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ABSTRACT
The earthquake ductility demand on structures may be predicted by means of a rigid-plastic method, 
which derives the maximum plastic response of elastic-plastic oscillators from that of a simpler rigid-
plastic model. The maximum response of the latter is a purely plastic one and may be obtained from the 
earthquake rigid-plastic pseudo-spectrum, as a function of the oscillator yield acceleration. The results 
of a wide investigation presented in this paper show that such a method generally leads to a conservative 
and reliable enough estimate of the maximum plastic displacements. Small mean errors are in fact found 
for both comparatively short-period and long-period oscillators. In the medium period range, however, 
the rigid-plastic prediction is found to be less satisfactory. This is due to the appliance in that range of an 
empirical formula, which estimates the discrepancy between the elastic-plastic and the rigid-plastic peak 
response. To improve the rigid-plastic prediction in the medium period range, a new semi-empirical for-
mula is derived in the paper which is shown to halve, on average, the error in estimating the earthquake 
ductility demand on medium period oscillators. Due to the new formula, the mean relative errors are 
always kept below 15%, whatever the earthquake and the oscillator. This makes the rigid-plastic method 
competitive with respect to other approximate methods, as discussed in the paper.
Keywords: Earthquake ductility demand, rigid-plastic method, seismic inelastic displacements prediction.

1 INTRODUCTION
Most structures will experience inelastic deformations when subjected to strong earthquakes. 
The assessment of their maximum plastic displacements is of the utmost importance to ensure 
that global and local ductility demands are below acceptable limits. If the ground motion is 
assigned, a time-history analysis can be performed to calculate the plastic displacements. 
However, the design of earthquake-resistant structures is seldom carried out through a time-
history analysis, since it is lengthy, especially when multi-degree of freedom (MDOF) 
systems are considered. Approximate methods are usually adopted instead, most of which 
refer to single-degree of freedom (SDOF) models.

The assessment of the seismic displacement demand on SDOF inelastic systems is often 
based on the theory of linear elastic oscillators. In some approaches, the latter are taken as 
equivalent elastic oscillators with a lower lateral stiffness and a higher damping ratio than the 
inelastic oscillators [1–5]. In other approaches, they possess the same stiffness and the same 
damping ratio as the inelastic oscillators and the peak inelastic displacement is estimated by 
multiplying the peak elastic displacement for an appropriate modifi cation factor [6,7]. First 
proposed by Newmark and Hall [6], the modifi cation factor approach has become so popular 
as to be adopted by the vast majority of current building codes.

An alternative way of estimating the earthquake displacement demand is the rigid-
plastic method proposed by Paglietti and Porcu [8] and subsequently improved by Porcu 
and Carta [9,10]. It predicts the maximum plastic displacement of any elastic-plastic oscil-
lator possessing a given ratio between yield strength and mass (namely a given yield 
acceleration) from that of the corresponding rigid-plastic model. As a function of the yield 
acceleration only, the peak displacement of a rigid-plastic oscillator can be obtained from 
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the  earthquake  rigid-plastic pseudo-spectrum, which is a single-curve response diagram 
easy to construct and to use [8,11–14]. Section 2 recalls how the rigid-plastic method can 
be applied in practice.

By referring to a large variety of earthquakes and oscillators, an investigation is carried out 
in the present paper which extends the results provided in Ref. [15] and shows that the rigid-
plastic method provides, on average, a conservative estimate of the earthquake ductility 
demand. Mean relative errors below 15% are in fact found in both the short (T < 0.2s) and 
long (T > 0.75s) period ranges, whereas, in the medium period range, the error is found to 
reach up to even 30%. This can be actually attributed to the appliance of an empirical formula 
provided in Ref. [10], which predicts the discrepancy between the elastic-plastic and the 
rigid-plastic peak response in the medium period range.

With the aim of improving the rigid-plastic prediction in the medium period range, a semi-
empirical formula is derived in Section 3. Based on the well-known Newmark and Hall equal 
displacement rule [6], such a formula also takes into account the characteristic vibration peri-
ods T* and , at which the peak plastic response of an elastic-plastic oscillator coincides with 
the rigid-plastic one (for T = T*) and vanishes (for T = ), respectively. The validity of the 
proposed formula is checked in Section 4, where the mean ratio between the estimated and the 
calculated values of the displacement ductility ratio is obtained for hundreds of different elas-
tic-plastic oscillators and more than 30 recorded ground motions. Different values of yield 
acceleration and damping ratio are considered in the investigation. A comparison between the 
results obtained by considering the ‘old’ formula provided in Ref. [10] and those obtained by 
adopting the ‘new’ formula derived here shows that the latter improves, on average, the esti-
mate of the earthquake ductility demand. In particular, whatever the vibration period, the 
damping ratio and the yield acceleration of the oscillator, the new formula leads to mean errors 
always below 15%.

Due to the new formula, the rigid-plastic prediction becomes generally better than –or at 
least comparable with – that provided by other approximate methods available in current 
literature, as discussed in Section 5. This result is made stronger by the fact that, unlike other 
methods, the rigid-plastic method is shown to provide adequate enough estimates even when 
the plastic displacements are very large. Moreover, based on a direct procedure, the present 
method may be much faster to apply than other approximate methods, which instead require 
iteration procedures. In addition, it singles out the range of periods in which the considered 
elastic-plastic oscillators may plastically yield under a given earthquake – this being a gen-
eral result which could always be taken into account when predicting inelastic seismic 
demands.

It can be observed, fi nally, that other authors [16, 17] adopted a rigid-plastic approximation 
to predict the response of ductile structures under dynamic loading. Based on equivalent 
generalized SDOF systems, a rigid-plastic approach was also proposed by Domingues et al. 
[11,13,14], which predicts the maximum plastic displacements of MDOF buildings under 
strong earthquakes. Due to this, the rigid-plastic method improved in the present paper could 
also be exploited to assess the seismic ductility demand of MDOF systems. This topic, how-
ever, is beyond the scope of the present paper.

2 ESTIMATING THE EARTHQUAKE DUCTILITY DEMAND THROUGH 
THE RIGID-PLASTIC METHOD

Let us consider an elastic-perfect-plastic oscillator of mass M, natural period T and yield 
strength Fy. The latter denotes the absolute value of the oscillator strength at yield, which is 
assumed to be the same for positive and negative forces and to be independent of plastic 
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deformation. The absolute value of the maximum elastic displacement (yield displacement) 
that such an oscillator may undergo is given by

 
= =

π π

2 2

2 2  
4 4

y
y y

FT Tu a
M  

(1)

The quantity = /y ya F M appearing in eqn (1) is the absolute value of the maximum accel-
eration that the oscillator may reach during the motion. It may be referred to as the oscillator 
yield acceleration [10, 18]. When hit by strong enough earthquakes, the elastic-perfect-
plastic oscillator will exceed the yield limit and deform plastically. Should max

Pu denote the 
peak plastic displacement reached by the oscillator during the considered earthquake, the 
total peak displacement can be expressed as:

 
= +max max

P
yu u u

 
(2)

All displacements are here intended to be relative to the ground.
The ratio between maxu and yu is usually denoted by µ and referred to as the earthquake 

ductility demand or displacement ductility factor [18]. In view of eqns (1) and (2), µ may be 
expressed as:
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When the elastic-plastic oscillator deforms into the plastic range, maxu is greater than yu
and, consequently, µ becomes greater than unity. Assessing the value of µ is a crucial task in 
order to assign the system a suffi cient ductility capacity to withstand the considered earth-
quake. Equation (3) shows that assessing the value of µ requires that max

Pu is known. For a 
given earthquake, the latter depends on the natural period T, on the damping ratio ξ and on 
the yield acceleration ay:

 
x=max max ( , , )P P

yu u T a
 

(4)

As a function of these parameters, max
Pu may be calculated by means of a numerical integra-

tion of the non-linear equations of motion of the elastic-perfect-plastic oscillator under the 
considered earthquake.

A simpler, though less precise, way to predict max
Pu may be the rigid-plastic method [8–10]. 

This method refers to a rigid-plastic oscillator possessing the same yield acceleration ay as the 
actual elastic-perfect-plastic oscillator. For a given earthquake, the maximum displacement of 
the rigid-plastic oscillator (which is obviously a purely plastic one) only depends on ay, that is

 
=max max ( )RP RP

yu u a
 

(5)

The displacement max
RPu should be obtained by integrating the equations of motion of the 

rigid-plastic oscillator, which are simpler than those of the elastic-plastic one [8]. Alterna-
tively, and more quickly, it can be obtained from the rigid-plastic pseudo-spectrum of the 
earthquake.

It may be recalled that, for a given earthquake, the rigid-plastic pseudo-spectrum is a 
 single-curve diagram, resulting from the integration of the equations of motion of a rigid-
plastic oscillator for different values of ay [8,11,12]. Simpler to construct than the 
elastic-plastic spectrum, the rigid-plastic spectrum is very easy to use too. For each value of 
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ay, it gives the value of the peak plastic displacement max
RPu . An instance of such a spectrum is 

presented in Fig. 1A. It should be noted that any rigid-plastic spectrum starts from the peak 
ground displacement max

Gu and reaches the value =max 0RPu , when ay is equal to the peak ground 
acceleration ��max

Gu .
For a given earthquake and for each value of ay, the rigid-plastic peak displacement 

max
RPu is a single well-defi ned quantity, while max

Pu depends also on T and ξ; see eqn (4). 
Once the value max

RPu is obtained from the earthquake rigid-plastic pseudo-spectrum at the 
considered ay, the peak plastic displacement max

Pu may be estimated by means of the fol-
lowing formulae [10]:

 max max  = P RPu u  for 0.13≤ *TT , (6a)

 = Δmax max + P RP pu u u  for ≤ ≤T * *0.13 T T , (6b)

 

−
−max max *  = P RP T Tu u

T T
 for ≤ ≤*T T T ,

 
(6c)

 max  = 0Pu  for >T T , (6d)

Figure 1:  The rigid-plastic method: (A) obtaining RP
maxu from the earthquake rigid-plastic pseudo-

spectrum; (B) determining *T and T from the displacement response spectrum; 
(C) estimating peak plastic displacements, or otherwise (D) estimating the ductility 
factor.
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Note that eqn (7) holds true in this form provided that time is expressed in seconds [10].
Quantities *T and T appearing in the above equations are two characteristic values of 

period that depend on the earthquake and on the values of ay and ξ. In particular, for a given 
earthquake and for a pair of values of ay and ξ, the period *T is the one at which it is max max  = P RPu u . 
An approximate value of *T can be easily evaluated by intercepting the displacement elastic 
response spectrum with the following curve, derived in Ref. [9]:
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On the other hand, T denotes the value of T at which max  = 0Pu . In fact, any elastic-plastic 
oscillator possessing a natural period ≥T T will behave as a purely elastic oscillator under 
the considered earthquake [9]. This means that at =T T the yield displacement yu of the 
elastic-plastic oscillator coincides with the maximum displacement max

ELu that the correspond-
ing purely elastic oscillator would reach under the given earthquake. The actual value T of 
can then be rigorously obtained by intercepting the displacement elastic response spectrum 
with the curve:
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It should be stressed that the values of *T and T are obviously different for different earth-
quakes and for different values of ay and ξ. However, the simple graphical procedure recalled 
above makes it quite a simple task to determine their value, as Fig. 1B also shows. It should 
be observed, fi nally, that when curves (8) and (9) intercept the elastic spectrum more than 
once, the greatest value of *T and of T must always be chosen (see Fig. 1B).

Once max
RPu is taken from the rigid-plastic pseudo-spectrum (Fig. 1A) and the pair of charac-

teristic periods *T and T is taken from the elastic response spectrum (Fig. 1B), max
Pu can be 

predicted directly from eqns (6) and (7). An instance of such a prediction is given in Fig. 1C. 
By introducing the estimated value of max

Pu into eqn (3), the ductility factor µ can also be 
obtained, see Fig. 1D. Note that in the considered example it is assumed ξ=10%, this being 
a realistic value for the damping factor when the stress is at yield [18].

The instance given in Fig. 1 shows that the rigid-plastic method is quite simple to apply, 
provided the rigid-plastic pseudo-spectrum and the elastic response spectrum of the earthquake 
are both available. Figure 1C,1D also show that the rigid-plastic estimate is rather good both for 
short-period and long-period oscillators. However, it may be highly conservative in the range 

≤ ≤T * *0.13 T T , where eqn (7) applies. Actually, the results of Section 4 highlight that the 
rigid-plastic method generally gives rather high mean errors in this range. A new formula will 
therefore be derived in the next section, which can be more satisfactorily adopted than eqn (7).
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3 IMPROVING THE RIGID-PLASTIC PREDICTION IN 
THE MEDIUM PERIOD RANGE

By denoting with Δ Pu the discrepancy between max
Pu and max

RPu in the range ≤ ≤T * *0.13 T T , 
we can set:

 = + Δmax max P RP pu u u  (10)

For a given earthquake, the discrepancy

 
xΔ = Δ ( , , )P P

yu u T a
 

(11)

can be rigorously obtained only after max
Pu has been calculated by integrating the non-linear 

equations of motion of the elastic-plastic oscillator.
However, if an estimate Δ pu of Δ Pu is found, max

Pu might be also predicted as:

 ≅ + Δmax max P RP pu u u  (12)

Table 1: Recorded earthquakes considered in the present investigation [19–21].

 1 Ardal (Iran), LONG, 1977 17 Landers (California), 
LCN000, 1992

 2 Cape Mendocino (California), 
PET090, 1992

18 Loma Prieta (Cal), CLS000, 
1989

 3 Cartago (Costa Rica), LONG, 
1991

19 Mammoth Lakes (Cal), 
LLUL000, 1999

 4 Chamoli (India), N20E, 1999 20 Montenegro, N-S, 1979
 5 Chi Chi (Taiwan), CHY041N, 

1999
21 Morgan Hill (Cal), CYC195, 

1984
 6 Coalinga (California), D-

TSM360, 1983
22 N. Palm Springs (Cal), 

NPS300, 1986
 7 Duzce (Turkey), DZC270, 1999 23 Parkfi eld (California), C02065, 

1966
 8 Edgecumbe (New Zealand), 

N07W, 1987
24 Parkfi eld (California), 90, 2004

 9 El Salvador, LONG, 2001 25 San Fernando (California), 
S16E, 1971

10 Erzincan (Turkey), N279, 1992 26 South Iceland, LONG, 2000
11 Friuli (Italy), E-W, 1976 27 Spitak (Armenia), GUK000, 

1988
12 Gazli (Uzbekistan), E-W, 1976 28 Superstition Hills (Cal), B-

SUP135, 1987
13 Imperial Valley (Cal), H-

BCR230, 1979
29 Tabas (Iran), N74E, 1978

14 Irpinia (Italy), A-STU270, 1980 30 Tabas (Iran), TAB-LN, 1978
15 Kobe (Japan), N35W, 1995 31 Trinidad, B-RDE000, 1980
16 Kocaeli (Turkey), ATS000, 1999 32 Victoria (Mexico), CPE045, 

1980
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The following conditions should be met by Δ pu :

 
Δ = =* 0.13

T
0        

p Tu for
 

(13)

 
Δ = =* 1 

T
0             
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(14)

Equation (13) takes into account that for < T *0.13T , typically it is ≈ RP
maxumax

Pu . On the 
other hand, eqn (14) comes from the very defi nition of *T , which is the natural period at 
which RP

max= umax
Pu [9]. A simple parabolic curve meeting both eqns (13) and (14) was adopted 

in Ref. [10] to obtain the estimate Δ pu . This leads to derive eqn (7), which, however, is found 
not give satisfactory enough estimates of Δ Pu , as results provided in Section 4 show.

To improve the rigid-plastic prediction in the range ≤ ≤T * *0.13 T T , an alternative way of 
obtaining Δ pu will be explored in what follows. First, we shall assume that the well-known 
Newmark and Hall equal displacement rule [6] applies in that range, that is:

 ≅max max ELu u  (15)

Here, max
ELu is the peak elastic displacement of a purely elastic oscillator possessing the same 

natural period T and the same damping ratio ξ as the considered elastic-perfect-plastic oscil-
lator. In view of eqns (2) and (12), we can also write eqn (15) as follows:

 
+ Δ + ≅max max RP p EL
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Taking into account eqn (1), we can also obtain from eqn (16):
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Here, yR is a reduction factor given by Chopra [18]:
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y
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u
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It should be noted that the value Δ
p

u given by eqn (17) may only give a rather coarse evalu-
ation of the actual discrepancy Δ Pu , since it derives from eqn (15) which is roughly satisfi ed 
in practice. Above all, as given by eqn (17), Δ

p
u does not meet conditions in eqns (13) and 

(14). To remedy this defi ciency, eqn (17) should, more appropriately, be put in this form:
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As given by eqn (19), Δ
p

u fulfi lls both conditions in eqns (13) and (14). Equation (19) could be 
applied in place of eqn (7) to fi nd the peak plastic displacement in the range ≤ ≤T * *0.13 T T . 
As it stands, however, it is not actually capable of giving a better estimate of Δ Pu than eqn (7). By 
a trial and error procedure, we found that, eqn (19) may be successfully improved as follows:
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By referring to the same instance given in Fig. 1, a comparison between the calculated and 
the estimated values of Δ Pu as obtained through eqn (7) and eqn (20) is provided in Fig. 2A. 
A comparison between the predictions of µ is given in Fig. 2B. Some further instances similar 
to that given in Fig. 2A, but relevant to different earthquakes and different values of ay and ξ, 
are given in Fig. 3. They show that a better – even if not always conservative – estimate of 
calculated results can be obtained from eqn (20) with respect to eqn (7).

4 COMPARING AVERAGE RESULTS FROM EQUATIONS (7) AND (20)
To assess the effectiveness of eqn (20) herein derived with respect to the ‘old’ eqn (7) pro-
vided in Ref. [10], a numerical investigation is carried out in the present section. The ratio r 
between the displacement ductility factor m as estimated by means of the rigid-plastic 
method, and the ‘exact’ value µ of the same factor obtained from a non-linear time-history 
analysis, was computed for elastic-plastic oscillators possessing different realistic values of 
ay and different levels of damping ratio ξ. In view of eqns (2) and (3), the ratio r can be 
expressed as:

 

m
m

+
= =

+
max

max

P
y

P
y

u u
r

u u
 (21)

where max
Pu is the plastic displacement estimated through eqns (6) and max

Pu the calculated 
value. In the investigation, the value Δ

p
u to be put into eqn (6b) is taken alternatively from 

eqns (7) and (20).
It can be noted that the ratio r gives the relative error we introduce when estimating µ with 

the rigid-plastic method. As the estimated and the calculated values of the plastic displace-
ment tend to coincide, r tends to one, which means that no error is committed in estimating 
the ductility demand. This obviously happens when T equals zero (rigid-plastic behavior) and 
when T equals *T , since in both those cases it is ≡max max

P Pu u . On the other hand, when T 
reaches or exceeds the value T , then ≡ ≡max max 0P Pu u , which implies = 1r . In all these cases, 
the rigid-plastic method predicts the earthquake displacement demand exactly. Otherwise, 
some errors can be produced.

For each earthquake listed in Table 1, for different values of ay and ξ, and for T ranging 
from zero to T , we calculated the value of r, as given by eqn (21). On the whole, more than 

Figure 2: (A) Comparing the calculated and the predicted values of Δ Pu as obtained by eqns 
(7) and (20), in the range ≤ ≤*0.13 1T T . (B) Comparing the ductility predictions. 
Both fi gures refer to the same instance considered in Fig. 1.
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3,000 different instances were actually examined in the present investigation. For each value 
of T, the mean value of the ratio r, say Mr, was fi nally obtained. The resulting diagrams are 
presented in Figs. 4A, 4B and 5A, 5B. Figures 4A, 4B plot Mr for a given value of ξ and three 
different values of ay. Similarly, Fig. 5A, 5B refer to a given value of ay and to three different 
values of ξ. Results provided by Figs. 4A and 5A are obtained by means of eqn (7), whereas 
those given by Figs. 4B and 5B are obtained by adopting eqn (20).

Diagrams in Figs. 4,5 show that a rather good prediction (mean errors less than 15%) is 
provided, on average, by the rigid-plastic method for short-period oscillators, say for 

< 0.2T s, as well as for long-period oscillators, say for > 0.75T s. Yet, a less good prediction 

Figure 3: Some instances of comparison between the calculated and the estimated values of 
the discrepancy Δ Pu . The estimated values are obtained from eqns (7) and (20), 
respectively.
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Figure 4: Mean ratio of predicted to calculated maximum displacements for different values 
of ay (ξ=10%). (A) Results obtained from the ‘old’ eqn (7); (B) results obtained 
through the ‘new’ eqn (20).

Figure 5: Diagrams analogous to those in Fig. 4, but derived for different values of ξ (ay=0.2g).
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may be found in the range ≤ ≤0.2 0.75s T s. In fact, Figs. 4A and 5A show that mean errors 
of up to even 30% may be actually found when reference to eqn (7) is made, both for different 
values of ay (see also results provided in Ref. [10]) or for different values of ξ. On the con-
trary, a quite good prediction is obtained in the medium period range when eqn (20) is adopted 
in place of eqn (7). In particular, for all the considered values of damping ratio and yield 
acceleration, eqn (20) always gives mean relative errors below 15%, whatever the natural 
period T of the elastic-plastic oscillator; see Figs. 4B and 5B. It should be noted, however, 
that, on average, results obtained via eqn (7) are always conservative (values of Mr larger than 
one). On the contrary, when applied through eqn (20) the rigid-plastic prediction may give 
either positive or negative mean errors.

5 SOME ADVANTAGES OF THE RIGID-PLASTIC METHOD
Several approximate methods have been proposed to estimate the earthquake ductility 
demand on structures. Some of them refer to equivalent linear elastic systems (with lower 
lateral stiffness and higher damping ratio than the elastic-plastic systems) (cf. e.g. [1–5]). 
Other methods multiply the response of the corresponding linear elastic systems (with the 
same stiffness and damping ratio as the inelastic systems) by some modifi cation factors (cf. 
e.g. [6, 7].). Both equivalent linear methods and modifi cation factor methods usually evaluate 
the earthquake ductility demand µ by means of parameters that are a function of µ itself. This 
implies iteration procedures and, often, convergence problems [22, 23].

This criticism does not affect the rigid-plastic method, which predicts the inelastic dis-
placement demand on any elastic-plastic oscillator by means of the direct procedure recalled 
in Section 2. The latter is relatively quick to apply, once the rigid-plastic pseudo-spectrum 
and the elastic response spectrum of the considered earthquake are both available. The elastic 
response spectrum is usually available in practice, whereas the rigid-plastic pseudo-spectrum 
is less used. Depending only upon the yield acceleration, however, this spectrum is much 
simpler to construct than an elastoplastic response spectrum and could be profi tably intro-
duced even by standard codes.

The elastic response spectrum provides a fi rst crucial item: the characteristic period T , 
which spots the range of periods ( ≤ ≤0 T T ) in which the inelastic demand prediction actu-
ally needs to be obtained under a given earthquake (see Fig. 1). For >T T , no plastic 
deformation is in fact demanded by the earthquake to the considered elastic-plastic oscilla-
tors. This is a general result, which could be adopted by any approximate method that aims 
at estimating the earthquake ductility demand on elastic-plastic oscillators. It could be 
observed, for instance, that the well-known Newmark’s equal displacement rule [6], assum-
ing that the maximum displacement of an elastic-plastic oscillator coincides with that of the 
corresponding purely-elastic oscillator, becomes more and more accurate as T approaches 
T . Of course, for ≥T T  that rule gives exact results.

On the other hand, the rigid-plastic pseudo-spectrum provides, for each given value of 
yield acceleration ay, the peak rigid-plastic displacement max

RPu , which is a reference value for 
obtaining the peak inelastic displacement prediction through the rigid-plastic method. As it 
stands, the value max

RPu gives a very good prediction of the peak plastic displacement of com-
paratively short-period elastic-plastic oscillators, as Figs. 4,5 also show. It can be noted that 
in the short-period range the rigid-plastic prediction is generally better than that of other 
methods, as can be inferred from the diagrams plotting the mean errors relevant to some 
approximate methods provided by Miranda and Ruiz Garcia [24] and Akkar and Miranda 
[25]. The same value max

RPu may be exploited to obtain, through eqn (6c), a fairly good 
 prediction even in the comparatively long-period range, say for > 0.75T s; see Figs. 4,5. In 
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this range the rigid-plastic method prediction is, on average, comparable with that of other 
approximate methods (cf. e.g. the results presented in [24, 25]).

As to the reliability of the rigid-plastic prediction in the medium period range, it should be 
noted that adopting eqn (20) rather than eqn (7) produces a perceptible improvement on the 
average results. When the rigid-plastic method is applied by means of eqn (20), in fact, the 
mean relative errors are always below 15%; see Figs. 4B and 5B. This is a rather good result, 
since other methods, as for instance those evaluated in Refs. [24, 25], may give errors ranging 
from 25 to 80% in the medium period range.

This result is made even stronger by the fact that the rigid-plastic method is capable of 
estimating very high values of µ with reasonably narrow mean errors. In fact, the mean ratio 
Mr plotted in Figs. 4 and 5 is relevant to assigned values of ay, which may entail very high 
values of µ in the short-medium period range (µ >10)), as Fig. 1D shows. On the contrary, 
rather low values of µ are usually assigned when evaluating the mean errors relevant to other 
approximate methods (e.g. µ ranging from 1.5 to 6 is considered by Miranda and Ruiz Garzia 
[24]). Moreover, the errors relevant to other methods generally increase as µ increases, this 
being especially so in the medium period range [24, 25].

6 CONCLUSIONS
A rigid-plastic method to estimate the inelastic displacement demand under strong earth-
quakes is evaluated in the present paper. By computing the mean ratio between predicted and 
calculated ductility factors relevant to thousands of different instances, the paper shows that 
the method gives reliable enough results for both relatively short and relatively long-period 
oscillators. Less reliable results – although generally conservative – are found instead for 
medium period oscillators. To improve the rigid-plastic prediction in the medium period 
range, a semi-empirical formula is derived in the paper, which estimates the discrepancy 
between the elastic-plastic and the rigid-plastic peak response of medium period oscillators. 
The validity of such a formula is checked over a wide variety of recorded earthquakes and 
oscillators. It is found that, due to this formula, the mean errors are always kept below 15%, 
whatever the natural period, damping ratio or yield acceleration of the elastic-plastic oscilla-
tor. A comparison with other approximate methods available in the literature shows that the 
rigid-plastic procedure presents some advantages and may give, on average, a better estimate 
on the whole, especially for high levels of ductility demand.
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