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ABSTRACT
Water, like any other biosphere natural resource, is scarce, and its judicious use includes its quality safeguard-
ing. Indeed, there is a wide concern to the fact that an ineffi cient water management system may become one 
of the major drawbacks for a human-centered sustainable development process. The assessment of reservoir 
water quality is constrained due to geographic considerations, the number of parameters to be considered and 
the huge fi nancial resources needed to get such data. Under these circumstances, the modeling of water qual-
ity in reservoirs is essential in the resolution of environmental problems and has lately been asserting itself as 
a relevant tool for a sustainable and harmonious progress of the populations. The analysis and development 
of forecast models, based on Artifi cial Intelligence-based tools and the new methodologies for problem solv-
ing, has proven to be an alternative, having in mind a pro-active behavior that may contribute decisively to 
 diagnose, preserve, and rehabilitate the reservoirs. In particular, this work describes the training, validation and 
application of Artifi cial Neural Networks (ANNs) and Decision Trees (DTs) to forecast the water quality of the 
Odivelas reservoir, in Portugal, over a period of 10 years. The input variables of the ANN model are chemical 
oxygen demand (COD), dissolved oxygen (DO), and oxidability and total suspended solids (TSS), while for 
the DT the inputs are, in addition to those used by ANN, the Water Conductivity and the Temperature. The 
performance of the models, evaluated in terms of the coincidence matrix, created by matching the predicted 
and actual values, are very similar for both models; the percentage of adjustments relative to the number of 
presented cases is 98.8% for the training set and 97.4% for the testing one.
Keywords: Artifi cial Neuronal Networks, data mining, Decision Trees, water quality.

1 INTRODUCTION
The water quality at ground zero in a given region largely depends on the nature and the extent of the 
industrial, agricultural, and other anthropogenic activities in the catchments. Undeniably, ensuring 
an effi cient water management system is a major goal in contemporary societies, taking into account 
the importance to health and the need to safeguard and promote its sustainable use. However, the 
assessment of a dam water quality is being done through analytical methods, which may not be a 
good way of doing the assessment, due to the distances to be covered, the number of parameters to 
be considered, and the fi nancial resources spent to obtain such data, that is, being what it is and no 
more. To this picture, the latency times between the sampling moment and the one of the outcome in 
terms of the laboratory analyses should be added. Due to these constraints, the development of Data 
Mining (DM)-based models [1] in conjunction with the development of Decision Support Systems 
[2], seems to be a better alternative for the quality management process of water resources.

New technological breakthroughs provided new ways to create and store information. Indeed, 
organizations accumulate huge amounts of information on a daily basis according to their specifi ci-
ties and processes, based on the assumption that large volume of data may be a source of knowledge 
which may be used to improve their performance and behavior, either by discovering trends 
or accelerating the course of effi cient decision-making. However, the conventional tools for data 
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 analysis have a great number of drawbacks, since they do not allow the detection of singularities 
inside such massive facts. Defi nitely, having in mind a response to a given number of diffi culties 
(e.g. those resulting from the use of large amount of data, multiple sources of data, or several appli-
cation domains), a new area of Knowledge Discovery from Databases (KDD) was brought to life, 
and its tools and techniques to problem-solving have been since then enforced. The designation 
KDD was formally adopted in 1989 and refers to a process that involves the identifi cation and rec-
ognition of patterns in a database, in an automatic process, that is, obtaining relevant, unknown 
information that can be useful in a decision-making process, without a previous formulation of 
hypothesis [1,3].

The interest on ecological mining has been growing substantially in recent years. Indeed, several 
innovative computational intelligence approaches have been used to fi nd patterns in water quality 
databases, such as Artifi cial Neural Networks (ANNs) and Decision Trees (DTs) [4-7]. Although the 
ANNs have been used more extensively in ecological modeling than the DTs, these have the advan-
tage of expressing regularities explicitly and thus being easy to inspect for ecological validity.

This study took place in the Odivelas reservoir, which is located 50 km southwest of the Portu-
guese city of Évora.

2 MATERIALS AND METHODS
The water samples used for the development of the models were collected in the Odivelas reservoir 
from January 2001 to December 2010. The parameters analyzed were water temperature, pH, dis-
solved oxygen (DO), conductivity, ammonium, iron, nitrate, orthophosphate, cadmium, chromium, 
copper, lead, manganese, nickel, total suspended solids (TSS), chemical oxygen demand (COD), 
and oxidability.

2.1 Sample collection and preservation

Sample collection and sample preservation followed procedures described in Standard Methods for 
the Examination of Water and Wastewater (SMEWW) [8]. For water temperature, pH, DO, and 
conductivity, the samples were collected in wide-mouth polyethylene bottles of 50 mL and ana-
lyzed immediately; for ammonium and COD analysis, the samples were collected in polyethylene 
bottle of 500 mL, preserved with sulfuric acid, pH ≤ 2, and kept refrigerated; for iron analysis, the 
samples were collected in a glass bottle of 100 mL, preserved with sulfuric acid 4.5 M, pH ≤ 2; for 
nitrate, orthophosphate, and TSS analysis, the samples were collected in polyethylene bottles of 
100 mL and kept refrigerated; for oxidability analysis the samples were collected in polyethylene 
bottles of 100 mL, stored in dark, and kept refrigerated; fi nally, for remaining metals analysis, the 
samples were collected in polyethylene bottle of 1000 mL rinsed with nitric acid and preserved 
with nitric acid, pH ≤ 2.

2.2 Analytical procedures

The analyses of water quality parameters followed the SMEWW [8] or International Standard 
Organization (ISO) or European Standards or Portuguese Standards (Table 1).

The water temperature measurements were carried out in fi eld using SLW N16B Glas (−10 +50°C, 
0.1°C) thermometer. The determination of pH was executed using a Sherwood SCI Delta 345 pH 
meter equipped with a Mettler Toledo Inlab 412 electrode. The DO was determined in fi eld with a 
Crison OXI 45 oxymeter equipped with a DurOx 325 electrode. The conductivity measurements were 
carried out on a Crison 2202 micro CM conductivity meter equipped with a Crison ACC 5292 cell. 
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The molecular absorption spectrometry measurements were carried out on a Thermo Electron spec-
trometer model Nicolet Evolution 300 LC. Finally, the atomic absorption spectrometry measurements 
were carried out on a Perkin Elmer 3110 spectrometer equipped with a HGA-600 graphite furnace.

2.3 Artifi cial Neural Networks

The most common ANN type, the multilayer perceptron, was adopted. In this network, neurons 
are grouped into layers and connected by feed-forward links [9, 10]. In the training phase, the 
back-propagation algorithm [11] was applied. In all experiments, the sigmoid activation function 
was used:
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where wij denotes the weight between the jth neuron and the ith neuron in the preceding layer, xi 
stands for the output of the ith neuron in the preceding layer and biasj refers to the weight between 
the jth neuron and the bias neuron in the preceding layer.

Table 1: Analytical techniques and test methods.

Parameter Analytical technique Test method

Water temperature ------- SMEWW 2550 B
pH Potentiometry SMEWW 4500-H+

DO SMEWW 4500-O G
Conductivity Conductimetry NP EN 27888:1996 (*)
Ammonium Molecular absorption spectrometry ISO 7150-1:1984
Iron NP 2202:1996 (**)
Nitrate SMEWW 4500-NO3

-

Orthophosphate SMEWW 4500-P E
Cadmium Atomic absorption spectrometry SMEWW 3113-B
Chromium SMEWW 3113-B
Copper SMEWW 3113-B
Lead SMEWW 3113-B
Manganese SMEWW 3113-B
Nickel SMEWW 3113-B
TSS Gravimetry SMEWW 2540 B
COD Volumetry SMEWW 5220 B
Oxidability NP 731:1969 (**)

(*) NP EN – Portuguese version of European Standard; (**) NP – Portuguese Standard.
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2.4 Decision Trees

DTs stand for one of the most effi cient data mining classifi cation methods. DTs have many attractive 
features, such as allowing human interpretation and hence making it possible for a decisionmaker to 
gain insights into what factors are important for a particular classifi cation. DTs adopt a branching 
structure of nodes and leaves, where the knowledge is hierarchically organized. Each node tests the 
value of a feature, while to each leaf is assigned a class label. The basic strategy that is employed 
when generating DTs is called recursive partitioning or divide-and-conquer. It works by partitioning 
the examples by choosing a set of conditions on an independent variable, and the choice is usually 
made such that errors on dependent variables are minimized within each group. The process contin-
ues recursively with each subgroup until defi nite conditions are met, such as looking to an error that 
cannot be further reduced (e.g. all examples in a group belong to the same class) [3]. Early systems 
for generating DTs include CART [12] and ID3 [13], the later being followed by the version 
C4.5 and C5.0. The C4.5 version was an improvement of the ID3 algorithm that allows the use of 
continuous values, support omitted values, tree pruning, and rules extraction [14].

2.5 Tests

The Waikato Environment for Knowledge Analysis (WEKA) [15] was used to implement ANNs 
and DTs, keeping the default software parameters. The algorithm used to induce DTs was the J.48 
 algorithm that implements the 8th revision of the universally known C4.5 algorithm [16].

To ensure statistical signifi cance of the attained results, 20 runs were applied in all tests. In each 
simulation, the available data was randomly divided into two mutually exclusive partitions: the train-
ing set, with two-third of the available data was used during the modeling phase and the test set, with 
the remaining one-third of the examples, was used after training to evaluate the performance of the 
models [17].

To improve the performance of the learning algorithms and to avoid the overvaluation of the 
attributes with larger intervals at the expense of the attributes with smaller ones, the data was nor-
malized to the interval [0,1] using the equation depicted below [3]:

 min
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X X
X

X X
−

=
−  
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where X  denotes the normalized value, X denotes the attribute value and Xmin and Xmax denote, 
respectively, the minimum and the maximum values for the attribute.

A common tool for classifi cation analysis to evaluate the performances of classifi cation models is 
the coincidence matrix [18], a matrix of size L × L, where L denotes the number of possible classes. 
This matrix is created by matching the predicted (test result) and actual (water quality class) values. 
L was set to 2 in the present case.

3 RESULTS AND DISCUSSION

3.1 Database

The data used in this study covered the time period from January 2001 to December 2010. However, 
in most of the cases, the parameters ammonium, iron, cadmium, chromium, copper, lead, manga-
nese, and nickel exhibited values below the quantifi cation limit of the analytical methods being, 
therefore, excluded. The database used in this study contained a total of 120 records with 9 numeric 
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fi elds. The numerical fi elds were pH, conductivity, DO, water temperature, orthophosphate, 
 oxidability, TSS, nitrate, and COD. Table 2 shows the statistical characterization of the numerical 
fi elds included in the database.

Besides the numerical variables presented in Table 2, the data base includes the classifi cation of 
the water quality body at the ground zero level. The criterion used in this study to classify the quality 
of the water was adopted by INAG, the Portuguese water management service. Therefore, water will 
be classifi ed in the nonlinear scale A, B, C, D, or E [19], where A denotes no pollution and E alludes 
to extreme pollution, which represents serious risks in terms of public health and the environment 
(Fig. 1). The original dataset presented biased distributions: in 52.2% of the observations, the water 
quality of the Odivelas reservoir is polluted (C); 47.8% is weakly polluted (B). The classifi cations 
extremely polluted (E), very polluted (D), or non polluted (A), were not found.

3.2 DTs model

The DTs model obtained to predict water quality of the Odivelas reservoir is showed in Fig. 2. It 
should be noted that the algorithm for induction of DTs did not use the data related to pH, nitrate, 

Table 2: Statistical characterization of the numerical variables used in the study.

Variable Minimum Maximum Mean Standard deviation

Water temperature (ºC) 11 29.1 20.1 4.9
pH (Sørensen scale) 7.3 9.09 8.2 0.32
DO (% sat) 60.5 113.8 81.3 11.7
Conductivity (µS/cm) 280 494 392 54
Nitrate (mg/dm3) 0.13 4.6 1.09 1
Orthophosphate (mg/dm3) 0.05 0.182 0.45 0.034
TSS (mg/dm3) 1.3 70 8.92 11.03
COD (mg/dm3) 1 51 22 8.25
Oxidability (mg/dm3) 2.4 23.2 5.8 2.23

A

B

C

D
E

Pollution

Q
ua

lit
y

Figure 1: The water quality classes versus the pollution factor.
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Figure 2: DT model to predict the water quality of the Odivelas reservoir.
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and orthophosphate, despite being available, having chosen COD, oxidability, water temperature, 
DO, conductivity, and TSS. To evaluate the model output sensitivity to changes in its input variables, 
the sensitivity, according to the variance [20], to compute the relative importance of the input vari-
ables is used. The results are presented in Fig. 3, and reveals that the most informative variable is 
COD followed by oxidability and water temperature. These results seem to suggest that these three 
variables have direct relevance and play a signifi cant role in preserving of water quality of the Odi-
velas reservoir. Table 3 presents the coincidence matrix for the DTs model. The values denote the 
average of the 20 runs. The results reveal that the model exhibits 100% accuracy in predicting pol-
luted cases (C) and shows 96.5% accuracy in predicting the weakly polluted examples (B).

3.3 ANNs model

The ANN model obtained to predict the water quality of the Odivelas reservoir is showed in Fig. 4. 
The architecture of the model consists in an input layer with 4 nodes, 2 hidden layers with 14 and 5 
nodes, respectively, and a 2-nodes output layer. It should be emphasized that the algorithm uses only 
4 (four) variables (namely COD, oxidability, DO and TSS), even though all the variables presented 
in Table 2 were available for utilization. As before, the relative importance of the input variables was 
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Figure 3: Relative importance of the input variables for DTs model.

Table 3: The coincidence matrix for DT model.

Class

Training set Test set

B C B C

B 37 1 18 1
C 0 43 0 20
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computed (Fig. 5). The analysis of Fig. 5 shows that all input variables contribute signifi cantly to the 
network, although COD provide a relatively higher contribution. Table 4 presents the coincidence 
matrix for the ANN model. The values denote the average of the 20 runs. The results reveal that 
the model exhibits 100% accuracy in predicting polluted cases (C) and shows 96.5% accuracy in 
 predicting of weakly polluted examples (B).
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Figure 4: The ANN model to predict water quality of the Odivelas reservoir.
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Figure 5: Relative importance of the input variables for the ANN model.
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4 CONCLUSIONS
The use of data mining techniques can solve complex problems in environmental applications, such 
as the prediction of water quality in reservoirs. In this work, two classifi cation models were pre-
sented and tested, using DTs and ANNs. The former adopted six input variables, while the latter only 
considered four input variables. The feeling shows, according to the variance of both models, that 
COD and oxidability provide a relatively higher contribution for the results of the models and seem 
to suggest that these variables play a signifi cant role in prediction of water quality of the Odivelas 
reservoir. On the other hand, both models presented a classifi cation rate of 96.5% for weakly pol-
luted class (B) and 100% for polluted class (C). The on hand models have advantages and 
disadvantages. In fact, the DTs-based model is easy to interpret and can be validated by experts in 
contrast to the ANN model. Conversely, the network model requires less input variables, which con-
stitute an effective advantage. The encouraging results obtained in this work show that the DTs and 
ANNs can be very useful as tools to predict water quality and can contribute signifi cantly to the 
effort that is needed for constant improvement of the quality of the water resources.
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