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ABSTRACT
Big data, crucial to answering economic, social, and political questions facing our society, tend to be diverse and distrib-
uted through various sites across the Internet. The creation of tools to integrate and analyze such data is of paramount interest. 
Yet the automation of these processes continues to be a great challenge. Our work rests on the observation that a great number 
of public data sources in domains ranging from economic to demographic, although of complex structure, often share key 
similarities, namely the presence of the Time and Location. Our proposed Data Integration through Object Modeling 
framework or DIOM tackles the critical problem of automating data integration from a variety of public websites by 
abstracting key features of multi-dimensional tables and interpreting them in the context of knowledge-centered Unified Spatial 
Temporal Model. Our classification-driven extractors are trained to identify and classify entities from both structured and 
unstructured parts of spreadsheets. The unstructured part contained in titles, headers, and footers reveals critical information, 
so-called Implicit Knowledge, crucial to the correct interpretation of data. Our experimental results on real world datasets 
from heterogeneous public data sources show increased accuracy by 25% compared to state-of-the-art approaches.
Keywords: big data, data extraction, data integration, information retrieval.

1  INTRODUCTION
Motivation in a data-intensive world, unlocking the power hidden in big data is crucial to making informed, 
evidence-based decisions. This is a lesson that many organizations had to learn the hard way in dealing with 
the crucial aspect of the variety of data.

For example, a lengthy process of collecting and analyzing historical data from different states led to success 
in repealing the Sales and Use Tax on computer and software services, introduced in Massachusetts in 2013. 
In the quest to fight this action perceived as detrimental to the business growth and economic health of the 
state, many organizations worked together to create an integrative data source for high-fidelity and talent com-
petitive metrics that can be used to measure the economic competitiveness and influence policy making.

Large-scale data integration is crucial for the success of such endeavors. Data from a wide spectrum of 
diverse websites from the Tax Policy Center, the Census Bureau, to websites like the National Science Foun-
dation and the Bureau of Economic Analysis had to be extracted, integrated, and warehoused. These web data 
sources represent valuable public knowledge ready to be leveraged for policy decision making and economic 
forecasting. The extraction and integration of data proved challenging and time consuming. Yet, the appetite 
for leveraging new data sources appears endless, so automation becomes critical to the success of building and 
growing rich economic indexes.

The Spreadsheet Integration Problem One obstacle in capitalizing on this wealth of knowledge is the lack 
of generalized automated tools for data integration. Unfortunately, while progress has been made on integration 
[1–3], it remains challenging and labor-intensive to integrate data of the rich variety required to answer com-
plex societal questions. A large amount of information collected from these web sites is retrieved in the 
form of spreadsheets. We demonstrate that actual spreadsheets from domains like tax and economics 
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while having differences in structure, organization and data representation share conceptual 
similarities. This is a key insight that allows us to generalize their processing in a fundamental way 
as we will demonstrate later.

Example: In Fig. 1 the left spreadsheet is extracted from the Tax Foundation and the right one from the 
Bureau of Economic Analysis. Although seemingly different, the two spreadsheets have several common-
alities. In particular, they both include Implicit knowledge reflected in the first spreadsheet by the year “2012” 
and the metric “State Government Tax Collection”, along with “Personal income” and the data annotation in 
“thousands of dollars” for the second spreadsheet. Other relevant information such as what particular state the 
information refers to and actual data values are located in the structured areas of both spreadsheets, henceforth 
referred to as Explicit Knowledge.

In summary, two points emerge: first, spreadsheets from diverse domains often contain multi-dimensional 
data based on Location, Time and Metrics. Each of these three entities can be present in any of the areas of 
the spreadsheet, therefore be contained in either the implicit or the explicit knowledge. This leads us to the 
insight of designing a knowledge-centered three-dimensional model to facilitate data extraction and integration 
for these large classes of spreadsheets.

Secondly, application datasets reveal that critical knowledge is sometimes not explicitly represented in 
the structured part of the spreadsheet, but rather must be inferred from unstructured regions such as titles or 
footnotes (Implicit knowledge). This implicit knowledge, if overlooked, would severely compromise the 
correct transformation of data and thus the resulting data integrity would be in jeopardy.

State-of-the-Art: On one end of the spectrum, tools like Talend, Knime and Oracle Data Integrator assist 
analysts in the data integration task by enabling them to design and define graphical mappings between source and 
target attributes. They would thus require users to have an in-depth knowledge of the data and to learn mapping 
languages [4] and operators [5]. Others [1,2] require users to specify explicit conversion rules that can be dif-
ficult and time consuming for the user to compose. At the other end of the spectrum, efforts are under way to 
automate various aspects of the data extraction from web spreadsheets [6,7]. Some rely heavily on physical 
layout features like bold and italic fonts and text indentations. Unfortunately our analysis reveals that such 
features are generally not present in spreadsheets in the domain we target. Lastly, computer vision techniques [3] 
have been applied to analyze tabular representations of spreadsheets. However, all those prior techniques tend not 
to focus on the knowledge hidden in unstructured parts surrounding the tabular structure. This can lead to 
missing key information during the integration process. To the best of our knowledge, this kind of knowledge 
extraction has been overlooked.

The DIOM Approach: We overcome this open challenge by our proposed Data Integration through 
Object Modeling (DIOM) framework that employs a rigorous spatial-temporal model to generalize the infor-
mation extraction from a surprisingly large class of spreadsheets. Using the Conditional Random Field (CRF) 
technique [8], our DIOM entity extractor exploits knowledge from unstructured as well as structured parts of 
a data source. DIOM places the user at the end of the process in a reviewing role, instead of key labor- intensive 
steps in the middle of the integration process.

Figure 1: Conceptual similarities between spreadsheets with different structures.
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Contributions: The DIOM framework differs significantly from other systems [1,6] by exploiting 
both explicit and implicit categories of knowledge to ensure the correct extraction and integration of the 
semantics contained in spreadsheets.

1.	 The DIOM framework is based on a knowledge-centered three-dimensional model that serves as a founda-
tion for abstracting key features of multi-dimensional tables. This is the first approach to leverage such 
spatial-temporal model to guide the automatic integration of diverse spreadsheet data.

2.	 Supported by the DIOM model, our entity extractor automatically identifies and classifies entities like 
Location and Time common to a large number of spatial-temporal spreadsheets.

3.	 The Data Transformation module integrates the implicit knowledge from the unstructured parts with the 
explicit knowledge extracted from the structured areas to compose correct information units from the 
spreadsheets.

4.	 Our comprehensive evaluation on real world data sets from four domains (economic, tax, education, and 
demographics) shows over 25% improvement in accuracy compared to state-of-the-art approaches.

2  RELATED WORK
We distinguish between four main approaches for extracting data from source spreadsheets into 
target databases.

First, the schema-based approach allows the users to specify the schema of spreadsheets via a layout 
specification language [2]. The spreadsheet data can then be converted into a database by the user explic-
itly specifying the source and target attribute mapping using tools such as Clio [9] or by using low-level 
transformation languages such as XSLT [4]. The key disadvantage in this approach is that such human-
controlled mapping is specific to each spreadsheet and thus needs to be done for each spreadsheet 
individually. This does not scale, putting still significant manual effort in the data integration process.

Second, the rule-based approach requires the user to explicitly specify the transformation in the 
form of conversion rules [1]. The approach is flexible in that the rules could be applied to a variety 
of spreadsheets. However, it requires explicit conversion rules that are difficult and time consuming 
for the user to compose. Third, the operator-based approach uses database like operators on a 
spreadsheet interface [5]. The interface is appropriate for executing SQL queries. However, users 
must learn a new tool-specific proprietary language to perform transformations and extraction.

Lastly, automated approaches are the most similar to ours, [10] attempted to automatically detect 
errors in spreadsheets, [11] primarily focused on data normalization. More closely related to our 
work [6,7] uses physical layout features and hierarchical structures of the spreadsheet to extract data. 
Unfortunately, our analysis reveals that most spreadsheets in spatial temporal domains do not exhibit 
such valuable formatting characteristics. Another key difference is the technique to build the rela-
tional tuples. In [7], a relational tuple is generated by combining column headers and specific region 
attribute values. Our approach automatically identifies and classifies the entities present in the 
spreadsheet. These become the key components of the newly formed tuples, by matching our model 
dimensions with their physical locations in the spreadsheet.

Most importantly, none of the above approaches focuses on the extraction of knowledge from the 
unstructured parts of the spreadsheet, which now is the key of our proposed solution.

3  THE DIOM DESIGN
In this work, we focus on the integration of data from heterogeneous websites over a large class of application 
domains from economic to demographics based on the important observation that they all conceptually correspond 
to spatial temporal data sets. In Sec. 1, we identified a variety of such data sets from widely used public data 
domains. We now focus on extracting knowledge from this class of spatial-temporal spreadsheets.
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3.1  DIOM data model

We now propose the spatial temporal DIOM model designed to handle a diversity of spreadsheets from hetero-
geneous data sources. The DIOM model is uniquely defined by three dimensions: Location (L), Time (T) 
and Metric (C).

An instance of an entity is a particular value of that entity. Generally, we denote li an instance of Location L, 
tj an instance of Time T and ck an instance of Metric C. Each entity can have one or multiple instances 
within a spreadsheet. For example, in Fig. 3 the entity Time has only one instance (“2012”) while the entity 
Location has many instances contained in column 1, rows 5 to 10. An entity is called singleton if it has only 
one instance, otherwise it is called composite. 

Definition 1 DIOM Data Model: In the context of our spatial temporal domain, we define the DIOM 
data model denoted by M as a 3-dimensional model with the entities Location (L), Time (T) and Metric (C) as 
its dimensions:

M L T C: × ×

Figure 2 depicts the DIOM model with its dimensions based on the data presented in Fig. 3. For simplic-
ity three instances of Location are shown, namely “United States”, “Alabama” and “Alaska”, three Metric 
instances “Total Taxes”, “Property” and “Sales” and one Time instance “2012”.

Definition 2 DIOM Data Relation: A DIOM Data Relation R is a set of quadruples (li, tj, vijk) where 
li ∈ L, tj ∈ T , ck ∈ C and vijk ∈ V .

R r l t c v l L t T c C v Vi i j k ijk i j k ijk= = ∈ ∈ ∈ ∈{ }( , , , ) | , , ,

where ri is an instance of the relation R.

Figure 2:  DIOM model.

Figure 3: Labeled regions.
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An example of a DIOM Data Relation R instance extracted from the spreadsheet in Fig. 3 is (“United 
States”, “2012”, “Total Taxes”, “798,221,675”).

3.2  Spreadsheet generalized templating

Let a spreadsheet be a two dimensional grid of cells G = {gij} where i is the row index and j is the column index. 
Central to our methodology is the classification of the knowledge contained in the spreadsheet as Implicit and 
Explicit. The Implicit Region refers to the unstructured part. In Fig. 3, this corresponds to rows 1 to 3. The 
Explicit Region is the structured part of the spreadsheet. Inside this, the part containing the data values is des-
ignated as the Value Region. The part contained between the Implicit Region and the Value Region is designated 
as the Top Region, while the remaining is the Left Region. For example, in Fig. 3, the Explicit Region is 
delimited by rows 4 and 10 and columns 1 to 4. The Value Region is between rows 5 and 10 and columns 2 
and 4, the Top Region is row 4, columns 1 to 4, and the Left Region is in column 1, rows 5 to 10.

For a user with domain-specific knowledge, the distinction between the two categories of knowledge is 
evident, yet the cost in time and resources to extract and integrate the data can be significant.

4  AUTOMATIC IDENTIFICATION AND CLASSIFICATION
The Automatic Identification and Classification module (Algorithm 1 & 2) is composed of a Region and 
Entity Classifier and the Meta Data Abstraction module. The purpose of the Region and Entity Classifier is to 
classify all the cells in the spreadsheet as region types (either implicit or explicit) and as entity types (as defined 
in Sec. 3). This Region and Entity classifier performs important data extraction tasks including classification 
(identifying the different types of a region e.g. Implicit or Explicit), detection (determining the physical posi-
tion of each region) and recognition (locating particular entities within each region).

4.1  Region classifier

The Region Classifier receives a spreadsheet as input and associates labels differentiating between the regions.
Definition 3 Region Label: The Region Classifier assigns to each row rwj a label k, where j is the index of the 
row rw in the spreadsheet and

	 k
i if

=




Region = Implicit

e if Region = Explicit
� (1)

and the Implicit and Explicit labels reflect the associated region types previously defined (Sec. 3.2).
The cells in the Explicit Region Re are further classified as follows: for each cell gij ∈ Re we assign a label 

r
k such as:

	 r

et

k =






if

if

if

Region = Top

el Region = Left

ev Region = Value
� (2)

where the Top, Left and Value regions are defined in Sec. 3.2.
The Region Classifier employs linear-chain CRF [8] to exploit the physical layout features of the cells as 

well as semantic information, for example, unstructured versus structured text. The training for obtaining the 
semantic labels for each row of the spreadsheet is the same as in [12]. During the classification phase, each row 
is examined by the region classification algorithm. The rows in the unstructured part, namely the headers and 
footers of the file are classified as Implicit, while the remaining parts of the spreadsheet are categorized as 
Explicit. Any empty rows between the regions are labeled as separators. All the cells containing values are 
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classified as the Value region. The cells in the rows between the Implicit and Value region are classified as the 
Top region. The remaining cells are classified as the Left region. Once we have labels for each row, we can 
construct the correct regions.

At this moment, each cell gij ∈ G in the spreadsheet has one or more associated labels, corresponding to the 
regions they belong to. We use these labels to construct “multi-label embedded vectors” (MLE-vectors) which 
are later used to define the region and entity boundaries (Sect. 5.3).

The classes of semantic labels are stored in an ordered list of length m, where m is the number of classes that 
DIOM can identify: l = (Class1, Class2, ..., Classm). Each class has a fixed position in the list which makes 
it possible to mark the association of the class in a specific position to a cell in the spreadsheet.

The list of classes identified by our system is:
i = (Implicit, Explicit, Top, Value, Left, Time; Location, Metric, Annotation).

Definition 4 Multi-label Embedded Vector (MLE-vector): For each cell gij ∈ G we construct an 
associated multi-label embedded vector vij of length m. The kth component of the vector has the value 
“1“ if the cell is associated with the particular class on that position in the list l, otherwise the value 
is “0“.

	 v k
if g associated with Class

otherwise
ij

ij k( ) =






1

0 � (3)

In our case, for each cell in the spreadsheet, we construct a vector of length 9 (the number of our classes). 
For example, as shown in Fig. 3, the cell in column 1 and row 6 (“Alabama”) is labeled so far as Explicit and 
Left.

So far, its associated MLE-vector is v16 = (0,1,0,0,1,0,0,0,0). This vector will be further updated once the 
entity classifier (explained in Sec. 5.2) associates other class labels with the cell.

4.2  Entity classifier

Next, we design our Entity Classifier to recognize the instances of entities of our spatial temporal model 
within each region. Exploiting the structured nature of spatial temporal spreadsheets, after the Location and Time 
entities are classified, the Metric can be identified by exclusion. The process starts by evaluating individual 
cells first on their own and later examining them in combination with neighboring cells.
Definition 5 Entity Label: The Entity Classifier assigns a label el to each grid cell gij ∈ G where i is the 
row index and j is the column index of a spreadsheet 

where

	 el

l if Entity Location

t if Entity Time

c if Entity Metric

an if Ent

=

=
=
=

iity Annotation=










� (1)

Our Entity Classifier is a 3-class model trained to recognize: Time, Location and Annotation. The Annota-
tion class refers to specific references like “Amounts in thousands” or “Amounts in millions”. Any 
reference to percentage or currency of data representations (e.g., Amounts in dollars) is also considered as part of 
Annotation. Once the entity label has been inferred for a cell, the MLE-vector associated with the cell is 
updated to also reflect the now newly inferred labels for the entities. Referring back to the example in the 
Region Classifier, now the cell (“Alabama”) that received the Explicit and Left labels from the region clas-
sifier, is now also assigned the Location label. This is reflected in the updated MLE-vector which is now v16 
=(0,1,0,0,1,0,1,0,0).
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Similarly as with the region classifier, the CRF methodology is utilized in the design of the entity 
recognizer classifier. The reason for choosing this technique is two-fold: one, the technique doesn’t 
assume that features are independent (as opposed to techniques using the Hidden Markov Model 
[13]) and two, future observations of the same entity type classified earlier are taken into account 
while labeling entity instances (as opposed to techniques using Maximum Entropy Models [4]). For 
example, our CRF-based classifier correctly distinguishes between an entity Location like the city 
“New York” and an Organization like “New York Times” that contains the same prefix as the Loca-
tion entity.

Successive calls to the Entity Classifier classify each cell as Location or Time. In the Explicit 
region, the cells classified as Location start in row 5, column 1 and continue on the same column and 
subsequent rows (5 to 10).

4.3  Boundary Generator

After all the regions and entities have been identified and classified, their corresponding boundaries are set.
Definition 6 Region and Entity Boundary: For each of the regions and entities previously specified, we 

define B as a set of boundaries
B = {brt  (sr, er, sc, ec)}, where sr =start row, er = end row, sc =start column, ec=end column and rt 

∈ {rk, el}, refers to the previously defined region label rk (Implicit or Explicit) and to the predefined 
entities labels el for Location, Time, 

Metric and Annotation.
The Boundary Generator uses the MLE-vectors to define the region and entity boundaries. To accomplish 

this, we perform top down hierarchical clustering of the MLE-vectors. The top-level clusters correspond to 
the Implicit and the Explicit regions while the next levels contain the clusters for Top, Value and Left 
regions. The clusters at this level are further refined as corresponding to the Time, Location, Metric and Annota-
tion entities. Based on our observation about the contiguity of data in this class of spreadsheets, the cells in 
each cluster are adjacent. Thus, generating the boundaries is reduced to “decoding” the “extreme” positions 
of the cells in each cluster. For example, as shown in Fig. 4, the cluster of Location within the Explicit and 
Left clusters contains the cells g6,1, g7,1 ... g11,1. Thus the Location boundary attributes will be set as 
follows: start-row = 6, end-row = 11, start-column = 1, end-column = 1. As all the cells in the Location 
cluster have the same column index, the direction is set to “Column”. For simplicity, in Fig. 4, we only show 
the clusters for Implicit, Explicit, Time, and Location. The direction refers to the fact that the cells labeled 
with Location all belong to the same column. The boundaries for Implicit, Explicit, Time and Location are 
shown in Fig. 4.

5  DATA TRANSFORMATION
The Data Transformation module processes the results provided by the Identification and Classification module. 
After the user validates the results and applies any necessary corrections, the data are extracted to generate DIOM 
Relations.

Figure 4:  Example of Boundary Labels.
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The DIOM Relation Generator: As shown in Algorithm 2, the DIOM Relation Generator creates the 
four components of an instance r

i of R as defined in Sec.3.1. The entities identified in the Implicit region are 
singleton entities, as explained in Sec. 3. They have to be replicated and the Relation Generator creates a number 
of instances equal to the product of the number of rows and columns that are in the Value region. These instances 
are then inserted into the DIOM Relation. For the composite entities found in the Explicit region, the 
instances are extracted one at the time and inserted into the DIOM Relations.

The Value Transformer interprets the semantic labels assigned in the Implicit region. When finding 
labels associated with Annotation, the Value Transformer performs the corresponding data value transforma-
tions on the tuples. For example shown in Fig. 3, the data values for all instances of metrics will be multiplied 
by 1,000. The user has access to specific transformation functions like multiplication that can be used as 

needed.

6  EXPERIMENTAL EVALUATION
Our study aims to demonstrate the improvement in accuracy and reduced human effort when using the DIOM 
framework compared to state-of-the-art approaches.

6.1  Experimental setup

We used two spreadsheet corpora resulted from over 2 years of collaboration with domain experts: a real world 
dataset 2010 Statistical Abstract of the United States (SAUS) downloaded from the US. Census Bureau with over 
1,000 files totaling 70MB and covering a variety of topics of general interest including population and income 
demographics and a dataset of 250 files from websites like the National Science Foundation, the Tax Policy 
Center, the Bureau of Economic Analysis, the Bureau of Labor Statistics and the Tax Foundation.

Data Preprocessing: We trained and tested our model on a 50% random selection of these datasets. We 
randomly split the dataset into equal-sized training and testing sets. To evaluate the accuracy, we used the stand-
ard metrics of Precision, Recall and F1 [15] and repeated the split-and-test process 10 times computing the 
average of each metric. We asked reliable human expert users to manually examine the above spreadsheets and create 
ground truth region and entity labels as well as boundaries. We assumed that the users correctly labeled the 
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spreadsheets. In addition, we grouped the selected spreadsheets into three balanced categories based on the general 
topic they were related to: Economics, Taxes, and Demographics.

Our Entity Classifier extends the open source Stanford Name Entity Recognizer (NER) [16] for identify-
ing objects in the spatial- temporal model. In particular, we expanded the functionality of the Time and 
Location classes for improved accuracy in recognizing the Time and Location entities as defined in our model 
and explained in Sec. 5.2. We added an Annotation class that also covers the existing Money and Percent classes. 
We trained our classifier to recognize this new class using the same training methodology as [16].

Alternate Strategies. We compared our system with the Automatic Spreadsheet Integrator (ASI) based on 
the work presented in [6,7] and the Rule-based Integrator (RBI) similar to [12].

The ASI approach uses CRF to identify the Top, Left and Value Region. Each value in the Value Region is 
combined with the annotation string from the Top and the Left regions to generate the tuples. The RBI parses 
the spreadsheet row by row after the header and treats each row in the structured part of the spreadsheet as a tuple.

Figure 5:  Region and entity classifiers accuracy.

Figure 6: Data relations accuracy.
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We added the same code routine to both ASI and RBI to extract the Data Relations from the tuples 
generated by the each of them respectively.

6.2  Automatic extraction

During the course of our experiments, DIOM examined more than 400,000 cells and assigned the appropriate 
semantic labels.

The Region and Entity Classifiers. Results of the accuracy evaluation of the Region and Entity classi-
fiers for the three previously mentioned categories are displayed in Fig. 5. It shows that the DIOM 
Classifiers identify the region types and entities in all three categories with an accuracy of more than 93%.

The Data Relations. The results in Table 1 and Fig. 6 show that DIOM provides better accuracy in all 
tested domains (25% better than ASI and 45% better than RBI).

6.3  Reduced user effort

We used a sample of randomly selected files from our datasets. We defined a metric of success for user repairs as 
the amount of user work reduced compared to simply fixing all the errors made by DIOM. We evaluate the 
human user effort by the number of corrections that a user has to perform and comparing it with correcting the 
errors on spreadsheets processed with DIOM versus processing spreadsheets manually by the user. We assume 

Table 1: Performance of the boundary generator.

Method Precision Recall F1

DIOM 0.9776 0.9776 0.9776

ASI 0.7307 0.76 0.7450

RBI 0.5769 0.60 0.5882

Figure 7: Normalized repairs (global).
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that the users don’t make mistakes. We normalized the required repairs by dividing them by the maximum 
possible repairs.

Figures 7 and 8 illustrate the normalized number of repairs for all the tested spreadsheets, respectively, for 
each category. In both figures smaller bars correspond to better results. The savings in terms of human time and 
effort achieved by DIOM are major contributors in achieving automatic data integration.

7  CONCLUSION
DIOM uses the novel category of “Implicit knowledge” to automatically extract, integrate, and transform data 
from heterogeneous public data sources. DIOM leverages a spatial- temporal model conceptualizing on the main 
entity types that we found present in a large class of datasets. While we focused in this study on economic 
datasets, the occurrence of such datasets is rather wide spread. As demonstrated by our experimental results, the 
performance of our system is superior to other state-of-the-art approaches in accuracy and the user interactions 
are minimized.
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