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The purpose of this study is to investigate the computing capabilities of machine learning 

algorithms and remotely sensed signals to extract the agricultural information. Many 

techniques and models have been developed to extract information from the remotely 

sensed observations, but it remains an exigent problem due to the accuracy, reliability and 

timeliness parameters. Sugarcane yield estimation based on the temporal profile of multi-

spectral Landsat-8 data has been explored in the proposed work. An initial attempt has been 

made in this study to select important parameters to be used as input to the machine learning 

method. Mean Decrease Accuracy and Mean Decrease Gini measures of random forest 

algorithm have been used to select the important parameters for predictive modelling. The 

results of the study revealed that Green Normalized Vegetation Index, Normalized 

Difference Vegetation Index and Land Surface Water Index performed best among other 

indices. Bands B2, B3, B6 and B7 of Landsat-8 recorded as top scorers. The proposed work 

focused on ensemble machine learning methods to optimize the correlation of historical 

crop yield values with spectral information. The Random Forest method exhibits a 

significant performance (RMSE= 1.51 t/ha and R2 = 0.94) as compared with other methods 

such as Classification and Regression Tree, Support Vector Regression and K-Nearest 

Neighbor. The proposed model based on random forest algorithm is best among all the 

scenarios and growth stages, whereas model based on classification and regression tree 

performs worst in all the cases. The proposed study indicates that the numerical value of a 

single spectral parameter and single-date data is not sufficient for the reliable yield 

estimation because it is difficult to discriminate some of the crops due to similar phenology 

in a particular growth period. 
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1. INTRODUCTION

High-performance computing and recent development in 

the field of statistical analysis based on remotely sensed 

observations in the spatial as well as the temporal domain, 

leads to the optimized and effective decision making [1]. 

Historical and ground truth information guided by remote 

sensing observations has been repeatedly and effectively used 

to monitor the agricultural fields and other important resources 

[2]. Further, the extracted information and geoinformatics 

tools may be beneficial to automate the crop inventory process 

[3]. Hence, computing methods such as Digital Image 

Processing (DIP) and geoinformatics play an important role in 

the estimation of yield and crop area [4]. 

Predictive models based on the fusion of historical data and 

remote sensing observations have been successfully used since 

the last few decades to improve the agricultural statistics [5, 6]. 

Despite the developments in the technology, only a few 

methods exhibit a strong match between predicted yield and 

observed yield [7]. Basso et al. [8] presented a detailed review 

of crop yield estimation models and suggested using remote 

sensing data as an input to the forecasting model. The study 

also suggested the use of a simple empirical model based on 

the correlation between the spectral, biophysical, 

meteorological parameters and the crop yield. Various models 

have been proposed in the past to estimate the yield of different 

crops such as wheat, rice, maize and sugarcane. Teal et al. [9] 

explored that the correlation between the spectral information 

and corn yield was exponential. In contrast to this, Ma et al. 

[10] found that the power function best represented the

correlation of the soybean yield and spectral data.

This work aims to develop a model based on the machine 

learning algorithm to predict the sugarcane yield from spectral 

observations. The temporal profile of spectral vegetation 

indices and historical crop yield records has been used as input 

to the underlying model to obtain a reliable estimate of the 

sugarcane yield. Different regression models have been 

developed to predict the sugarcane yield. These models have 

been developed on the basis of statistical analysis and 

extracted numerical values of vegetation indices acquired 

during the best predicted period. 

Subsequently, the obtained information may be useful for 

the policy-makers and agricultural scientists to support their 

decisions regarding the regional agricultural risks in the near 

future. 

2. RELATED WORK

Recent developments in the computing methods allowed the 
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user to extract information with ease even from the massive 

amount of data. Zhu et al. [11] demonstrated deep learning 

model Long Short Term Memory (LSTM) for the 

classification of GPS data. The study also suggested the use of 

optimized parameters for the effective extraction of the 

information. The study also explored the recent methods such 

as Back Propagation Neural Network (BPNN), Random Forest 

(RF) and Convolutional Neural Networks (CNN). Relevant 

Component Analysis (RCA) [12] based on machine learning 

has been presented for the classification of remotely sensed 

data. The performance of RCA method was significantly better 

than the traditional methods. The machine learning methods 

may be used to extract the thematic information from the 

satellite data that can be employed for various domains such 

as Agriculture, Urban Planning, Disaster Management and 

Climatic studies. Various agricultural applications and 

operations such as yield estimation, area estimation and 

monitoring of the crop growth can be carried out easily under 

the guidance of these models and remotely sensed data [13]. 

Dadhwal et al. [14] discussed that the spectral data has been 

predominately used for the agricultural applications since the 

launch of the civilian remote sensing program in 1960. The 

paper also described Crop Identification Technology 

Assessment for Remote Sensing (CITARS) and Large Area 

Crop Inventory Experiment (LACIE) related to agricultural 

applications of remote sensing [15, 16]. Researchers in the past 

discussed recent advancements in information technology and 

spatial and spectral information that can assist the policy-

makers in extracting the information related to the crop yields 

more accurately. Timely and accurate information is a 

prerequisite for reliable predictive modelling and efficient 

crop growth monitoring [17]. Nitrogen content of the plant, an 

indicator of the plant growth, may be estimated from Near 

Infrared (NIR) reflectance [18]. Spatio-temporal trend 

analysis of Land Surface Temperature (LST) is important to 

study the impact of climate change on the agricultural 

environment [19]. The problem of misclassification due to the 

spatial resolution or presence of attenuations such as clouds 

may affect the predictive accuracy. The problem of 

misclassification due to the spatial resolution or presence of 

attenuations such as clouds may affect the predictive accuracy. 

Some recent methods of bagging, boosting and stacking may 

significantly improve predictive accuracy [20]. 

Gunnula et al. [21] proved that the relationship between 

information and sugarcane yield is highly significant. Rahman 

and Robson [22] proposed a sugarcane yield prediction 

algorithm based on values obtained from Landsat data. The 

algorithm estimated the sugarcane yield with a significant 

correlation (R2 = 0.69). 

However, sometimes the yield models based on spectral 

data or indices may not perform well due to the low spatial 

resolution or the quality of the other input data. The resolution 

and quality of the spectral data may be enhanced using pan 

sharpening algorithms, the fusion of data from multiple 

sources and the application of temporal profile of the available 

information [23]. 

Rao et al. [24] suggested that multi-temporal spectral data 

should be applied for the predictive modelling for sugarcane 

yield as single date imagery of Landsat data is not sufficient to 

participate in the model. Gers [25] developed a model based 

on multi-temporal Landsat data and sugarcane yield at 

Umfolozi in South Africa. Vo et al. [26] suggested using the 

temporal profile of the historical data for the predictive model 

based on machine learning methods K-Means Clustering and 

Support Vector Machine (SVM). Bégué et al. [27] presented a 

model based on regression with R2 value of 0.78 between the 

sugarcane yield and the NDVI at the ripening stage of the 

sugarcane. Morel et al. [28] compared various crop yield 

forecasting methods based on the empirical relation of NDVI 

values with yield records. 

Researchers in the past suggested the enhancement of the 

model by the use of input from known crops or by the use of 

meteorological data and biophysical parameters. Almeida et al. 

[29] estimated the yield of sugarcane with an acceptable error 

of 1% to the actual yield. Fernandes et al. [30] proposed a 

model based on the decision tree with R2 value of 0.56 between 

sugarcane yield and multi-temporal NDVI. The model also 

explained the variations of NDVI values during the different 

development phases such as establishment, vegetative 

development and senescence. Rembold et al. [31] suggested 

the use of ground truth data with remote sensing information 

for the quality analysis. Marin and Jones [32] developed a 

process based model based on the variations in LAI of 

sugarcane. Mello et al. [33] proposed a technique based on 

spectral data from 2003 to 2012 to predict the yield with an 

error of 0.8%. 

Ahamed et al. [34] presented a comprehensive review on 

the use of methods based on remotely sensed data to liberate 

robust, reliable, timely and accurate information. The brief 

review of the available literature revealed that selection and 

combination of appropriate spatial as well as spectral 

information along with suitable processing methods for the 

extraction of information related to sugarcane is most 

important, particularly for the small areas. Hence, the present 

work has been devoted to the use of spectral data in the 

temporal domain to automate the prediction of sugarcane yield. 

Various machine learning methods such as RF, SVR, and 

CART have been employed for the prediction and feature 

selection. 

 

 

3. MODELLING FRAMEWORK 

 

This work is focused on timely and accurate estimates about 

the sugarcane yield and by-products to enable the policy-

makers to make decisions about the food grain production. 

Data and information from multiple sources are integrated to 

guide the analysis process further. This section is devoted to 

the brief details of the study area, data used and the formulae 

and methods used to develop the sugarcane yield model. 

 

3.1 Datasets used for the modelling 

 

The most important input data for models related to the 

yield estimation is satellite data. They become very popular in 

recent years because of their better spatial and spectral 

resolutions and their capacity to generate multi-temporal 

products. The data from the Landsat-8 has been used in this 

study. The details of the satellite images and the ancillary data 

used in the study have been presented in Section 4. Various 

vegetation indices generated from spectral bands have been 

investigated in the proposed work. The mathematical 

formulation and the brief description of each vegetation index 

used in the proposed model have been presented in Table 1.
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Table 1. Spectral vegetation indices 
 

Index Formula Ref. 

RVI  
𝑁𝐼𝑅_𝑟𝑒𝑓

𝑅_𝑟𝑒𝑓
 [35] 

NDVI 
𝑁𝐼𝑅_𝑟𝑒𝑓 − 𝑅_𝑟𝑒𝑓

𝑁𝐼𝑅_𝑟𝑒𝑓 + 𝑅_𝑟𝑒𝑓
 [36] 

SAVI 
(𝑁𝐼𝑅_𝑟𝑒𝑓 − 𝑅_𝑟𝑒𝑓)(1 + 𝐿)

𝑁𝐼𝑅_𝑟𝑒𝑓 + 𝑅_𝑟𝑒𝑓 + 𝐿
 [37] 

GNDVI 
𝑁𝐼𝑅_𝑟𝑒𝑓 − 𝐺_𝑟𝑒𝑓

𝑁𝐼𝑅_𝑟𝑒𝑓 + 𝐺_𝑟𝑒𝑓
 [38] 

OSAVI 
(𝑁𝐼𝑅_𝑟𝑒𝑓 − 𝑅_𝑟𝑒𝑓)(1 + 𝐿)

𝑁𝐼𝑅_𝑟𝑒𝑓 + 𝑅_𝑟𝑒𝑓 + 0.16
 [39] 

DVI 𝑁𝐼𝑅_𝑟𝑒𝑓 − 𝑅_𝑟𝑒𝑓 [40] 

ARVI 
𝑁𝐼𝑅_𝑟𝑒𝑓 − ((2 ∗ 𝑅_𝑟𝑒𝑓) − 𝐵_𝑟𝑒𝑓)

𝑁𝐼𝑅_𝑟𝑒𝑓 + ((2 ∗ 𝑅_𝑟𝑒𝑓) − 𝐵_𝑟𝑒𝑓)
 [41] 

GCI 
𝑁𝐼𝑅_𝑟𝑒𝑓

𝐺_𝑟𝑒𝑓
− 1 [42, 38] 

EVI 
𝐺(𝑁𝐼𝑅_𝑟𝑒𝑓 − 𝑅_𝑟𝑒𝑓)

𝑁𝐼𝑅_𝑟𝑒𝑓 + 𝐶1(𝑅_𝑟𝑒𝑓) − 𝐶2(𝐵_𝑟𝑒𝑓) + 𝐿
 [43, 44] 

VARI 
𝐺_𝑟𝑒𝑓 − 𝑅_𝑟𝑒𝑓

𝐺_𝑟𝑒𝑓 − 𝑅_𝑟𝑒𝑓 − 𝐵_𝑟𝑒𝑓
 [45] 

NDWI 
𝐺_𝑟𝑒𝑓 − 𝑁𝐼𝑅_𝑟𝑒𝑓

𝐺_𝑟𝑒𝑓 + 𝑁𝐼𝑅_𝑟𝑒𝑓
 [46] 

NDMI 
𝑁𝐼𝑅_𝑟𝑒𝑓 − 𝑆𝑊𝐼𝑅_𝑟𝑒𝑓

𝑁𝐼𝑅_𝑟𝑒𝑓 + 𝑆𝑊𝐼𝑅_𝑟𝑒𝑓
 [47] 

NR 
𝑅_𝑟𝑒𝑓

𝑁𝐼𝑅_𝑟𝑒𝑓 + 𝑅_𝑟𝑒𝑓 + 𝐺_𝑟𝑒𝑓
 [48] 

NG 
𝐺_𝑟𝑒𝑓

𝑁𝐼𝑅_𝑟𝑒𝑓 + 𝑅_𝑟𝑒𝑓 + 𝐺_𝑟𝑒𝑓
 [48] 

NN 
𝑁𝐼𝑅_𝑟𝑒𝑓

𝑁𝐼𝑅_𝑟𝑒𝑓 + 𝑅_𝑟𝑒𝑓 + 𝐺_𝑟𝑒𝑓
 [48] 

 

where, 𝑁𝐼𝑅_𝑟𝑒𝑓 is the reflectance in the near infrared band, 

𝑅_𝑟𝑒𝑓 is the reflectance of the red band, 𝐺_𝑟𝑒𝑓 is reflectance 

of the green band, 𝐵_𝑟𝑒𝑓 is reflectance of the blue band of 

Landsat-8 and L is the soil and canopy adjustment constant. 

Normalized Difference Vegetation Index (NDVI), Green 

Normalized Difference Vegetation Index (GNDVI), Enhanced 

Vegetation Index (EVI), Soil Optimized Vegetation Index 

(SAVI) and its optimized version (OSAVI) are most 

commonly used indices for agricultural applications of remote 

sensing, whereas, the simplest index is Ratio Vegetation Index 

(RVI). These indices generally vary between -1 and +1. 

Atmospherically Resistant Vegetation Index (ARVI) and 

Visible Atmospherically Resistant Index (VARI) may be used 

for the correction of atmospheric scattering errors such as 

aerosols. Normalized Difference Moisture Index (NDMI) and 

Normalized Difference Water Index (NDWI) can be used for 

the assessment of water and moisture content in the plants and 

crops. NDMI is also referred as Land Surface Water Index 

(LSWI). These indexes are also useful to determine the Land 

Surface Temperature (LST) and can be employed for the 

irrigation management. Green Chlorophyll Index (GCI) was 

introduced to estimate the chlorophyll content and total 

pigment of a plant. Some other indices such as Normalized 

Green (NG), Normalized Near Infrared (NN) and Normalized 

Red can be used to extract the agricultural information based 

on the remotely sensed data. Generally, the negative values 

and values near to zero are specific to soil with no vegetation 

or sparse vegetation. In contrast the surfaces covered by dense 

and healthy vegetation have values 0.7 to 1.0. These 

vegetation indices play an important role in the extraction of 

thematic information from the remotely sensed data. Various 

crop growth, crop area estimation, crop yield estimation and 

crop simulation models in the recent past employed these 

vegetation indices as input parameters. 

Sugarcane yield records and other parameters have been 

collected from the different agricultural fields of Khelri and 

Dhanauri areas in the Himalayan foothills. The area belongs to 

Bhadarabad region of Haridwar district in Uttarakhand State 

of India. The collected data has been kept for the training and 

testing of the underlying models in the study. Data have been 

collected from the State Agriculture Department, nearby 

sugarcane industries and by interviewing the farmers.  

 

3.2 Feature selection 

 

The use of remotely sensed data in the temporal domain 

always leads to a large number of features. The high 

dimensionality increases the complexity of the underlying 

model as well as the execution time [49]. Methods based on 

machine learning may be used to select and evaluate features 

to improve the performance of the underlying model [50]. 

Bocca et al. [51] discussed the importance of feature selection 

methods in the context of accurate and reliable sugarcane yield 

modelling. In addition to the reducing complexity and 

computational time, feature selection allows a better 

interpretation of the underlying model [52]. They investigated 

the use of Correlation-based Feature Selection (CBFS), 

Forward Feature Selection (FFS), Variance Inflation Factor 

(VIF) and Random Forest Variable Importance (RFVarImp) 

algorithm for the machine learning model of sugarcane yield. 

Their results indicate that the feature selection improves the 

accuracy of the model and reduces the chances of over-fitting. 

Hence, the minimization and optimization of the input 

variables are essential aspects of the development of a yield 

estimation model. The selection of bands and indices for the 

analysis based on remote sensing may be handled through the 

use of Principal Component Analysis (PCA) and Exploratory 

Factor Analysis (EFA) [53]. The proposed study applied 

random forest based methods for selecting important variables 

to generate the datasets for the model. 

 

3.3 Regression modelling – methods and implementation 

 

Preliminary analysis has been performed on the correlation 

of extracted indices from spectral data and the historical yield 

records from the year 2015 to 2018. The database for each crop 

type in the experimental area is prepared on the basis of the 

Pearson correlation coefficient (r). The coefficient r  is the 

relation between the historical crop yield (y) and mean 

vegetation index (x) values for each crop in the temporal 

domain. The dates having maximum, minimum, mean and the 

integrated values of the corresponding index for each pixel are 

stored in another database. The time period associated with the 

maximum correlation value has been recognized as an optimal 

period for the prediction of crop yield. 

Mathematically, the crop yield matrix for each crop 

("𝑦𝑖𝑒𝑙𝑑𝑡𝑦𝑝𝑒") and the matrix containing NDVI values is given 

by: 
 

𝑦𝑖𝑒𝑙𝑑𝑡𝑦𝑝𝑒 = [

𝑦𝑖𝑒𝑙𝑑𝑡1
⋮

𝑦𝑖𝑒𝑙𝑑𝑡𝑛

] (1) 

 

𝑥𝑡𝑦𝑝𝑒 = [
𝑥11
𝑡𝑦𝑝𝑒

⋯ 𝑥1𝑡
𝑡𝑦𝑝𝑒

⋮ ⋱ ⋮

𝑥𝑛1
𝑡𝑦𝑝𝑒

⋯ 𝑥𝑛𝑡
𝑡𝑦𝑝𝑒

] (2) 
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where: 

𝑛 = No. of pixels in the study area; 

𝑡 = Total number of periods of the year for NDVI; 

𝑡𝑦𝑝𝑒 = Crop type. 

 

After the successful generation of the database for the 

regression modelling, the identification of the optimal period 

for the prediction of crop yield has been processed based on 

the random forest measures MDA and MDG. The selected 

periods have been used as the independent variables in the 

proposed regression models. 

 

3.4 Modelling methods and implementation 

 

Preliminary analysis has been carried out on the basis of 

simple models such as linear model, logarithmic model, 

polynomial model, exponential model and power series model. 

Detailed analysis based on machine learning methods SVR, 

CART, KNN and RF have been carried out for regression 

modelling. All these methods have been implemented using 

the open-source software “R”. The package “caret” has been 

used to write down the source code for the proposed regression 

modelling [54]. The tuning parameters for each method have 

been used in the proposed work to optimize the overall 

performance. Tuning parameter for CART is 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, two 

parameters 𝜎 and 𝐶 for SVR, one parameter 𝑘 for KNN and 

two parameters 𝑛𝑡𝑟𝑒𝑒 and 𝑚𝑡𝑟𝑦 for RF. 

 

3.5 Performance evaluation measures 

 

Performance evaluation measures such as MAE, RMSE and 

R2 have been used to investigate the performance and behavior 

of the predictive models to estimate the sugarcane yield in the 

study area. 

 

3.5.1 Root Mean Square Error (RMSE) 

Statistical indicator RMSE has been used to enumerate the 

weighted variations between the estimated and actual yield. 

Mathematically, it is expressed as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑦𝑖 − 𝑜𝑦𝑖)

2

𝑛−1

𝑖=0

 (3) 

 

3.5.2 Mean Square Error (MSE) 

The ground truth values and the predicted values by the 

underlying algorithm have been normalized in [0, 1]. The 

average of the square of the differences between the 

normalized ground truth and evaluated normalized values have 

been calculated using the formula: 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑝𝑦𝑖 − 𝑜𝑦𝑖)

2

𝑛−1

𝑖=0

 (4) 

 

3.5.3 Mean Absolute Error (MAE) 

The mean of the absolute differences between the predicted 

and actual values has been calculated using the formula: 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑝𝑦𝑖 − 𝑜𝑦𝑖|

𝑛−1

𝑖=0

 (5) 

 

where, 𝑛  is the total number of observations, 𝑝𝑦  denotes 

estimated or predicted yield 𝑜𝑦 is the observed or actual yield. 

These performance evaluation metrics have been used in the 

different modules of the proposed model. 

 

3.6 Algorithm for predictive model 

 

The methodology adopted to design and develop the 

proposed predictive model has been shown in Figure 1. The 

modules used in the development of the model have been 

represented by the following algorithm. 

 

Algorithm 1: Proposed algorithm for Predictive Model 

 

Module 1: Acquisition of Data: 

- Meteorological 

- Yield records 

- Spectral observations 

Module 2: Pre-processing: 

- Removal of the images with cloud cover greater than 20% 

- Conversion from DN to reflectance 

- Temporal Profile of Spectral signals 

- Generation of vegetation indices  

Module 3: Feature Selection: 

- Selection of important bands and indices (MDA, MDG)  

Module 4: Preliminary Analysis: 

- Correlation of yield data and NDVI extracted in Module 2 

- For each year, the optimal date for each pixel stored in 

another database 

- Mean NDVI calculation for all the pixels obtained in 

Module 3 

- Correlation of mean NDVI and Crop Yield data is 

recalculated for the sugarcane 

- Identify the best period for the estimation 

- Development of simple regression models 

- Performance evaluation using RMSE and Tukey’s Test 

Module 5: Modelling based on Machine Learning Methods: 

- Selected methods: SVR, CART, KNN and RF 

- Single-year modelling for each growth stage 

- Multiple-years modelling for each growth stage 

- Performance evaluation (MAE, RMSE and R2) 

- Analysis based on the obtained results for Site 1 and Site 2 

 

All the modules are implemented with the help of open 

source software QGIS and R. The modules of the proposed 

algorithm have been implemented as following sub-algorithms: 

 

Sub-Algorithm 1: Creation of LayerStack 

 

j  1 

for i = 1 to n do 

if image_i_meta_cloud < 20 then 

Convert_DNtoRe f (Ti) 

for k = 1 to 7 do 

PushTi(Band_k) to LayerStack 

end for 

for M = 1 to 10 do 

PushTi(VI_m) to LayerStack 

end for 

j  j + 1 

end if 

end for 
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Sub-Algorithm 2: Variable Importance 

 

for i = 1 to j do 

plotMDA(laytertack(i);) 

plotMDG(laytertack(i);) 

end for 

optimize(ntree; mtry; oobmin) 

for x = 1 to ntree do 

calculateOOB(mtry; oobmin) 

calculateOOB(mtry=2; oobmin) 

calculateOOB(sqrt(mtry); oobmin) 

end for 

select ntree and corresponding mtry with minimum OOB 

 

Sub-Algorithm 3: Yield Estimation Model 

 

validationIndex  createDataPartition(mydata; p = 0:80) 

validation  mydata[-validationIndex; ] 

dataset  mydata[validationIndex; ] 

trnControl trainControl(method = “repeatedcv”; n = 10; rep 

= 3) 

model.fit  train(Crop.; dataset; method=(SVR, CART,KNN, 

RF) 

validation of model on sample data 
 

All the modules have been implemented and the results 

obtained have been discussed in the next section. The 

performance comparison of the machine learning methods 

used in the proposed work has been carried out to select the 

best model for the prediction. 

 

 
 

Figure 1. Flow diagram of proposed methodology 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The proposed work is focused on the yield estimation of 

sugarcane, based on the spectral parameters and the yield 

records obtained during 2015, 2016, 2017, 2018 and 2019. 

Machine learning methods such as random forest, support 

vector regression, k-nearest neighbor and classification and 

regression tree have been tested as predictive model for the 

underlying work. Random forest measures MDA and MDG 

have been explored for the purpose of dimensionality 

reduction.  

 

4.1 Extraction of spectral observations 

 

The satellite data for the modeling activity has been 

obtained from the Landsat-8 and downloaded from 

https://earthexplorer.usgs.gov. The spectral data was obtained 

in the form of Digital Numbers (DN). For accurate analysis of 

the spectral data, the DN was converted to actual reflectance 

values with the help of metadata (MTL File) provided with the 

spectral observations. The spectral observations were received 

in different bands such as Blue Band, Green Band, Red Band 

and Near Infrared Band. After the acquisition and 

preprocessing of the satellite data the process for the extraction 

of spectral indices has been employed to extract particular and 

relevant information. The significance of each index has been 

discussed in the section 3.1. The development of the model 

starts with an initial phase of feature selection. Total of 40 

cloud-free satellite images acquired through the entire growth 

seasons have been used for the analysis (Table 2). The images 

have been assigned the names according to the date and year 

of acquisition. First image acquired in 2015 has been 

designated as T1_1, second image as T1_2 and so on up to the 

image T1_6 for the last image acquired on 11th November in 

the year 2015. Similarly, the images for the year 2016 prefixed 

with T2 and the sequence number of the images (1 to 8) has 

been used as a suffix. The nomenclature of all the other images 

has been assigned in a similar manner. The spectral bands and 

vegetation indices extracted from these images have been 

provided as input to the feature selection phase. 

 

Table 2. Landsat dataset used in the study 

 
Image Date Image Date 

T1_1 Apr. 17, 2015 T3_7 Oct. 31, 2017 

T1_2 May 03, 2015 T3_8 Nov. 16, 2017 

T1_3 May 19, 2015 T3_9 Dec. 02, 2017 

T1_4 Sep. 08, 2015 T4_1 Mar. 24, 2018 

T1_5 Oct. 10, 2015 T4_2 Apr. 25, 2018 

T1_6 Nov. 11, 2015 T4_3 May 11, 2018 

T2_1 Mar. 03, 2016 T4_4 Jun. 12, 2018 

T2_2 May 21, 2016 T4_5 Sep. 16, 2018 

T2_3 Aug. 25, 2016 T4_6 Oct. 02, 2018 

T2_4 Sep. 26, 2016 T4_7 Oct. 18, 2018 

T2_5 Oct. 12, 2016 T4_8 Nov. 19, 2018 

T2_6 Oct. 28, 2016 T4_9 Dec. 05, 2018 

T2_7 Nov. 13, 2016 T5_1 Feb. 23, 2019 

T2_8 Nov. 29, 2016 T5_2 Apr. 28, 2019 

T3_1 Mar. 05, 2017 T5_3 May 30, 2019 

T3_2 May 08, 2017 T5_4 June 15, 2019 

T3_3 May 24, 2017 T5_5 July 01, 2019 

T3_4 Sep. 13, 2017 T5_6 Oct. 21, 2019 

T3_5 Sep. 29, 2017 T5_7 Nov. 06, 2019 

T3_6 Oct. 15, 2017 T5_8 Dec. 08, 2019 
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4.2 Optimal selection of predictors 

 

Seven spectral bands (B1 to B7) and 11 vegetation indices 

(DVI, GNDVI, LSWI, NDVI, NG, NN, NR, OSAVI, RVI, and 

SAVI) have been analyzed to select predictors. The selection 

process of the predictors has been performed using random 

forest measures MDA and MDG. The scores of both MDA and 

MDG have been presented in Table 3. It has been observed 

that both spectral bands and spectral indices have scored well 

during the entire growing season. 

The MDA scores for the LSWI, NDVI and B4 have been on 

the higher side, whereas MDG scores of LSWI, B2 and B3 

have been recorded at the top during the initial growing period 

of sugarcane (GS1). This may be due to the presence of the 

greenness of the ratoon plants. The vegetation indices GNDVI, 

LSWI, NDVI, NG and band B6 recorded higher values. On 

similar trends, the behavior of the different bands and indices 

during the growing season was distinguishable. 

The overall scores of both measures have been presented in 

Table 3, and their comparison has been shown in Figure 2. It 

has been observed that performance of the band B1 remains 

almost at the lower level for both cases in each growing stage. 

This may be attributed to the fact that B1 may be effectively 

applicable to water related studies. Vegetation indices SAVI 

and OSAVI did not performed well as they are well suited for 

the soil related studies. The comparison of the scores revealed 

that GNDVI, NDVI and LSWI performed best among other 

indices. Bands B2, B3, B6 and B7 recorded as top scorers. 

Indices SAVI, OSAVI, RVI, DVI, NG, and NN as well as 

bands B1 and B5 have not performed well during the feature 

selection process. These bands and indices have been left out 

during the development of the yield estimation model. The top 

five variables from each score have been selected (represented 

by bold face in Table 3 under Total Score) for further analysis. 

Hence, the total 40 (10 variables during each growth stage) 

variables have been selected to participate in the model 

development. 

 

Table 3. Feature selection using MDA and MDG 

 

Features GS1 GS2 GS3 GS4 Total Score 

MDA MDG MDA MDG MDA MDG MDA MDG MDA MDG 

B1 0.00 0.33 0.62 1.69 1.92 4.95 0.75 0.65 3.29 7.61 

B2 7.33 10.00 3.53 5.18 7.68 1.45 3.93 1.33 22.46 17.95 

B3 6.48 9.41 3.96 4.97 8.15 1.77 7.19 0.85 25.78 17.00 

B4 7.37 7.51 3.23 6.71 7.31 2.86 2.50 0.79 20.41 17.86 

B5 5.71 2.45 5.69 2.95 3.68 0.00 6.17 0.82 21.25 6.22 

B6 7.04 2.01 5.90 9.08 7.10 2.79 6.51 10.00 26.55 23.88 

B7 6.65 2.76 4.34 4.29 7.59 1.91 5.94 7.99 24.52 16.95 

DVI 0.87 1.26 2.10 0.89 2.74 0.49 2.98 0.27 8.68 2.91 

GNDVI 2.49 1.82 5.96 8.91 2.17 4.73 2.34 2.19 12.96 17.65 

LSWI 10.00 9.19 8.54 7.43 7.53 2.77 6.69 2.03 32.75 21.42 

NDVI 7.79 2.66 7.40 3.57 9.07 3.72 10.00 1.80 34.26 11.75 

NG 2.19 1.73 9.67 7.34 2.05 5.97 3.91 1.45 17.81 16.49 

NN 1.41 0.68 1.19 0.00 1.79 5.91 1.45 0.00 5.84 6.59 

NR 1.93 0.60 4.87 1.72 1.02 4.91 3.56 0.63 11.38 7.86 

OSAVI 0.12 0.00 1.15 1.94 0.78 1.73 1.57 0.54 3.62 4.21 

RVI 0.42 0.78 0.34 1.42 2.15 5.30 0.00 0.57 2.91 8.07 

SAVI 1.55 0.40 0.90 0.34 1.82 0.82 1.93 1.14 6.19 2.70 

 
 

Figure 2. MDA and MDG scores of feature selection 

 

4.3 Results of preliminary analysis 

 

The vegetation index NDVI has been selected for the 

preliminary analysis for the yield estimation of sugarcane. The 

temporal profile of NDVI has been examined for each year of 

the study. The mean NDVI values from the year 2015 to 2018 

for the extracted sugarcane fields in the study area have been 

demonstrated in Figure 3. The cavernous study of the graph 

revealed the increasing trend of NDVI at the initial period i.e., 

50 to 55 days after the plantation (DAP). The NDVI shoots up 

again towards the grand growth stage and finally dips around 

the maturity stage. 

The correlation of sugarcane yield and NDVI values has 

been recorded as 0.75. In contrast, the correlation of wheat and 

rice is below 0.6 in the area as given in Table 4. The correlation 

coefficient value of 0.77 has been recorded around the 

maturity stage of sugarcane. These observations are in 

agreement with the findings of Almedia et al. [29] to observe 

the relationship between NDVI and yield data during eight to 

ten months of the growing season. 

 

Table 4. Results of correlation analysis 

 
Crop  

Type 

Correlation Coefficient (r) Best Period  

(DAP) 

Sugarcane 0.75 210-270  

Wheat 0.59 - 

Rice 0.55 - 
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Figure 3. Mean NDVI values of sugarcane fields 
 

Regression analysis of mean NDVI (during the optimal 

growth period) and the historical yield records of underlying 

area have been presented in Table 5. 
 

Table 5. Regression equations for the yield estimation 

 
Model Equation R2 

Polynomial 𝑦 = 60.20𝑥2 − 32.74𝑥 + 52.07 0.555 

Linear 𝑦 = 28.19𝑥 − 36.77 0.553 

Exponential 𝑦 = 38.56𝑒0.553𝑥  0.549 

Power Series 𝑦 = 61.71𝑥0.278 0.546 

Logarithmic 𝑦 = 14.17 ln(𝑥) − 60.75 0.550 

 

Statistical analysis has been carried out to explore the 

significance of the results obtained from simple regression 

models. The most conservative multi comparison “Tukey’s 

Test” [55] has been implemented to carry out the analysis. The 

outcome of the Tukey’s test indicates that the difference 

between the simple regression based models was not highly 

significant. Hence, machine learning methods have been 

investigated to analyze the other indices and bands acquired 

during the entire growth season. 

 

4.4 Regression modelling - machine learning methods 

 

Preliminary analysis indicates that non-linear models may 

produce better results for the yield estimation. Hence, the 

proposed work investigated CART, KNN, RF and SVR 

methods of machine learning to estimate the sugarcane yield 

based on remotely sensed data.  

The predictive models have been trained, tested and 

validated for the different scenarios based on the single-year 

and the multiple-years. Each scenario is further subdivided as 

per the growth stage in each year. The scenarios and their 

abbreviations have been given in Table 6. Machine learning 

modelling for the twenty-five cases (five scenarios and five 

stages in each scenario) has been explored in the current work. 

Error analysis and the relationship of predictors and yield 

values have been monitored for each scenario and case 

separately. The analysis based on different scenarios has been 

presented in the next section. 

 

Table 6. Scenarios used in the modelling 

 
Scenario Year Growth Stage 

S1 2015 Germination Stage (GS1), 

Tillering Stage (GS2), 

Grand Growth Stage 

(GS3), 

Maturity Stage (GS4), 

Peak of Growth (PG) 

S2 2016 

S3 2017 

S4 2018 

S5 2015, 2016, 2017, 

2018 

4.4.1 Single-year modelling 

The yield records and the spectral information acquired at 

each growth stage of the year 2015 have been used as inputs 

for the scenario S1. The outcomes of machine learning 

methods for scenario S1 have been presented in Table 7. It has 

been observed that the spectral information has been strongly 

correlated with yield records during the grand growth stage 

(GS3). Minimum values of MAE (2.20 t/ha) and RMSE (3.01 

t/ha) have been recorded for the RF model. The performance 

of the CART model has been the lowest with a maximum 

value of MAE (4.65 t/ha) and RMSE (6.02 t/ha) and the lowest 

value of R2 (0.24). It has been ascertained from the 

comparative performance that the initial stages of sugarcane 

growing seasons are not significant for the yield estimation. 

The models for the scenario S2 have been developed on the 

basis of data from the year 2016. The results acquired after the 

successful application of the model have been presented in 

Table 8.  

 

Table 7. Comparative performance of scenario (S1) 

 

Model 
MAE 

GS1 GS2 GS3 GS4 PG 

SVR 3.98 3.64 2.74 3.43 2.98 

CART 4.46 4.65 2.85 3.58 3.29 

KNN 4.19 3.92 2.67 3.95 3.06 

RF 3.46 3.30 2.20 3.11 2.57 

Model 
RMSE 

GS1 GS2 GS3 GS4 PG 

SVR 5.39 5.02 3.73 4.67 3.90 

CART 5.75 6.02 3.70 4.69 4.30 

KNN 5.60 5.29 3.49 5.18 3.99 

RF 4.48 4.24 3.01 4.01 3.39 

Model 
R2 

GS1 GS2 GS3 GS4 PG 

SVR 0.21 0.31 0.63 0.41 0.59 

CART 0.19 0.16 0.61 0.44 0.48 

KNN 0.17 0.24 0.65 0.31 0.55 

RF 0.44 0.47 0.72 0.51 0.63 

 

Table 8. Comparative Performance of Scenario (S2) 

 

Model 
MAE 

GS1 GS2 GS3 GS4 PG 

SVR 3.41 3.33 2.26 3.41 2.51 

CART 3.71 3.86 2.46 3.58 2.76 

KNN 3.54 3.64 2.47 3.30 2.71 

RF 3.05 3.14 2.07 2.80 2.19 

Model 
RMSE 

GS1 GS2 GS3 GS4 PG 

SVR 4.25 4.21 2.94 4.16 3.25 

CART 4.62 4.79 3.15 4.37 3.49 

KNN 4.36 4.52 3.04 4.13 3.44 

RF 3.84 4.06 2.66 3.48 2.87 

Model 
R2 

GS1 GS2 GS3 GS4 PG 

SVR 0.36 0.36 0.67 0.39 0.59 

CART 0.26 0.21 0.63 0.34 0.56 

KNN 0.32 0.29 0.65 0.39 0.57 

RF 0.46 0.40 0.73 0.55 0.68 

 

The grand growth stage (GS3) is again highly correlated 

with the yield records of the year 2016. The best values for the 
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performance measures are MAE (2.07 t/ha), RMSE (2.66 t/ha) 

and R2 (0.73), whereas the lowest performance values are 

MAE (3.86 t/ha), RMSE (4.79 t/ha) and R2 (0.21) respectively. 

The observations from the scenario S2 reveal that Grand 

Growth stage (GS3) and RF method is important for the yield 

estimation. On the other hand, the tillering stage (GS2) and 

CART method is the least important for the sugarcane yield 

estimation. 

Similar results have been obtained for the year 2017 for the 

selection of model as well as the relationship between yield 

records and growth stage. However, the inferior results in 

terms of RMSE and MAE have been obtained. On the other 

hand, the R2 values have been significantly enhanced from 

0.63 to 0.75, 0.61 to 0.72, 0.72 to 0.76 and 0.75 to 0.81 since 

year 2015. The values of the MAE, RMSE and R2 for the 

scenario S3 have been given in Table 9. 

 

Table 9. Comparative performance of scenario (S3) 

 

Model 
MAE 

GS1 GS2 GS3 GS4 PG 

SVR 3.77 3.77 2.44 3.65 2.83 

CART 4.55 4.56 2.61 4.28 3.04 

KNN 4.09 4.22 2.50 3.74 3.21 

RF 3.58 3.56 2.08 3.27 2.45 

Model 
RMSE 

GS1 GS2 GS3 GS4 PG 

SVR 4.85 4.69 3.21 4.66 3.72 

CART 5.64 5.81 3.37 5.45 3.79 

KNN 5.22 5.30 3.17 4.92 4.14 

RF 4.69 4.57 2.73 4.24 3.19 

Model 
R2 

GS1 GS2 GS3 GS4 PG 

SVR 0.43 0.47 0.75 0.48 0.66 

CART 0.27 0.25 0.72 0.28 0.63 

KNN 0.35 0.32 0.76 0.40 0.57 

RF 0.47 0.50 0.81 0.58 0.74 

 

Table 10. Comparative performance of scenario (S4) 

 

Model 
MAE 

GS1 GS2 GS3 GS4 PG 

SVR 3.64 3.35 2.31 3.31 2.35 

CART 3.72 4.20 2.40 3.66 3.11 

KNN 3.83 3.92 2.49 3.38 2.79 

RF 3.06 3.15 1.97 2.84 2.25 

Model 
RMSE 

GS1 GS2 GS3 GS4 PG 

SVR 4.87 4.47 3.24 4.25 3.32 

CART 4.88 5.32 3.23 4.60 4.34 

KNN 5.11 4.97 3.19 4.23 3.85 

RF 4.27 4.21 2.70 3.80 3.14 

Model 
R2 

GS1 GS2 GS3 GS4 PG 

SVR 0.31 0.41 0.70 0.48 0.69 

CART 0.36 0.25 0.70 0.39 0.50 

KNN 0.24 0.29 0.70 0.49 0.59 

RF 0.47 0.49 0.78 0.56 0.72 

 

The outcomes of scenario S4 indicate that the best value of 

R2 (0.78) has been decreased from 0.81 obtained in the year 

2017. For better analysis, these results have been validated 

from the validation samples. These validation samples neither 

belong to training samples nor to the testing. The observations 

of scenario S4 have been given in Table 10. The analysis based 

on the performance evaluation metrics (MAE, RMSE and R2) 

for the single-year modelling for all the scenarios have been 

shown in Figures 4, 5 and 6. It has been observed that the 

results for the years 2017 and 2018 during the grand growth 

stage are best, but the observations from other years are also 

significant. The behavior of the peak of the growth period (PG) 

is also significant but less than the grand growth (GS3) stage. 

The comparison of the methods for the modelling exhibits that 

the performance of the RF is best for each of the metrics. On 

the other hand, the performance of the CART is lowest among 

all the methods. The next section has been devoted to the 

multiple-years scenario S5. 

 

 
 

Figure 4. MAE analysis of single-year scenarios 

 

 
 

Figure 5. RMSE analysis of single-year scenarios 

 

 
 

Figure 6. R2 analysis of single-year scenarios 
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4.4.2 Multiple-years modelling 

The yield records and spectral information from the years 

2015 to 2018 have been fused for multiple-year modelling. 

The outcomes of the model based on the scenario S5 have been 

given in Table 11. A comprehensive study of the outcomes 

indicates that the performance of the multiple-years model is 

significantly better than that of single-year models. The RF 

model is best among all the scenarios, whereas CART 

performs worst in all the cases, as shown in Figure 7. The 

MAE values have been significantly improved from the 

highest value of 1.97 in the year 2018 to 1.05 for multiple-

years. Similarly, the RMSE values are also improved from 

2.66 in the year 2016 to 1.51 and R2 values increased to 0.94 

from the highest value of 0.81 in the year 2017. The RMSE 

and R2 values range from 1.65-3.04, 0.77-0.94 for RF models 

for spectral data of growth stage (GS3). Hence, the analysis 

based on the machine learning model reveals that the non-

linear models outperformed the linear models to estimate the 

sugarcane yield based on the remote sensing data. 

 

Table 11. Comparative performance of scenario (S5) 

 

Model 
MAE 

GS1 GS2 GS3 GS4 PG 

SVR 3.26 2.22 1.84 2.86 2.11 

CART 3.02 2.13 1.85 2.66 2.22 

KNN 3.54 2.63 2.13 3.16 2.39 

RF 1.82 1.23 1.05 1.56 1.23 

Model 
RMSE 

GS1 GS2 GS3 GS4 PG 

SVR 4.92 3.04 2.71 3.96 3.07 

CART 4.56 2.79 2.49 3.56 3.13 

KNN 5.23 3.43 2.79 4.21 3.27 

RF 2.99 1.65 1.51 2.18 1.77 

Model 
R2 

GS1 GS2 GS3 GS4 PG 

SVR 0.50 0.74 0.79 0.55 0.73 

CART 0.59 0.77 0.82 0.63 0.72 

KNN 0.42 0.66 0.77 0.49 0.69 

RF 0.90 0.93 0.94 0.88 0.92 

 

 

 
 

Figure 7. Comparative analysis of multiple-year scenario 

 

The fused data from multiple years show a significant 

improvement over the single-year models. The data obtained 

during the grand growth stages of the growing season are more 

important than other stages. However, the data extracted from 

the peak growth date, i.e., the maximum value of each spectral 

parameter has similar performance, but lower than that of the 

grand growth stage (GS3). These results may be due to the fact 

that yield records are highly correlated with the canopy’s 

vigour status. The sugarcane canopies have a stronger vigour 

during the grand growth stages and have a sharp increase in 

greenness during this period. After the grand growth period, 

this greenness starts converting into the sugar content and 

color of canopy cover changes to yellowish. 

 

4.5 Models performance of field samples in study area 

 

The regression models have been validated on the sample 

data from different fields in the study area. The sample data 

neither belongs to the training data nor to the testing data 

during the development of the model. The sample data was 

exploited for the analysis of differences between the predicted 

and the observed yield. The values obtained from the analysis 

of RMSE and R2 are presented through the scatter plots for 

different sites and different years. The scatter plots between 

observed and predicted sugarcane yield values for the year 

2016 are shown in Figure 8. The performance of the model is 

low for site 2 as compared to site 1. The RMSE values for site 

1 and site 2 are 1.72 (t/ha) and 2.06 (t/ha) respectively. The 

values for the R2 have been recorded as 0.91 and 0.85 for site 

1 and site 2, respectively. The majority of the points are 

concentrated around the bisector line. It indicates that the 

model has been trained significantly for the average yield 

values that consistently remain between 55 to 70 in the study 

area.  

 

 
(a) Site 1 – Dhanauri 

 
(b) Site 2 – Khelri 

 

Figure 8. Correlation between predicted and observed 

sugarcane yield for RF model on validation dataset of year 

2016 

 

A similar type of performance has been observed for the 

year 2017 in both the sites. RMSE values have been observed 

as 1.86 (t/ha) and 2.01 (t/ha) for site 1 and site 2, respectively, 
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whereas the R2 values have been observed as 0.88 and 0.82. 

The obtained results for the year 2017 have been given by the 

Figure 9. These observations are due to the fact that there are 

some minor variations such as farming practice and irrigation 

timings. These variations in the different areas have been 

significantly captured by the underlying machine learning 

model. 

The scatter plots for the years 2018 and 2019 of both sites 

have been shown in Figures 10 and 11, respectively. The range 

of the performance indicator RMSE is between 1.72 to 1.96 

(t/ha) and from 2.00 to 2.72 (t/ha) for site 1 and site 2, 

respectively. The range of the R2 values is between 0.87 to 

0.91 for site 1 and 0.74 to 0.85 for site 2. These observations 

indicate that the performance of the models based on RF is 

quite satisfactory for both the sites. 

It has been observed that the numerical value of a single 

spectral parameter and single-date data is not sufficient 

because it is difficult to discriminate some of the crops due to 

similar phenology in a particular growth period. Hence, in the 

proposed work, the single-year and multiple-years models 

have been developed using machine learning methods. 

Machine learning methods have been used to handle the 

variations in spectral information. These variations may be 

attributed to diverse agricultural practices. These include 

variations in soil properties, date of sowing, and variety of 

plants, integrated pest management, and temporal and spatial 

variation of crop growth. From the food management point of 

view, the preferable period for crop yield prediction should be 

as early as possible before the harvesting period. Field 

experimentation indicates that reliable predictions can only be 

made if physical phenomena of the crop growth cycle and crop 

yield are studied and modelled. 

 

 
(a) Site 1 – Dhanauri 

 
(b) Site 2 – Khelri 

 

Figure 9. Correlation between predicted and observed 

sugarcane yield for RF model on validation dataset of year 

2017 

 
(a) Site 1 – Dhanauri 

 
(b) Site 2 – Khelri 

 

Figure 10. Correlation between predicted and observed 

sugarcane yield for RF model on validation dataset of year 

2018 

 

 
(a) Site 1 – Dhanauri 

 
(b) Site 2 – Khelri 

 

Figure 11. Correlation between predicted and observed 

sugarcane yield for RF model on validation dataset of year 

2019 
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The results and their interpretations indicate that the 

proposed predictive model is reliable and effective for the 

yield estimation of sugarcane using remote sensing data. The 

machine learning method (Random Forest) has been found as 

best in comparison to other linear and non-linear models. The 

analysis concludes that the RF method outperforms the other 

methods statistically. 

 

 

5. CONCLUSIONS 

 

Sugarcane yield estimation model based on the temporal 

profile of spectral information of Landsat-8 has been explored 

in the current work. An initial attempt has been made in this 

study to select important parameters to be used as input to the 

machine learning model. Preliminary correlation and 

regression analysis based on NDVI values have been carried 

out as a pre-processing step for the final predictive model. It 

has been observed that non-linear models are highly 

significant than linear models. The optimal periods of the 

growing season for efficacious estimation of sugarcane yield 

are also identified. 

Predictive models proposed in the study are focused on 

machine learning methods to optimize the correlation of 

spectral information with the available historical crop yield 

records. The predictive performance of the RF method is quite 

satisfactory for both the sites in the study area. The 

performance of other methods such as CART, SVM and KNN 

are lower as compared to the RF. Although the performance of 

the proposed predictive models is significant for training and 

testing sites, a more comprehensive estimation model may be 

designed by incorporating the high resolution data and more 

inputs from the climatic parameters. 
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