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ABSTRACT
Rainfall-induced slope failures are one of the most disastrous and frequently occurring natural 
 hazards. Hence, it is indispensible to predict their occurrence and their post-failure velocity in order 
to save lives and properties in mountainous areas. The rain that falls on a soil slope results in either 
infi ltration or surface runoff, depending on the site characteristics. For saturated soil slopes, the 
amount of rain that goes as infi ltration is usually less than the amount that goes as runoff. As a result, 
surface runoff scours the slope surface, thereby removing the soil slope protecting covers and eventu-
ally putting the slope, at least, in a marginally stable condition. This article reports the performance 
of the smoothed particle hydrodynamics numerical scheme in simulating runoff along a saturated 
soil slope with emphasis on predicting the velocity of fl ow. The average velocity of fl ow using the 
smoothed particle hydrodynamics method was compared with the average value obtained using a 
standard open-channel hydraulics empirical equation. The results show that the smoothed particle 
hydrodynamics method could be used as an alternative method for predicting the runoff velocity 
along a soil slope in hilly areas.
Keywords: Compressible fl uid, incompressible fl uid, infi ltration, meshless numerical methods, runoff, 
SPH.

1 INTRODUCTION
Water is an elixir of life, and its main source is precipitation in the form of rain, snow, mist, 
hail, etc. Rainwater, as it has unimaginable benefi ts to ensure the existence of life on Earth, at 
times, may also disrupt the smooth functioning of the ecosystem. One such detrimental effect 
is its enormous potential to induce landslides. As a result, soil slope failure triggered by rain-
fall is reported to be one of the most frequent and dangerous natural hazards (see [1, 2]).

According to Petley (as cited in [3]), in the year 2007 alone, there were 695 landslide- 
induced fatalities in China, followed by 465 in Indonesia, 352 in India, 168 in Nepal, 150 in 
Bangladesh, and 130  in Vietnam. In a separate study, Lamay et al. (as cited in [4]) reported 
the landslide-induced fatality case in Philippines in which a school was buried in 2006 with 
its 246 students and 7 teachers. In the continental Africa too, for instance, in Ethiopian high-
lands, the landslide calamity did claim many lives and destroyed properties worth millions of 
monetary value during the years 1998–2003 alone [5]. On the global context, the Americas 
(North, Central, and South) and China have the highest number of fatalities [3].

Unfortunately, the life loss and property destructions continue unabated to this date in 
almost every part of the globe, probably because of the increased exposure of population to 
the landslide hazard [3]. As the world population keeps on increasing, it puts pressure on 
governments all around the globe to develop hilly areas. In the prevalence of relatively heavy 
rainfall events, such actions could lead to the occurrence of devastating landslide hazards.

Rainfall may result in infi ltration, runoff, or both depending on the site conditions. 
Although the infi ltrating rainwater reduces the matric suction of the soil slope, runoff scours 
and, possibly, removes soil slope protecting covers. Once the soil slope covers are removed, 
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it is likely that the stability of the soil slope will be compromised. Moreover, for saturated soil 
slopes the amount of rain that goes as surface runoff is far greater than the amount of rain 
infi ltrating the slope, because soil infi ltration rate reduces with soil saturation.

Hence, developmental activities in mountainous areas need to be properly planned to avoid 
the consequent life losses and injuries. Central to the planning is our understanding of how 
slope instability is triggered. In this regard, our knowledge pertaining to site geology and 
geotechnical ameliorative measures is vitally important.

In this article, attempts have been made to investigate the performance of smoothed parti-
cle hydrodynamics (SPH) method in capturing some fl ow characteristics of runoff along a 
saturated soil slope. As the fl ow velocity is of paramount importance in planning evacuation 
strategies, more emphasis has been placed on predicting the runoff velocity.

2 THE SPH METHODOLOGY
The smoothed particle hydrodynamics is a numerical approach initially developed for simu-
lating astrophysical phenomena, in 1977 [6] and, later, its applications were reported in 
different areas of research, including free surface fl ows, fl ow through porous media, etc. The 
SPH meshless numerical method formulation is based on interpolation theory, and two essen-
tial concepts dictate its formulation: (i) kernel approximation and (ii) particle approximation.

2.1 Kernel approximation

2.1.1 Kernel approximation of fi eld functions
Kernel approximation of fi eld functions is, in essence, the representation of the fi eld 
function(s) in integral form. This is achieved by multiplying an arbitrary fi eld functions 
with a smoothing kernel function. Therefore, a function A of a three-dimensional posi-
tion vector x [or an estimate of the function A(x) at location x′] can be expressed in 
integral form as

  (1)

where  is the Dirac delta function and is given by

  (2)

where Ω is the volume of the integral containing x and x′is a new independent variable.
In the above expression, function A(x) is exact or rigorous, as long as the Dirac delta func-

tion is used, and A(x) is continuous in Ω. In SPH, however, the Dirac delta function needs to 
be replaced by the smoothing (weighting) function W(x−x′,h) in which case it will become an 
approximate representation of A(x). Therefore, the SPH form of a function approximation (or 
kernel approximation) is expressed as

  (3)

where W is called the kernel or a smoothing function and h is the smoothing length, which 
demarcates the infl uence area of the smoothing function. However, it needs to be noted that 
eqn (3) gives an approximate representation of the integral of a fi eld function as long as W is 
not a Dirac delta function, thus the name kernel approximation.
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2.1.2 The Kernel approximation of a derivative of a function
As equations of computational fl uid dynamics problems are mostly partial differential equa-
tions (PDEs) of second degree [6], an appropriate approximation of the function derivatives 
is of profound importance. Accordingly, the kernel approximation of the divergence of the 
fi eld function A(x) (for vector quantity) is therefore expressed as

  (4)

After the application of the divergence theorem, it is always the case where the divergence 
operation on the primed coordinate in eqn (4) is transferred to the gradient of the smoothing 
function in the SPH numerical approach, which entails re-writing eqn (4) as

  (5)

Note that dot product is used in eqn (5). Similarly, the gradient of the function (for scalar 
quantity) is expressed as

  (6)

Therefore, it can be said that the spatial derivative of a fi eld function can be evaluated using 
the values of the fi eld function and the spatial derivative of the smoothing function. It should 
also be noted that the negative sign outside the integral sign in eqns (5) and (6) can be removed 
if the spatial derivative of the kernel function is taken with respect to x instead of the primed 
x (i.e. x′).

2.2 Particle approximation

2.2.1 Particle approximation of a fi eld function
Particle approximation is another key operation in the SPH numerical formulation, and it is the 
means of transforming the continuous kernel approximation (in integral form) into the sum-
mation over all particles at the discrete points in the support domain. Particles carry mass, m, 
velocity, v, and other quantities specifi c to the given problem and are regarded as interpolation 
points, analogous to the grid nodes in mesh-based numerical methods. Therefore, equations 
that govern the evolution of fl uid quantities are expressed as summation interpolants using 
smoothing function. Equation (9) can then be approximated in a summation form as

  (7)

where N is the total number of particles in the support domain; mj and rj are the mass and 
density of particle j, respectively. It should also be noted that the infi nitesimal volume dx′ is 
replaced by the fi nite volume ΔV=mj/rj.

From eqn (7), one can infer that the approximate value of a function at any discrete point 
can be obtained using the weighted average of those values of the function at all other parti-
cles in the infl uence domain of that particle. 

Following a similar argument, the particle approximation for a function at particle (point) 
i can be expressed as in eqn (8) [6, 7] as

  (8)
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2.2.2 Particle approximation of gradient and divergence of fi eld functions
From eqn (8), it can be said that the continuous integral representation of the fi eld function 
can be expressed in a discretized summation form, which is one of the favourable qualities of 
the SPH method as that renders the use of a background mesh for numerical integration 
unnecessarily [5]. Such a conversion of the governing mathematical equations to a workable 
SPH numerical scheme, however, requires some fundamental techniques as discussed below.

Transformation of the partial differential equations to the SPH discretized summation 
form, for instance, can be achieved by different methods. One such method is using integra-
tion by parts and Taylor series expansion. Suppose that A is a scalar fi eld function 
representing any physical variable and is defi ned in a given domain of interest. Then its gra-
dient can be formulated in a manner similar to eqn (8) as follows:

  (9a)

where

  (9b)

Applying some basics of vector calculus, other forms of the gradient equations can also be 
formulated. For instance, substituting r inside the gradient operator and applying the chain 
rule, eqn (9c) can be obtained. The introduction of mass and density into SPH particle approx-
imation is to facilitate numerical approaches in hydrodynamic problems, where density is a 
key parameter.

  (9c)

Thus, re-writing in SPH particle approximation form we obtain

  (9d)

The third possible method of approximating the gradient of the fi eld variable A is by incor-
porating the SPH kernel and particle approximation on a gradient of the unity, which is 
expressed as follows:

  (9e)

Obviously, the gradient of the unity is zero. Therefore, eqn (9e) can be re-written in the 
form containing both particles i and j as follows:

  (9f)

Addition of eqns (9a and 9f) gives another discretized (or discrete) form of the gradient of 
a fi eld variable and is presented as follows:

  (9g)
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As it can be seen in eqn (9g), unlike in eqn (9a), the fi eld variable difference is introduced 
into the discrete particle approximation. Equation (9g) is preferred to eqn (9a), as, in such 
asymmetric forms, the presence of the variable difference can reduce errors arising from 
particle inconsistency problems [6]. As a fourth approach, again substituting (1/r) in the gra-
dient operator and applying the chain rule we obtain

  (9h)

Thus, the SPH equivalent of eqn (9h) is

  (9i)

Finally, if one wishes to develop SPH particle approximation for , it is expressed as

  (9j)

To obtain a symmetric equation, the concept of a gradient on the unity can be applied here too.

  (9k)

Addition of eqns (9j and 9k) yieldsthe following symmetric equation:

  (9l)

However, from eqn (9h) we obtain

  (9m)

Therefore, eqns (9a 9d, 9g, 9i, 9j, and 9l) are all correct particle approximations of any 
scalar fi eld variable A though the symmetric equations are thought to yield accurate results 
[5]. Following similar procedures as in the case of the gradient of a fi eld variable, the diver-
gence of the fi eld variable can also be expressed in a particle approximation scheme by 
simply replacing the gradient with the divergence operator.

Note that the negative sign in eqn (5) has been dropped in the above equations, because, 
here, the spatial derivative of the smoothing function ∇W is taken with respect to particle i 
and not with respect to particle j.

2.3 Smoothing functions

Smoothing (also called weighting) function is at the core of the SPH formulation. Spatial 
discretization of fi eld variables is based on a set of points (particles, in SPH nomenclature), 
instead of grid nodes, which are commonly used in mesh-based numerical methods, such as  
Finite Difference (FD) and Finite Element (FE) methods. Thus, it is with the use of kernel 
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interpolation that fi eld variables, such as velocity, pressure, density, stress, etc., are approxi-
mated at any point (i.e. at any discrete point) in the support domain. Accordingly, there are 
several kernel functions being used in the SPH numerical method. The piecewise  cubic-spline 
function, commonly known as B-spline, suggested by Monaghan and Lattanzio (as cited in 
[6]), is popular among the SPH numerical modelers, such as SPHyscis code developers [8]. 
The same function is used here as follows:

  (10)

where  is the relative distance between the two points xi and xj;  is 

the distance between the two particles; and, ad is given by  and  for two and three 

dimensions, respectively. 
The glaring shortcoming of spline functions is that their second derivative is a piecewise 

linear function; therefore, the stability properties can be inferior to those of smoother 
 kernels [6]. This could probably be one of the reasons as to why the spatial fi rst derivative 
of the cubic-spline smoothing functions is widely used in the emerging literature. 

3 SURFACE RUNOFF MODELLING AND SIMULATION

3.1 Governing equation

Traditionally, the velocity of the surface runoff is predicted using the Manning’s empirical 
equation in urban drainage studies or in almost all open channels. For the present study, the 
Navier–Stokes (NS) equations, combining the mass and momentum conservation equations 
with the conditions for incompressible fl uids, are chosen. As the SPH is the method for com-
pressible fl uids in astrophysical studies, its application to incompressible fl uids is under the 
assumption that every fl uid could be treated as compressible to <1% [6]. Meaning, density 
variations of 1% could be allowed without affecting the solutions signifi cantly.

As a result, the NS equation has been widely used to model incompressible fl ows through 
porous media and/or free surface fl ows by several researchers, e.g. [9–12]. The NS equation 
models fl ow at the micro or pore-scale level. In [13] the interaction between water waves and 
porous medium was investigated using what was dubbed the NS-type equation. The NS equa-
tions were also used in [14] for simulating free surface fl ow using SPH, with the exception 
that the artifi cial viscosity term was used instead of the laminar viscosity. In a separate study 
Morris et al. [15] employed the same continuity and momentum equations to model incom-
pressible low Reynolds number fl ows.

Therefore, the governing equation is given by

  (11)
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Equation (11) is the mass conservation equation. Again, for momentum conservation 
(incompressible fl uid), we obtain

  (12)

where V is the velocity vector, r is the water density, g is the gravity, P is the pressure, n is 
the dynamic viscosity, and t is the time.

It is also worth noting that the SPH was originally invented for modelling fl ows of com-
pressible fl uids, and thus its application to incompressible fl uid fl ows needs some approach 
to ensure that density variation within a certain limit is maintained. This is discussed in the 
following section.

3.2 Equation of state

For the standard SPH for compressible fl uids, pressure gradient is normally solved using equa-
tion of state (EoS). However, for the case of incompressible fl uids, solving the pressure using 
Poisson pressure equation dictates the adoption of a small time-step [6]. This constraint has led 
to the adoption of artifi cial compressibility for solving the pressure gradient in the NS equa-
tions. Accordingly, Monaghan [14] modifi ed the EoS suggested for water by Batchelor (also in 
[14]), for describing sound waves and used it for simulating free surface fl ows. In this research 
too the same EoS is used as given in eqn (13). Moreover, Bui et al. [16] applied the same EoS 
in their formulation of SPH for soil mechanics with some successes, which is given by

  (13)

where g is a constant and is taken to be 7 for most circumstances; r0 is the reference density; 
and B is a problem-dependent parameter for limiting the maximum density gradient and, in 
most cases, can be taken as the initial pressure [6, 15].

3.3 Viscous term in the NS equations

The Laplacian for calculating the viscous term in the fundamental NS equation [see eqn (12)] 
has been dealt with differently by different researchers. Liu and Liu [6], for instance, 
employed artifi cial viscosity. In [15] a new approach was developed, which is quite similar to 
the expression used in [16]. This article chooses the expression used in [8], which is given as 
in (14) for calculating the viscous term at particle i and is expressed as

  (14)

where v is the kinematic viscosity; rij is the distance between the i and j particles; vij is the 
velocity difference between particle i and particle j; and Wij is the smoothing length.

3.4 Boundary treatment

Boundary treatment entails special consideration in SPH, as particle defi ciency near or on the 
boundary impairs full exploitation of the scheme. Monaghan [14], also reported in [6], 
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 suggested the use of ghost particles near or on the boundaries so that a high repulsive force is 
created to prevent the fl uid particles from unphysically penetrating a solid boundary. Such a 
penalty force approach to prevent interior fl uid particles from penetrating the boundary is 
based on the Lennard-Jones molecular force approach. Another approach, in which the Hert-
zian contact theory was used, was also developed in [16]. For the current research, we use the 
Monaghan approach as given in eqn (14) and is given by

  (15)

where, as in [6], a and b are taken to be 12 and 4, respectively, although Monaghan [14] pro-
posed 4 and 2, respectively, with the conditions that a>b, always. He also suggested that a 
and b could be taken as 12 and 6, respectively, without signifi cant changes in the results. D is 
a problem-dependent parameter and is usually taken to be the square of the largest velocity 
[6], and r0 is selected to be approximately equal to the initial particle spacing.

3.5 Time integration

Here, the predictor-corrector method is used. The predictor step predicts a new value, and the 
corrector step improves the accuracy of that value. The predictor step is undertaken only once 
for each of the iterations, whereas the corrector step is continued until the required level of 
accuracy is reached. There are several predictor-corrector methods; although for this article 
we stick to the Euler predictor-corrector method (some prefer to name it as modifi ed Euler 
method). The basic idea behind the second-order Euler predictor-corrector method is that the 
solution for a new time-step is predicted using the explicit Euler method and the fi nal solution 
is corrected by applying the trapezoid rule as follows:

  (16)

  (17)

For stability, the time-step, Δt, needs to be checked against several stability requirements. 
A detailed reading regarding these stability conditions can be made in [6, 15].

4 EXAMPLES AND DISCUSSIONS
In this section numerical calculations and discussions are made. The data used are as follows: 
the rainfall intensity (surface-fl ux) is 10−4 m/s; the slope angle is −40°; and the kinematic 
viscosity is 1 × 10−6 m2/s.

Figure 1 shows the confi guration of the slope physical model before and after the onset of 
surface runoff. Figure 1a depicts the initial slope confi guration, the cyan colour representing 
the soil particles, the red colour representing impenetrable boundary particles, and the blue 
colour representing water particles. For the current simulation one main program with a num-
ber of subroutines was coded to develop the initial confi guration. A separate set of program 
codes were also coded for inducing runoff. Different simulation examples were carried out 
for different time-steps and simulation times. The left, top, and the bottom boundaries were 
treated as no-fl ow boundaries. In the coding, it was possible to record automatically, in a 
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separate fi le, the positions of each particle, their respective velocities, densities, and pore- 
water pressures. Those data fi les were used for the graphics using MATLAB. As can be noted 
from Fig. 1b–d, the SPH scheme is a suitable means for capturing different aspects of the 
runoff.

4.1 The average velocity from open-channel hydraulics

The Manning’s empirical equation is popular in urban drainage projects. It also enjoys broad 
applications in irrigation water supply projects. Manning’s coeffi cient of channel roughness 
is the value accounting for fl ow retardation due to vegetations and other obstructions on the 
soil slope. The values of h play an important role in velocity computation. Accordingly, the 
minimum and the maximum roughness coeffi cient values were sought so that the minimum 
and the maximum velocity values would be calculated. The different open channels along 
with their respective h values in which the minimum h value ranges from 0.011 (for a con-
crete lined channel with trowel fi nish) to 0.110 (for natural streams/fl oodplains with dense 
willows) are listed in [17]. Given the section, taking the average of the two h values (i.e. 
0.061), and plugging it into Manning’s equation, the average velocity can be obtained. The 
average velocity for the current section (a width of 0.5 m and a water depth of 0.48 m) is, 
therefore, ∼4.50 m/s. This maximum average velocity was compared with the maximum 
velocity obtained using the SPH simulation for a time-step of 0.02083 s and is summarized 
in Table 1.
The average maximum velocity can be calculated as follows:

V2 = (2.89)2 + (−2.62)2 => V  4.0 m/s

Comparing the two average maximum velocities obtained using the Manning’s empirical 
equation (4.50 m/s) and the SPH approach (3.90 m/s), the authors are of the opinion that the 
SPH approach reasonably predicted the velocity of the fl ow.

(a) (b)

(c) (d)

Figure 1: The SPH simulation for a simulation time of ∼0.5 s and a time-step of 0.02 s.
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5 CONCLUSIONS
In this research, the SPH scheme was employed to simulate surface runoff along a saturated 
soils slope. The NS equations govern the fl ow conditions. The simulation outputs include the 
respective particle velocities, positions, mechanical pressures, and densities, even though 
only the velocities are presented in this article. The snapshots of the fl ow are also shown. 
Acknowledging the need for further improvements, especially, with respect to incorporating 
the actual fl uid rheological properties, this preliminary fi nding suggests that the SPH scheme 
can be used as an alternative to or in conjunction with the existing runoff velocity prediction 
empirical formulas. Predicting the fl ow velocities is especially required for emergency plan-
ning in areas vulnerable to landslide.
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