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ABSTRACT
This paper presents a study on the development of safety performance function for freeways. Apply-
ing well-established statistical methods, we evaluated all variables that may affect freeway safety and 
selected the most signifi cant ones in the model. A variable analysis unit was utilized in this study to 
overcome the diffi culties in obtaining accurate crash and highway attribute data, as well as to improve 
the modelling quality. The results of this study provide much needed tools for freeway safety analysis.
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1 INTRODUCTION
The economic boom in China over the past two decades has stimulated unprecedented free-
way construction. In the last 20 years, the freeway mileage in the country has increased from 
zero to 53,900 km. The freeway network has greatly enhanced the capacity of the national 
highway transportation system, further fuelling economic development, and signifi cantly 
changing the lifestyle of ordinary Chinese people. The planned 85,000 km freeway network 
is centred in Beijing, the capital of China, with seven radial lines, nine north-south lines and 
18 east-west lines, which enables people to access a freeway in about 30 minutes in the East-
ern Region, 60 minutes in the Central Area, and 2 hours in the Western Territory.

However, this “overnight” success also comes at a human cost. Traffi c crashes on the free-
ways have increased rapidly. The safety of freeways has become a big concern to both the 
travelling public and the highway agencies in the country. This safest type of highway has 
been perceived as the most dangerous highway by many motorists. About 6,600 people died 
on freeways in 2006, which represents 8.3% of all highway traffi c fatalities based on the 
published offi cial statistics [1]. After 20 years of freeway construction and operation, sustain-
ability is becoming an overarching design principle for freeway systems with safety as one of 
the important aspects in sustainable transportation development.

To reduce freeway crashes, it is crucial to have a qualitative safety evaluation tool. A safety 
performance model provides such a tool that can be used to assess a particular freeway’s 
safety level and help identify effective crash countermeasures. A well-established and vali-
dated safety performance model can be used in observational before-and-after studies, and in 
network screening for safety management systems. The unique characteristics of freeway 
crashes in China, as discussed in our previous paper, indicate the need to model freeway 
safety independently.

It is easier to develop a Safety performance function (SPF) for the lower class of highways, 
because they bear lower geometric design features. Highway segments with lower geometric 
design features, such as small horizontal curve radiuses, narrow lane and shoulder width, and 
steeper grade of vertical curves, have been long recognized as vulnerable locations for traffi c 
crashes, thus easier to be modelled. Both the crash rate (crashes per million vehicle mile/km 
travelled), and the fatal crash rate (fatalities per 100 million vehicle mile/km driven) for  freeways 
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are generally much lower than that of other types of highways. The diffi culties in linking safety 
with design features are the main reason why fewer studies have been conducted.

2 LITERATURE REVIEW
Because of its importance in traffi c safety evaluation, many studies have been conducted in 
modelling highway safety performance [2–5]. Selecting variables that signifi cantly affect safety 
is one of the key steps in developing a valid SPF. Several papers discuss how to select modelling 
variables in detail [6–8]. Highway general features, such as horizontal and vertical arguments 
and the length of down/uphill segments are recognized as important variables by these studies.

A study specifi cally investigated the analysis unit [9], another important aspect in SPF 
development. This study proposed a new method of freeway section division based on the 
ordinal clustering method, which uses the clustering index expressed as crash frequency per 
kilometre. The advantages of this method include: easy identifi cation of high crash locations, 
easily associating safety with a host of selected variables, and better exploration of crash 
probability distributions.

The generalized linear regression method was widely used by many previous studies 
[9–14] over the past 10 years, which refl ected the progress on the crash modelling. The 
method assumed that crashes occurring on a particular roadway are independent, stochastic 
events, which follow certain probability distributions. Poisson and negative binomial (NB) 
models are well-accepted methods of modelling the crashes. zero-infl ated Poisson (ZIP) and 
zero-infl ated NB (ZINB) regression models have recently been applied in safety modelling.

3 METHODOLOGY

3.1 Data

There are two types of data required for modelling highway safety: crash data and highway 
attributes data by analysis unit. Crash data and highway attributes data from more than 10 
freeways were collected for this study. Similar to other developing countries, obtaining reli-
able crash data is a big challenge considering somewhat inconsistent data recording practices 
around the country.

Not all data were used in this model development and validation. The freeway with the 
most complete crash data and highway attribute data was used in model development. This 
142 km  four-lane freeway (2 lanes in each direction) was one of the very fi rst freeways built 
in China. The details of 2829 reported crashes were collected and compiled. Each crash 
record contains information on the occupants’ demographics, vehicle characteristics, envi-
ronmental conditions, and crash information, such as crash severity, time, location and type.

To overcome the small data size problem, this study used hour instead of year as the analysis 
time unit. That is, hourly fl ow and hourly crash data were used in the modelling process. The 
initial analysis revealed a close relationship between the distribution of hourly crashes and hourly 
traffi c volume. Traffi c information, average speed, vehicle type and occupancy were obtained 
from 23 cross-sections spaced approximately 6 km apart in both directions at every minute.

3.2 Spatial analysis unit

Generally there are two methods in the selection of a spatial analysis unit: fi xed length and 
variable length. The fi xed length method divides a roadway into sections with uniform length, 
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and the variable length method divides a roadway into sections with different length based on 
the change of highway attributes. These attributes are traffi c volume, speed limit and geometric 
design elements, such as horizontal curvature, vertical grade, number of lanes, shoulder type 
and width, median type of width, type of pavement, etc. Considering relatively small variations 
in freeway design elements and the problems with both methods, this study applied a new 
method based on the ordinal clustering process. By using the clustering index, expressed as 
crash frequency per kilometre, it is easier to identify high crash locations, associate safety with 
a host of selected variables, and explore crash probability distributions as described by [4].

Table 1 lists the characteristics of the segments defi ned by the clustering process. Figure 1 
shows the distribution of crashes by hour from these segments.

3.3 Model development

3.3.1 Model format
A generalized linear regression method was developed in this study. As shown in Figure 1, 
the distribution of crash frequency is very much in line with Poisson and NB distributions. 
According to the Kolmogorov-Smirnov test, the hourly crash distribution closely follows the 
negative binomial distribution with 95% confi dence. Based on the preliminary statistical 
analysis, segment length and traffi c volume are the most infl uential factors. Thus, the fi rst 
model is established as:
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Table 1: Summary statistics of segment length in kilometres.
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Figure 1: Distribution of hourly crashes.
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where:
lij =  predicted annual crash frequency to roadway segment i at the jth hour (24 hours in 

total);
EXPO = an exposure variable expressed as millions of vehicle-kilometres;
bij = parameter;
xijk = explanatory variables for roadway segment i at the jth hour.
Hourly traffi c volume correlates well with hourly crash counts. Most importantly, there 

is a clear variation in truck volume by hour of the day, which is associated with the time 
limit for trucks in the city. As mentioned previously, the time analysis unit is hour. This also 
helps to capture the impact of traffi c and traffi c composition on crash occurrences. Poisson, 
NB, ZIP, and ZINB models were used for the distribution of hourly crashes separately.

3.3.2 Variable selection
Selecting statistically signifi cant variables which are obtainable and quantifi able in practice 
is very important in developing a reliable and theoretically sound safety predictive model. 
Based on the unique characteristics of freeway traffi c crashes in China and preliminary sta-
tistical analysis, variables of location, direction of travel, horizontal curvature, interchange, 
vertical grade, as well as traffi c composition were selected.

Location was defi ned as either rural or city, since there is a signifi cant difference in crash 
frequencies between these two areas. The time restriction when truck traffi c can begin enter-
ing the city prompted a variable for direction of travel. Freeway interchanges are changing 
locations due to weaving traffi c. It is particularly true in China, because of somewhat low 
design standards used in interchange geometrics, such as sharp curves for exit ramp, steep 
vertical slope, and short acceleration and deceleration lanes.

Horizontal and vertical alignment variables were defi ned to capture the impact of horizon-
tal curves including average angle of horizontal curve and average slope of a segment. Traffi c 
variables are percentage of large vehicles, average speed of large vehicles and cars, and 
standard deviation of average speed for the two types of vehicles since our previous study 
showed these variables are signifi cantly affecting highway safety, particularly on the fre-
quency of rear-end collisions. Table 2 lists all variables considered for the modelling.

3.3.3 Model development
To best capture the probabilistic nature of crashes, four different probability distribution modes 
were evaluated. They are NB, Poisson, ZIP, and ZINB. The selection of variables in each 
model went backward, i.e., fi rst all the independent variables in Table 2 were used, and then 
the least irrelevant variable was rejected one at a time according to the output criterion (e.g. the 
P-value). Table 3 gives the regression outputs where K is the overdispersion parameter.

Table 4 lists the goodness of fi t of the four models: Akaike’s information criterion (AIC), 
Bayesian information criterion (BIC), logarithm likelihood ratio test, and Vuong statistics. 
The smaller the value of AIC (or BIC), the better the model is. The best model can be selected 
by comparing the output measures. As shown in Table 4, all the numbers indicate that NB 
captures the crash data the best. The Chibar2 of 417.73 rejects the null hypothesis of no over-
dispersion. The Vuong test, 4.13 > 1.96, suggests that ZIP is preferred to the Poisson.

Figure 2 gives the comparison of the predicted probability from all four models with the 
observed probability. It is clear that the NB model fi ts the data better than other models, and 
the Poisson model is the worst.
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Table 2: Independent variables.

Variable explanation Variable name Value

Exposure Exposure EXPO 106 annual vehicle-km
Direction
Location Interchange area

Direction
City or rural 
Interchange

0: outbound 1: inbound 
0: rural, 1: city 0: no, 
1: yes

Environment Average angle of  horizontal 
curves 
Vertical variables

Ave_angle

Ave_slope

numerical 

numerical
Percent of truck
Speed difference between 
car and truck

Truck%

Spe_difference

numerical

numerical
Traffi c 
variables

Standard deviation of truck 
speed 
Standard deviation of car 
speed

Spe_stan_truck

Spe_stan_car

numerical

numerical

Table 3: Summary of negative binomial regression.

Variable Coeffi cient Std. Error z P > !Z!
95%

confi dence

Cityrural 1.119211 0.0762063 14.69 0.000 0.9698493
Interchange 0.4733442 0.0818434 5.78 0.000 0.3129342
Aveangle 0.0112781 0.0029372 3.84 0.000 0.0055213
Truck% 1.375432 0.1322295 10.40 0.000 1.116267
Spe_stan_truck 0.0588855 0.0100452 5.86 0.000 0.0391972
Constant −2.737629 0.160209 −17.09 0.000 −3.051633
K 0.9109513 0.0761533 0.7732801

Table 4: Model performance comparison.

Models Log likelihood AIC BIC Vuong Chibar2

NB −3115.2895 6225.348 390.506 417.73
Poisson −3288.8923 6593.785 882.535
ZIP −3224.438 6466.877 669.576 4.30
ZINB −3104.683 6227.367 558.506 −0.07
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Finally the NB distribution was selected to present the probability of crash occurrence, and 
the best SPF was developed in the following function form:

lij = EXPO. EXP(–2.737629+1.119211.city_rural+0.4733442.Interchange+0.0112781* 
Ave.angle+1.3754* Truck %+0.0588885* Spe_s tan_tuck)

where
K = 0.9109
lij = predicted annual total crash frequency in roadway segment i at the jth hour. Other 

variables explanations are given in Table 2.

4 MODEL VALIDATION
To further test the model robustness, another analysis called cumulative scaled residuals 
(CURE) was applied. CURE is a useful tool for checking and adjusting the model fi t. In gen-
eral, a good CURE plot is one that oscillates around 0. A bad CURE plot is one that is entirely 
above or below 0 (except at the edges).

The CURE value is calculated as follows:
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K: the overdispersion parameter
yij : observed crash count for highway segment no. i at the jth hour
ŷij : estimated crash count for highway segment no. i at the jth hour
l: the range of Xij
As shown in Figure 3, CURE were plotted against leading explanatory variables for SPF, 

in which the CURE varies from −36 to 44.2, which is in the acceptable range (the threshold 
value is within ± 56.7, which is approximately the square root of the number of data sets i.e. 
3,214). It is somewhat clear that the model overestimates crash frequency when EXPO is 
larger. CURE analysis for other variables shows similar results.

A different data set that was not utilized in the model development was used for model 
validation. This four-lane freeway is 224 km long with a standard cross section. There were 

Figure 2: Model performance comparison.
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448 crash occurrences in 14 months. The freeway was divided into 200 segments for both 
directions according to the ordinal clustering method. The summation of the predicted crash 
counts of each roadway segment is 489, just 41 or 9.1% higher than the observed 448.

5 DISCUSSIONS
This paper presents the fi rst attempt in modelling freeway safety performance in China. The 
results from the model development and validation indicate a very satisfactory precision. The 
precision can also be improved with empirical Bayes (EB) procedure when crash data is 
available.

Due to the unique crash characteristics in China, four variables; location (city vs. rural), 
presence of interchange, average speed and speed difference were selected in the fi nal model. 
In the future as Chinese become more familiar with freeway operation and vehicles’ operat-
ing capacities become more uniform, the situation could change. New variables could merge 
as important freeway safety infl uential factors, and the ones introduced in this paper, could 
become insignifi cant in a safety performance prediction model. At present time, the model 
developed in this paper would serve as a tool in freeway safety evaluation.
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