𝐶

) 𝜎1 + (
1

𝑆2𝑇

−
1

𝑆2𝐶

) 𝜎2 +
𝜎1

2

𝑆1𝑇𝑆1𝐶

+
𝜎2

2

𝑆2𝑇𝑆2𝐶

−
𝜎1𝜎2

2√𝑆1𝑇𝑆1𝐶𝑆2𝑇𝑆2𝐶

+ (
𝜏12

𝑆12

)
2

≥ 1 

(7) 

 

3.6 Hoffman failure criterion 

 

(
1

𝑆1𝑇

−
1

𝑆1𝐶

) 𝜎1 + (
1

𝑆2𝑇

−
1

𝑆2𝐶

) 𝜎2 +
𝜎1

2

𝑆1𝑇𝑆1𝐶

+
𝜎2

2

𝑆2𝑇𝑆2𝐶

−
𝜎1𝜎2

𝑆1𝑇𝑆1𝐶

+ (
𝜏12

𝑆12

)
2

≥ 1 

(8) 

4. NUMERICAL RESULTS AND DISCUSSIONS 

 

The computer code has been developed in MATLAB, for 

calculating stress-stain values as per expressions given in Eq. 

(2). Initially three configurations of symmetric cross ply 

composite laminates are analyzed for validating the numerical 

procedure. The results are validated by comparing them with 

results available in literature. This method is extended further 

to FMLs to estimate non-dimensionalized FPF loads [11]. The 

FML materials chosen are of research importance and some of 

their other important properties are discussed in the literature 

[22] 

 

4.1 Validation of the formulation 

 

Table 1. Material Strength Properties 

 
Properties GFRP 

[23] 

S2/FM94 

Al [8] 

2024-T3 

Ti-Metal 

[8] 

Mg-Metal 

[24] 

AZ31B-

H24 

𝐸1(𝑀𝑝𝑎) 4.86E+04 7.11E+04 10.0E+04 45.0E+03 

𝐸2(𝑀𝑝𝑎) 8.50E+03 7.11E+04 10.0E+04 45.0E+03 

𝐺12(𝑀𝑝𝑎) 3.10E+03 2.70E+04 4.30E+04 16.67E+03 

ν12 0.33 0.33 0.33 0.35 

𝑆1𝑇(𝑀𝑝𝑎) 1.90E+03 4.55E+02 12.90E+02 2.20E+02 

𝑆2𝑇(𝑀𝑝𝑎) 5.60E+01 4.55E+02 12.90E+02 2.20E+02 

𝑆12(𝑀𝑝𝑎) 3.80E+01 2.48E+02 2.95E+02 1.60E+02 

𝑡(𝑚𝑚) 0.1300 0.4100 0.14 0.211 

 

 

Table 2. The non-dimensionalized FPF load of simply supported symmetric cross ply plates subjected to uniformly distributed 

out of plane loading 

 
Non-dimensionalized FPF load; Exact Solution [11] (Present Numerical solution) 

  Failure Criteria 

Ply layout (No. of ply) Aspect ratio Maximum stress Tsai-Hill Tsai- Wu Hoffman Hashin’s Puck 

[0/90/0̅]𝑆 

(5) 

0.5 

 

1.0 

 

2.0 

 

3.0 

 

4.0 

9.0078 

(9.0412) 

5.7858 

(5.7952) 

5.8850 

(5.9001) 

5.6959 

(5.7016) 

5.7181 

(5.7248) 

9.0083 

(9.0736) 

5.7766 

(5.7856) 

5.8855 

(5.9176) 

5.6959 

(5.7104) 

5.7181 

(5.7320) 

9.0407 

(9.0408) 

5.8391 

(5.8389) 

5.9029 

(5.9030) 

5.7038 

(5.7101) 

7.57185 

(5.7318) 

9.0085 

(9.0084) 

5.7705 

(5.7703) 

5.8858 

(5.8854) 

5.6962 

(5.6960) 

5.7188 

(5.7320) 

9.0077 

(9.0076) 

5.7857 

(5.7860) 

5.8849 

(5.8851) 

5.6960 

(5.6958) 

5.7179 

(5.7177) 

9.0069 

(9.0068) 

5.7952 

(5.7953) 

5.8860 

(5.8863) 

5.6963 

(5.6958) 

5.7177 

(5.7176) 

[0/90/0/90̅̅̅̅ ]𝑆 

(7) 

0.5 

 

1.0 

 

2.0 

 

3.0 

 

4.0 

9.6676 

(9.6675) 

5.7451 

(5.7452) 

4.6815 

(4.6814) 

4.4842 

(4.4845) 

4.5017 

(4.5016) 

9.6682 

(9.6681) 

5.7361 

(5.7362) 

4.6819 

(4.6820) 

4.4845 

(4.4844) 

4.5020 

(4.5021) 

9.7022 

(9.7021) 

5.7978 

(5.7977) 

4.6962 

(4.6963) 

4.4909 

(4.4907) 

4.5075 

(4.5076) 

9.6685 

(9.6681) 

5.7302 

(5.7303) 

4.6821 

(4.6820) 

4.4847 

(4.4846) 

4.5022 

(4.5023) 

9.6675 

(9.6676) 

5.4752 

(5.4751) 

4.6812 

(4.6814) 

4.4844 

(4.4845) 

4.5019 

(4.5022) 

9.6678 

(9.6677) 

5.4753 

(5.4751) 

4.6813 

(4.6815) 

4.4841 

(4.4842) 

4.5020 

(4.523) 

[0/90/0/90/0̅]𝑆 

(9) 

0.5 

 

1.0 

 

2.0 

 

3.0 

 

4.0 

10.0489 

(10.4877) 

5.7256 

(5.7255) 

4.1649 

(4.1650) 

3.9623 

(3.9622) 

3.9766 

(3.9765) 

10.0489 

(10.0487) 

5.7168 

(5.7166) 

4.1652 

(4.1653) 

3.9626 

(3.9625) 

3.9769 

(3.9770) 

10.0848 

(10.0878) 

5.7780 

(5.7783) 

4.1782 

(4.1783) 

3.9684 

(3.9685) 

3.9818 

(3.9816) 

10.0503 

(10.502) 

5.7110 

(5.7112) 

4.1654 

(4.1655) 

3.9628 

(3.9623) 

3.9771 

(3.9772) 

10.0488 

(10.490) 

5.7121 

(5.7122) 

4.1655 

(4.1661) 

3.9625 

(3.9624) 

3.9767 

(3.9765) 

10.0455 

(10.466) 

5.7122 

(5.7123) 

4.1654 

(4.1652) 

3.9627 

(3.9625) 

3.9768 

(3.9768) 

35



 

 
 

Figure 2. The non-dimensionalized (a) First ply failure with respect to S, (b) Central deflection with respect to S 

 

The results of the exact solution published in the literature 

[10] are taken to validate the results of the formulation 

presented in this work. The material considered is GFRP and 

the properties are given in Table 1. The non-dimensional FPF 

loads based on present formulation are presented and 

compared with results of exact solution in Table 2. The non-

dimensional FPF loads and transverse deflections calculated 

based on Tsai-Hill failure theory for different width to length 

(S=b/a) ratios are presented in Figure 2. The very close 

proximity of existing formulation results with the exact 

solution results validated the usefulness of the formulation. 

 

4.2 Application on FMLs 

 

Case-1: Aluminium-GFRP Laminate 

Two configurations GLARE [𝐴𝑙/0/90/𝐴𝑙̅̅̅]
𝑆

and [𝐴𝑙/90/

0/𝐴𝑙̅̅̅]
𝑆

 have been considered for analysis for the non-

dimensionalized FPF, the results so obtained for various 

failure criteria are presented in Figure 3. 

The results have shown that all the failure criterion have 

predicated more or less same failure loads. However, when 

width to length (S=b/a) between 0.85 to 1.85 are analyzed 

further as shown in Figure 4 In case of [𝐴𝑙/0/90/𝐴𝑙̅̅̅]
𝑆

the 

failure load predicated by Tsai-Wu criterion has been found to 

be more compared to other presented failure criterion. While 

failure load obtained by Tsai Hill and Hoffman are lowest. 

Whereas failure load obtained by maximum stress and puck 

failure criteria lies in between them. All the failure criterion 

has predicted the failure in the top of the first composite layer 

since this layer is more stressed as compared to the other layers 

After S ≥ 1.33 . Failure was reported in second GFRP 

lamina. This behavior of shifting in the failure position is 

exhibited as nick in the Figure 4 (a). the larger slope after the 

nick indicates failure at low loads due to orientation of fibre in 

second GFRP layer along the large span [8].  

Whereas in case of [𝐴𝑙/90/0/𝐴𝑙̅̅̅]
𝑆
 for S ≥ 0.625  failure 

reported at the top of the second GFRP after this aspect ratio 

top surface of first GFRP lamina failed. In this case also Tsai-

Wu overestimated the failure load compared to other failure 

criterion. In this case also Tsai-Wu overestimated the failure 

load compared to other failure criterion. The change of slope 

has happened in this case at b/a=0.625 and has negligible 

influence on the slope of the curve because of laminate 

configuration and consequent stress distribution.  

 

 
 

Figure 3. Non- dimensionalized FPF load with respect to (S) for Aluminium-GFRP Laminate for various failure criterion 
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Figure 4. Non-dimensionalized FPF load with plate aspect ratio (S) for Al-GFRP Laminate for various failure criterion 
 

Case-2. Magnesium-GFRP Laminate 

Numerical computation of different configurations of cross 

ply Magnesium-GFRP Laminate has been undertaken for 

analysis. Comparison of various failure criterion for different 

aspect ratios, are represented in Figure 5. In the range, 0.5 ≤
 𝑆 ≤1 [𝑀𝑔/90/0/𝑀𝑔̅̅̅̅̅]𝑆FPF load is more compare to[𝑀𝑔/0/
90/𝑀𝑔̅̅̅̅̅]𝑆, All the failure criterion shows that both the FMLs 

fails at more or less at same load. In case of [𝑀𝑔/0/90/
𝑀𝑔̅̅̅̅̅] up to aspect ratio 𝑆 ≤ 1.25 The failures are observed at 

top of the first GFRP layer. While for 𝑆 ≥  1.250 failure 

occurred in the top surface of the second GFRP laminate i.e. 

(90° of second GFRP lamina). For [𝑀𝑔/90/0/𝑀𝑔̅̅̅̅̅]𝑆 failure 

occurred in the second GFRP (i.e.0°) layer at the top surface 

up to 𝑆 ≤ 0.750 . after this 𝑆 ≥ 0.875 failure noted in the top 

of the first GFRP (i.e. in 90°). For both configurations Tsai-

Wu overestimated the FPF load compared other failure 

criterion.  

 

 
 

Figure 5. Non-dimensionalized FPF load with plate aspect ratio (S) for Mg-GFRP Laminate for various failure criterion 
 

 
 

Figure 6. Non-dimensionalizedFPF load with plate aspect ratio (S)for Titanium-GFRP Laminate for various failure criterion 
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Case-3 Titanium GFRP Laminate 

Two configurations of Ti-GFRP based FMLs have been 

analyzed, various failure criterion used to calculate the FPF. It 

has been observed that all the failure criteria yield more or less 

the same FPF. The non-dimensionalized FPF loads for various 

failure criterion are presented in Figure 6. for 𝑆 ≤ 1.5, FPF 

for [𝑇𝑖/90/0/𝑇�̅�]𝑆 has higher than [𝑇𝑖/0/90/𝑇�̅�]𝑆. All failure 

criterion indicates that failure in the [𝑇𝑖/0/90/𝑇�̅�]𝑆 for 𝑆 ≤
1.25 occurred in the top of the first GFRP, whereas for 𝑆 ≥
1.5 failure occurred in the third laminate of GFRP., similarly 

in [𝑇𝑖/90/0/𝑇�̅�]𝑆 failure occurred at the top of the third GFRP 

laminate for S ≤ 0.625, whereas after S≥ 0.750 FPFs noted in 

the top of the first GFRP.  

 

 

5. CONCLUSIONS 

 

The need of the analysis when FMLs are subjected to lateral 

loads is established. A numerical approximation method has 

been developed and validated to predict the behavior of FMLs 

as simply supported rectangular plate subjected to uniformly 

distributed load. 

The results are presented as non-dimensionalized quantities 

for proper comparison across various aspect ratios. Various 

failure criterions are studied to understand their influence on 

the results. From the results the following conclusions are 

arrived. 

a) The failure loads obtained by numerical technique used 

for various failure criteria has an excellent correlation 

with results obtained by exact (Navier’s) solution.  

b) All failure criterion shows for an aspect ratio less than 1, 

higher strength can be obtained by placing GFRP lamina 

perpendicular to principal axis at top and bottom of the 

laminate. 

c) Results from comparison of different failure criterion 

has shown that all the theories are very close in their 

approximations. Tsai-Hill failure Criterion is 

recommended based on its wide application in the 

failure analysis of composite materials. 
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NOMENCLATURE 

 

𝑤𝑜(𝑥, 𝑦) Central deformation 

𝑆𝑖𝑇 , 𝑆𝑖𝐶(𝑖
= 1,2,3) 

Lamina strength along direction i in the 

tension and compression 

𝑆𝑖𝑗(𝑖 ≠ 𝑗; 𝑖, 𝑗

= 1,2,3) 
Lamina shear strength on the plane i-j 

𝑞(𝑥, 𝑦) 
Transverse uniformly distributed load on 

the surface of the plate 

�̅� Non-dimensional first Ply failure 

�̅� Non-dimensional deformation 

𝐸𝑖(𝑖 = 1,2,3) 
Modulus of Elasticity of lamina along 

the material principal direction. 

𝐺𝑖𝑗(𝑖 ≠ 𝑗; 𝑖, 𝑗

= 1,2,3) 
Shear modulus of lamina in planes 

𝐷𝑖𝑗(𝑖, 𝑗 = 1,2,3) Bending Stiffness of a lamina 

𝑎, 𝑏, ℎ 
Length, width, and thickness of a 

laminate 

 

Greek symbols 

 

𝜓𝑚(𝑥) 
Approximate function depending upon 

boundary conditions 

𝜎𝑖(𝑖 = 1,2) Stress in the principal direction. 
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