
H-Rotation: Secure Storage and Retrieval of Passphrases on the Authentication Process

Hamza Touil1*, Nabil El Akkad2, Khalid Satori1

1 LISAC Faculty of Sciences Dhar-Mahraz (FSDM), Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
2 Laboratory of Engineering Systems and Applications (LISA), National School of Applied Sciences (ENSA) Sidi

Mohamed Ben Abdellah University, Fez 30000, Morocco

Corresponding Author Email: hamza.touil@usmba.ac.ma

https://doi.org/10.18280/ijsse.100609 ABSTRACT

Received: 27 September 2020

Accepted: 3 December 2020

Passwords/passphrases can be either system generated or user-selected. A combination of

both approaches is also possible—encryption created by the system and assigned to the

user by the information system meeting the policy requirements. Policy rules can be

designed to increase security and usability factors, such as information storage and

retrieval. This paper proposes an algorithm dedicated to the security of passphrases in an

online authentication, so the passphrase entered will be stored in a remote database.

Through an SHA-3 hash function, the system must hash the pass phase. Before storage,

the system must apply random rotations on the already generated HASH while eliminating

any traceability performed on the different transactions performed. To prevent the hacker

from using them recurrently if he wants to attack our database. Then the system must

recover the real HASH and then the passphrase based on the data provided by the user in

the form of codes.

Keywords:

passphrase, man in the middle, rainbow-table

attack, hash function, SHA-3, rotation,

authentication

1. INTRODUCTION

Several authentication methods are available, especially on

Web platforms, including password/password authentication,

certificates, one-time passwords/passphrases, access keys, and

tokens. It is essential to differentiate between identification

that consists of a declaration of user identity. Depending on

the situation, it can be a name, an e-mail address, a telephone

number—furthermore, an authentication on which the user has

to prove that he is the one who identified.

An authentication process [1-4] may involve one or a

combination of two or more means to verify the credibility of

the targeted system. If the authentication is done through a

unique token, the applicant presents this token as a valid

identifier to prove his identity to the verifier. For example,

when a user wants to connect to a web platform protected by a

password or passphrase, he must enter his login and then his

password/passphrase. In this case, only the second party is

considered as an initial access point, i.e., any mistake or level

of password/password entry automatically results in a denial.

In multiple token authentications, the applicant presents

authenticators generated by two or more tokens to prove their

identity to the verifier. The combination of tokens is

characterized by the combination of factors used by the tokens.

On the security side, some cryptographic mobility solutions

allow full or partial cryptography [5, 6], including keys to be

stored on an online server and downloaded locally by the

applicant after successful authentication using a

passphrase/password. Subsequently, the applicant can use the

cryptographic token from the downloaded software to

authenticate with a remote e-authentication verifier. This type

of solution is considered secure as the requester's password to

obtain the cryptographic token [7-9].

The absolute advantage of passphrases is that they are

longer than traditional passwords. This change's main reason

is to increase security, especially against man-in-the-middle

and brute force attacks, which occur when an attack is carried

out not by making informed guesses but by exhaustively trying

all possible permutations in a password. In the rest of this

document, we will see other work interrelated with our method

and the types of authentication available today. We passed by

taking a look at the hash functions and their historical

development and ending by defining some types of attacks and

our proposed solution in this context.

2. RELATED WORKS

A set of studies has been proposed to ensure the security of

the authentications. They are beginning with the technique

[10] capable of hiding user data and making it abstract. They

can also support all forgery attacks, using a secure remote

authentication scheme based on smart cards. Hariharan [11]

use a new graphical approach in the form of a set of

alternatives to the alphanumeric password, a highly repetitive

procedure. At a time when any request is provided with an

easy-to-understand confirmation. By giving detailed

calculations that depend on the determination of the

"Identifier" and "images" as a password. Based on the letters

to rearrange the positions of the characters in the username. In

the same context. Kumar et al. [12] presents a new advanced

security architecture for user identification, which includes

two authentication factors, encryption and decryption of data

uploaded to the cloud using an AES system, verification and

locking of users by the administrator, recovery of users' IP

data, distributed database storage, i.e., data is stored in tiers,

meaning that user login data is stored in one database and

encrypted/decrypted data (downloaded files, key) is stored in

International Journal of Safety and Security Engineering
Vol. 10, No. 6, December, 2020, pp. 785-796

Journal homepage: http://iieta.org/journals/ijsse

785

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.100609&domain=pdf

different databases.

On the other hand, using the hash technique [13], uses a

message authentication protocol using a homomorphic hash

function without full key security in a WANET environment

with limited resources for each node. Bebe and Akila [14]

invent a mechanism under the name "OSA-SHSDS" to store

user data in the cloud with a higher confidentiality rate and less

complicated space. To store the data in the server, the cloud

user's data must be recorded. After registration, the cloud

server generates the ID and password for each registered cloud

user. Each time the user wants to store the data, he has to log

in to the cloud server with his ID and password. The approach

[15] is to solve keystrokes that can falsify data processing by

offering a new validation of the passphrase. Arya et al. [16]

implemented a new authentication system based on a

passphrase, the system can insert a user-generated mnemonic

image displayed during login to minimize typing errors.

However, only a few research papers have been presented to

strengthen password hashes since [17]. El focused on

improving security outside the processing, storage, and

transmission cycle compared to existing classical methods.

This method can be used in several applications such as remote

login, encrypted and authenticated communication, and

payment. On the other hand, Shimizu et al. [18] offers a

method suitable for communication in secure environments

such as the Internet. In particular, it can be adapted to Internet

devices or, for example, Java applets that have limited

performance. The PERM method does not require a password

setting and allows high-speed authentication processing with

a small program.

3. TYPES OF AUTHENTICATION

In modern systems, there are more complex authentication

and authorization schemes that are simple and understandable.

Starting with:

Authentication through passwords/passphrases: this

method is based on the fact that the user must provide a

username and a password/passphrase for successful

identification and authentication in the system. The username

/ password pair is defined by the user when registering in the

system. There are several standard protocols for

password/password authentication, which can be quoted

exhaustively:

- HTTP: uses standardized processes that are well

supported by all browsers and web servers. Several

authentication schemes differ in the level of security:

• Primary is the most straightforward scheme, in which

the user's username and password/password are

transmitted in the authorization header in

unencrypted form. However, the use of HTTPS

(HTTP over SSL) is relatively secure.

• The digest is a challenge-response scheme in which

the server sends a unique nuance value, and the

browser sends the user's MD5 password hash,

calculated using the specified nuance.

• Other decided schemes can be found on the Windows

system such as NTLM, Negotiate.

- Forms: There is no specific standard for this protocol.

Therefore, all its implementations are system-specific, and

more specifically, the authentication modules of the

development frameworks. It works on the following principle:

an HTML form is included in the web application. The user

must enter his username/password and send them to the server

via HTTP POST for authentication. If successful, the web

application creates a session token, usually placed in the

browser's cookies. On subsequent Web requests, the session

token is automatically transferred to the server and allows the

application to obtain information about the current user to

authorize the request.

Certificate Authentication: A certificate is a set of attributes

identifying the owner, signed by the Certificate Authority

(CA). CA acts as an intermediary that guarantees the

authenticity of certificates (similar to the FMS issuing

passports). The certificate is also cryptographically associated

with the private key, stored by the certificate holder, and

allows you to confirm ownership of the certificate, as shown

below in Figure 1.

Figure 1. Using a certificate for authentication

One-Time Password Authentication: One-Time

Password Authentication is generally applied in addition to

Password Authentication to implement Two-Factor

Authentication (2FA). In this concept, the user must provide

two types of data to enter the system: something They know

(e.g., a password) and something they own (e.g., a device for

generating one-time passwords). The presence of two factors

can significantly increase the level of security required for

certain types of web applications.

Access Key Authentication: This method is most often

used to authenticate devices, services, or other applications

when accessing web services. Here, access keys (access key,

API key) are used as long-secret single lines containing an

arbitrary set of characters, permanently replacing the

username/password combination. In most cases, the server

generates access keys at the user's request, storing these keys

in client applications. When creating a key, it is also possible

to limit the validity and level of access that the client

application will receive when authenticating with that key, as

shown below in Figure 2.

Figure 2. An example of the application of key

authentication

786

Token authentication: This authentication method is most

often used in the creation of distributed SSO (Single Sign-On)

systems, where one application (service provider or trusted

party) delegates the user authentication function to another

application (identity provider or authentication service) in

Figure 3. A typical example of this method is logging on to the

application via an account on social networks. Here, social

networks are authentication services, and the application trusts

the user authentication function in social networks [19-22].

Figure 3. An example of authenticating an "active" client

using a token transmitted via a support scheme

4. THE HASH FUNCTIONS

A cryptographic hash function maps a string of bits of

random length to a string of bits of fixed and short length,

typically between 128 and 512 bits. Therefore, it can be

visualized as the opposite of a pseudo-random generator,

which develops a short to an arbitrarily long string. Like a

pseudo-random cryptographic generator, a cryptographic hash

function is expected to provide various security properties.

For cryptographic hash functions, it is also essential that the

value of the function changes significantly at the slightest

change of argument. This is called an avalanche effect.

The following requirements are imposed on key hash

functions:

- impossible to manufacture, means the high complexity of

selecting a message with the correct HASH value.

- impossible to modify, meaning the high complexity of

selecting a given message with a known HASH value from

another message with the correct HASH value.

Keyless functions have the following requirements:

- unidirectionality, the high complexity of finding a

message with a given HASH value. It should be noted that

currently, there are no hash functions used with proven

unidirectionality.

- collision resistance is understood as the difficulty of

finding a pair of messages with the same convolution values.

Usually, it is discovering a collision construction method by

cryptanalysts that serves as a first signal of the algorithm's

obsolescence and the need for its early replacement.

- resistance to the search for the second prototype, one

understands the difficulty of finding a second message with

the same convolution value for a given message with a known

convolution value

Several chopping solutions available SHA-0, SHA-1, SHA-

2, SHA-3, MD2,3,4,5.

The MD family, which was widely used to check file

integrity (checksums) and store hashed passwords in web

application databases. On the other hand, its low output length

and ease of use made the MD5 very easy to crack and sensitive

to a potential attack.

On the SHA family, we can identify SHA-0 as the weakest

algorithm on the SHA family than what had been announced

and showed in 2005 when SHA-1 [23, 24] also had flaws in

the design of SHA-2 is not very different from the design of

SHA-1. No one will be surprised to learn that SHA-2 is also

weak, but on the other hand, no attacks are recorded on this

algorithm so far.

It can be said that the fourth generation of the SHA protocol,

also known as SHA-3, is not intended to replace SHA-2. Due

to the successful attacks on MD5, SHA-0 and SHA-1, [25, 26]

the responsible entity saw the need for an alternative, a unique

cryptographic hash, which became SHA-3.

5. POSSIBILITIES OF ATTACK

MITM (Man In The Middle): A classic attack method

consists in creating its access point [27], and forging the

gateway to access a requesting server. When an attacker

secretly relays and, if necessary, modifies the connection

between two objects that believe they interact directly with

each other, it is a method to compromise a communication

channel by connecting to the channel between contractors,

followed by an intervention the transmission protocol (Figure

4).

Figure 4. Man in the middle attack

Rainbow-table attack: based on the creation strings of

possible passwords. Each string starts with a random possible

password, and then it is exposed to a hash function and a

collapse function. This function converts the result of the hash

function into a possible password. The string's common

passwords are removed, and only the first and last elements of

the string are written to the array. Creating tables requires time

and memory (up to hundreds of gigabytes), but they allow you

to quickly restore the original password (compared to

conventional methods).

This hash value is subject to the reduction function to

recover the password and is searched in the table. If no match

is found, the hash function and the reduction function are

applied again. This operation continues until a match is found.

After a match is found, the string containing it is restored to

find the deleted value, the desired password. The result is a

table that can, with a high probability, restore the password in

a short time.

787

6. H-ROTATION

The H-ROTATION authentication method consists of two

different phases (Figure 6). In the first phase, where the

registration page is invoked, the user fills out and sends save

the requested form. Then the server extracts the submitted

information, username, passphrase, and other additional

information. The SHA3 hash algorithm then processes the

chosen passphrase. Then, a HASH rotation will be performed

correctly to generate a new hash with the same size but a

different shape. When storing the hash in the database, the user

receives three integers to store them. The meaning of each

number is detailed (Figure 5). Later in the next authentication

request, the user must enter his user name and passphrase, and

the numbers already communicated (Table 1).

Table 1. Notations

Notation Significance

T Size of HASH

M Size of the block used in the rotation; M<T/2

N The number of iterations performed in the rotation

Figure 5. Operating principle H-ROTATION- "underwriting

phase."

Figure 6. Operating principle H-Rotation- "Authentication

phase."

H-ROTATION hides the hash stored in the database by

hiding the real hash; it will be almost impossible for a

malicious person to detect the real value and, therefore, the

correct passphrase. For a hacker to start thinking about making

an attack, it requires giant hardware at a very high level.

CPU/RAM and electricity cost and will need powerful

specialized devices to make the attack happen, but to start the

attack not necessarily that it will be successful. Below are the

different transactions between the three entities (client, server,

database) described in the sequence diagram (Figure 7).

6.1 Explanation of rotation methods

This algorithm is applicable just after the hash calculation

[28-30], below we will dissect the three possible types of

rotations so that the HASH is not reversible to the right

passphrase, i.e., the hash will have another form that will be

useless for a hacker if he wants to attack the database.

Through this method, the user can use a simple passphrase

to remember without passing a complex one to increase the

security level, because in any case, a rotation of the generated

hash will provide an additional layer of security [31, 32].

6.1.1 Rotation in prefixes

This method consists of going through a block rotation

starting from right to left, as explained in Figure 8:

The system will generate two random numbers (as

mentioned on the annotation table). Such as.

M: is a random number representing the characters of the

HASH on which we will make the block rotations, the only

condition is that M must be strictly greater than 0 and less than

T/2 (size of the HASH), the reason is that we must make at

least one rotation.

N: will be randomly generated from M such that N>0.

The reverse process of each case will be used to retrieve the

original HASH. The server can only perform this operation.

788

Figure 7. Sequence diagram describes the authentication process used H-Rotation

Figure 8. Different possibilities of the "Rotation in prefixes"

method

Figure 9. Different possibilities of the "Rotation in Suffixes"

method

789

6.1.2 Rotation in suffixes

This method consists of going through a block rotation

starting from the left to the right of the hash, as explained in

Figure 9:

M: it is a random number presents the hash bytes on which

we are going to make the rotation by block, the only condition

is that M must be strictly superior to 0 and inferior to T/2 (size

of the hash), the reason is that we must make at least one

rotation.

N: will be randomly generated from M such that N>0.

The reverse process on each case will be used to retrieve the

original HASH, this operation can only be performed by the

server.

6.1.3 Rotation in the middle

This method is a bit different: the idea this time is to go

through a block rotation starting in both directions towards the

middle of the HASH, exactly on the T/2 position as explained

in Figure 10.

The system will generate two random numbers (as

mentioned on the annotation table). Such as,

M: this is a random number presents the bytes of the HASH

on which we are going to rotate by block, the only condition

is that M must be strictly greater than 0 and less than T/2 (size

of the HASH), the reason is that we must make at least one

rotation.

N: will be randomly generated from M and N>0.

Figure 10. Different possibilities of the "Rotation in the

Middle" method

6.2 Experiments

The SHA-3 256 size that will be used during the experiment

is estimated to be 64 characters.

6.2.1 Rotation in prefixes

Taking the passphrase detailed in the Table 2 below:

Table 2. Hash the passphrase

Passphrase HASH FUNCTION HASH generated

Hamza

TOUIL
SHA-3 256

1d97f27385e052fd7b

2df17846ea4d3943fc8

6f0b3af531588f6e67b

7df23844

The system will generate two random numbers as detailed

below and already mentioned on the annotation Table 3:

Table 3. The keys to rotation

M N

A random integer represents how many

characters make up the block with which we are

going to rotate. The only condition is that M must

be strictly greater than 0 and less than T/2 (size of

the HASH), the reason is that we must rotate at

least one block.

Generate

randomly

according to

the M such

that N>0

Case 1: As already mentioned, T/4<M<T/2 i.e., the number

must be generated automatically in the range between

16<M<32.

Assuming that the system randomly generates M under the

value 18, one can only go through one rotation, which implies

that the only possible value for N is 1.

- Starting by broadcasting HASH in two parts.

1d97f27385e052fd7b2df17846

ea4d39

43fc86f0b3af531588f6e67b7

df23844

- The green block must be rotated from left to right:

- The newly generated HASH becomes:

43fc86f0b3af531588f6e67b7df238441d97f27385e052fd7b2df1

7846ea4d3

Case 2: T/8<M<T/4 i.e., the number must be generated

automatically in the range between 8<M<16.

Assuming that M is randomly generated below the value 13,

this implies that 1<N<3.

Assuming that N is randomly generated under the value 3,

one must rotate a block of size T/4 from right to left 3 times.

- Starting by spreading the HASH over four parts

1d97f27385e

052fd

7b2df17846e

a4d39

43fc86f0b3af

5315

88f6e67b7df

23844

- You have to go through the first rotation of the green block

from left to right:

- First rotation:

790

- Second rotation:

- Third rotation and the new HASH generated becomes:

7b2df17846ea4d3943fc86f0b3af531588f6e67b7df238441d9

7f27385e052fd

Case 3: T/16<M<T/8 i.e., the number must be generated

automatically in the range between 4<M<8.

Assuming that M is randomly generated below the value 6,

this implies that 1<N<7.

Assuming that N is randomly generated under the value 4,

then one must rotate a block of size T/8 from right to left 4

times.

- Beginning by broadcasting the HASH on eight parts.

1d97

f273

85e0

52fd

7b2d

f178

46ea

4d39

43fc

86f0

b3af

5315

88f6

e67b

7df2

3844

- You have to go through the first rotation of the green block

from left to right:

- First rotation:

- Second rotation:

- Third rotation:

- Fourth rotation and the new HASH generated becomes:

43fc86f0 b3af5315 88f6e67b 7df23844 1d97f273 85e052fd

7b2df178 46ea4d39

Case 4: T/32<M<T/16 i.e., the number must be generated

automatically in the range between 2<M<4.

Assuming that M is randomly generated under value 3, this

implies that 1<N<15.

Assuming that N is randomly generated under the value 6,

then one must rotate a block of size T/16 from right to left 6

times.

- Starting by spreading the HASH over eight parts.

1d97

f273

85e0

52fd

7b2d

f178

46ea

4d39

43fc

86f0

b3af

5315

88f6

e67b

7df23

844

- You have to go through the first rotation of the green block

from left to right:

- First rotation:

- Second rotation:

- Third rotation:

- Fourth rotation:

- fifth rotation:

- Sixth rotation:

- Seventh rotation the new HASH becomes:

86f0 b3af 5315 88f6 e67b 7df2 3844 1d97 f273 85e0 52fd

7b2d f178 46ea 4d39 43fc

Case 5: T/64<M<T/32 i.e. the number must be generated

automatically in the range 1<M<2.

Assuming that M is randomly generated under value 2, this

implies that 1<N<31.

Assuming that N is randomly generated under the value 31,

then one must rotate a block of size T/16 from right to left 31

times.

- Starting by spreading the HASH over 32 parts

1d 97 f2 73 85 e0 52 fd 7b 2d f1 78 46 ea 4d 39 43 fc 86 f0

b3 af 53 15 88 f6 e6 7b 7d f2 38 44

- First rotation:

- Second rotation:

791

- 31st rotation the new HASH becomes:

97 f2 73 85 e0 52 fd 7b 2d f1 78 46 ea 4d 39 43 fc 86 f0 b3

af 53 15 88 f6 e6 7b 7d f2 38 44 1d

The recursive operation on each case will be used to recover

the original HASH.

6.2.2 Rotation in suffixes

Taking the passphrase detailed in the Table 4 below:

Table 4. Hach the passphrase

Passphrase HASH FUNCTION HASH generated

Nabil EL

AKKAD
SHA-3 256

9e0f5121782399b5e9

25bd84c041817c8974

a495d47ceb4c6dc21fe

35d955d11

The system will generate two random numbers as detailed

below and already mentioned on the annotation Table 5:

Table 5. The keys to rotation

M N

A random integer represents how many

characters make up the block with which we are

going to rotate, the only condition is that M must

be strictly greater than 0 and less than T/2 (size of

the HASH), the reason is that we must rotate at

least one block.

Generate

randomly

according to

the M such

that N>0

Case 1: as already mentioned T/4<M<T/2 i.e. the number

must be generated automatically in the range between

16<M<32.

Assuming that the system randomly generates M under the

value 20, this means that one can only go through one rotation

which implies that the only possible value for N is 1.

- Starting by spreading the HASH over two parts.

9e0f5121782399b5e925bd84c

041817c

8974a495d47ceb4c6dc21fe35

d955d11

- The green block must be rotated from right to left:

- The newly generated HASH becomes:

8974a495d47ceb4c6dc21fe35d955d119e0f5121782399b5

e925bd84c041817c

Case 2: T/8<M<T/4 i.e. the number must be generated

automatically in the range between 8<M<16.

Assuming that M is randomly generated below the value 15,

this implies that 1<N<3.

Assuming that N is randomly generated under the value 2,

then one must rotate a block of size T/4 from left to right 2

times.

- Starting by spreading the HASH over four parts

9e0f5121782

399b5

e925bd84c04

1817c

8974a495d47

ceb4c

6dc21fe35d9

55d11

- You have to go through the first rotation of the green block

from right to left:

- First rotation:

- Second rotation the new HASH becomes:

8974a495d47ceb4c 6dc21fe35d955d11 9e0f5121782399b5

e925bd84c041817c

Case 3: T/16<M<T/8 i.e. the number must be generated

automatically in the range between 4<M<8.

Assuming that M is randomly generated under the value 4,

this implies that 1<N<7.

Assuming that N is randomly generated under the value 4,

then one must rotate a block of size T/8 from left to right 4

times.

- Starting by spreading the HASH over eight parts

9e0f

5121

7823

99b5

e925

bd84

c041

817c

8974

a495

d47c

eb4c

6dc2

1fe3

5d95

5d11

- You have to go through the first rotation of the green block

from right to left:

- First rotation:

- Continuing in the same way the other three iterations and

the new HASH becomes:

8974a495 d47ceb4c 6dc21fe3 5d955d11 9e0f5121

782399b5 e925bd84 c041817c

Case 4: T/32<M<T/16 i.e. the number must be generated

automatically in the range between 2<M<4.

Assuming that M is randomly generated under value 3, this

implies that 1<N<15.

Assuming that N is randomly generated under the value 3,

then one must rotate a block of size T/16 from left to right to

left 6 times.

- Beginning by spreading the HASH over eight parts

9e0f

5121

7823

99b5

e925

bd84

c041

817c

8974

a495

d47c

eb4c

6dc2

1fe3

5d95

5d11

- You have to go through the first rotation of the green block

from the Right to the Left:

792

- First rotation:

- Continuing in the same way the other two iterations and

the new HASH becomes:

99b5e925bd84c041817c8974a495d47ceb4c6dc21fe35d95

5d119e0f 51217823

Case 5: T/64<M<T/32 i.e. the number must be generated

automatically in the range 1<M<2.

Assuming that M is randomly generated under the value 2,

this implies that 1<N<31.

Assuming that N is randomly generated under the value 2,

then one must rotate a block of size T/16 from right to left 31

times.

- Beginning by spreading the HASH over 1 part.

9e 0f 51 21 78 23 99 b5 e9 25 bd 84 c0 41 81 7c 89 74 a4 95

d4 7c eb 4c 6d c2 1f e3 5d 95 5d 11

- First rotation:

- The new HASH becomes:

0f5121782399b5e925bd84c041817c8974a495d47ceb4c6dc

21fe35d955d119e

The recursive operation on each case will be used to recover

the original HASH.

6.2.3 Rotation in the middle

Taking the passphrase detailed in the Table 6 below:

Table 6. Hach the passphrase

Passphrase
HASH

FUNCTION
HASH generated

H-Rotation: Secure

storage and retrieval

of passphrases on

the authentication

process

SHA-3 256

1be0009ba9981a905f

edb24d5ffff9e76d

97d0b0f62327de451d

a850e2a0e4cb

The system will generate two random numbers as detailed

below and already mentioned on the annotation Table 7:

Table 7. The keys to rotation

M N

A random integer represents how many

characters make up the block with which we are

going to rotate, the only condition is that M must

be strictly greater than 0 and less than T/2 (size of

the HASH), the reason is that we must rotate at

least one block.

Generate

randomly

according to

the M such

that N>0

This method is a bit different because the idea is to go

through a block rotation starting in both directions towards the

middle of the T/2 HASH:

First, we have to identify the middle of the HASH, it's

simply the T/2 position.

1be0009ba9981a905fedb24d5ffff9e7

6d97d0b0f62327de451da850e2a0e4cb

Case 1: T/4<M<T/2 i.e. the number must be generated

automatically in the range between 16<M<32.

Assuming that the system randomly generates M under the

value 20, this means that one can only go through one rotation

which implies that the only possible value for N is 1.

Then one must rotate T/4 in both directions towards the

middle only once:

The new HASH becomes:

5fedb24d5ffff9e71be0009ba9981a90451da850e2a0e4cb6d

97d0b0f62327de

Case 2: T/8<M<T/4 i.e. the number must be generated

automatically in the range between 8<M<16.

Assuming that the system generates M randomly under the

value 8 this implies that 1<N<3.

Assuming that N is randomly generated under the value 2,

then one has to rotate T/8 in both directions towards the middle

twice:

- First rotation:

- Second rotation:

The new HASH becomes:

5fedb24d5ffff9e71be0009ba9981a90451da850e2a0e4cb6d

97d0b0f62327de

Case 3: T/16<M<T/8 i.e. the number must be generated

automatically in the range between 16<M<32.

Automatically, 1<N<7 this means that we can go through N

rotation in both directions towards the middle with a block size

equal to T/16, in the same way explained previously.

Case 4: T/32<M<T/16 i.e. the number must be generated

automatically in the range between 32<M<64.

Automatically, 1<N<15 means that N rotation in both

directions towards the middle with a block size equal to T/32,

in the same way explained previously.

793

Case 5: T/64<M<T/32 i.e. the number must be generated

automatically under the value 64.

Automatically, 1<N<31 means that N rotation in both

directions towards the middle with a block size equal to T/32

is possible, in the same way as explained above.

The recursive operation on each case will be used to recover

the original HASH.

6.3 Comparison between our algorithm and existing

algorithms in terms of security

Contrary to existing methods (Table 8 below), our

algorithm can withstand the most potent passphrase attacks

due to the complexity of the Hash used with the same

components but with different formats and the impossibility to

find the exact passphrase in clear text from the passphrase

generated after the hacking which is among a huge number of

false propositions. Moreover, our system is protected against

theft the attack of the verifiers, so even possessing the

passphrase, the hacker still needs to secretly use represent on

the rotations performed.

Table 8. Comparison between the different types of

authentication, i.e., those based on the Hashage function

Methods/

Attack types

Man In

The

Middle

Statistical

attack

Password

Cracking
DOS

H-Rotation Resists Resists Resists Resists

OSPA [33]
No

Resists

No

Resists

No

Resists

No

Resists

PERM [18]
No

Resists

No

Resists

No

Resists

No

Resists

Authentication

Digital [16]
Resists Resists Resists

No

Resists

6.4 Typical attacks failures

- Dictionary attack: This kind of attack based on iterating

over all strings in a pre-compiled list. These attacks initially

used words that can be found in a dictionary (hence the

dictionary attackphrases); however, much larger lists are now

available on the open Internet, containing hundreds of millions

of passwords recovered from past data breaches. There is also

a jailbreak program that can use such lists and create common

variations, such as replacing similar letters with numbers.

Dictionary attack checks only those possibilities that are

considered most likely. Based on our approach, this attack has

no more risk on user passphrases. Even if the cracker retrieves

the passphrase, he will need the CMN parameters generated

beforehand during the registration. if not, the hacker must try

three combinations (C:M:N) + phrase pass, thing that appears

almost impossible.

- Brute-force attack: as explained an attacker presenting

many passwords or passphrases in the hope of ultimately

guessing the combination correctly. The attacker

systematically checks all possible passwords and passphrases

until the correct one is found. Alternatively, an attacker can try

to guess the key, which is usually generated from a password,

using the get key function. This exhaustive key search will be

of no use to the hacker as the hash is transformed before

storage in the database, and the match will lead to another

password or passphrase, in addition to our approach capable

of disrupting malevolence.

- Rainbow Table Attack: Based on our method, this attack

becomes falsified because the hacker will never find the

Passphrase/hash match stored in the database. Because, after

the rotation, the stored hash represents another passphrase or

password different from the original one.

6.5 Setting up

If the customer wishes to authenticate, he must go through

the form (Figure 11) by typing the Login, passphrase, and the

three numbers received already after the subscription to access

his account.

Figure 11. Authentication form

7. CONCLUSION

We have deconstructed a new algorithm specializing in

authentication security that will anticipate the detection of

passphrase cracking attacks that aim to violate personal data

for any user through the access to his account.

Our method offers a relatively high level of security. Even

if a hacker manages to access our database and decrypt the

HASH, he will inevitably come across a value that has nothing

to do with the passphrase stored with good user experience and

very low delays.

The security of passwords/passwords has always been a

significant concern for users and organizations because it is

the access point that can provide reliability to the system being

used.

REFERENCES

[1] Thorawade, M.B., Patil, S.M. (2012). Authentication

scheme resistant to shoulder surfing attack using image

retrieval. International Journal of Knowledge

Engineering, 3(2): 197-201.

[2] Porter, S.N. (1982). Porter: A password extension for

794

improved human factors. Computers and Security, 1(1):

54-56. https://doi.org/10.1016/0167-4048(82)90025-6

[3] Still, J.D., Cain, A., Schuster, D. (2017). Human-

centered authentication guidelines. Information and

Computer Security, 25(4): 437-453.

https://doi.org/10.1108/ICS-04-2016-0034

[4] Burr, W.E., Dodson, D.F. Polk, W.T. (2017). Electronic

Authentication Guideline. NIST Special Publication.

Retrieved from

http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-

800-63-1.pdf.

[5] Es-Sabry, M., El Akkad, N., Merras, M., Saaidi, A.,

Satori, K. (2020). A new image encryption algorithm

using random numbers generation of two matrices and

bit-shift operators. Soft Computing, 24: 3829-3848.

https://doi.org/10.1007/s00500-019-04151-8

[6] Es-sabry, M., El Akkad, N., Merras, M., Saaidi, A.,

Satori, K. (2018). Grayscale image encryption using shift

bits operations. International Conference on Intelligent

Systems and Computer Vision (ISCV), Fez, pp. 1-7.

https://doi.org/10.1109/ISACV.2018.8354028

[7] Es-sabry, M., El Akkad, N., Merras, M. Saaidi, A., Satori,

K. (2018). A novel text encryption algorithm based on

the two-square cipher and Caesar cipher. In: Tabii Y.,

Lazaar M., Al Achhab M., Enneya N. (eds) Big Data,

Cloud and Applications. BDCA 2018. Communications

in Computer and Information Science, vol 872. Springer,

Cham. https://doi.org/10.1007/978-3-319-96292-4_7

[8] Elazzaby, F., El Akkad, N., Kabbaj, S. (2020). A new

encryption approach based on four-square and zigzag

encryption (C4CZ). In: Bhateja V., Satapathy S., Satori

H. (eds) Embedded Systems and Artificial Intelligence.

Advances in Intelligent Systems and Computing, vol

1076. Springer, Singapore. https://doi.org/10.1007/978-

981-15-0947-6_56

[9] Es-sabry, M., El Akkad, N., Merras, M., Saaidi, A.,

Satori, K. (2020). A new color image encryption using

random numbers generation and linear functions.

Advances in Intelligent Systems and Computing, 1076:

581-588.

[10] Soni, M., Patel, T., Jain, A. (2020). Security analysis on

remote user authentication methods. In: Pandian A.,

Senjyu T., Islam S., Wang H. (eds) Proceeding of the

International Conference on Computer Networks, Big

Data and IoT (ICCBI - 2018). ICCBI 2018. Lecture

Notes on Data Engineering and Communications

Technologies, vol 31. Springer, Cham.

https://doi.org/10.1007/978-3-030-24643-3_60

[11] Hariharan, R.D. (2020). Enhancing the security

authentication on system passwords using graphical

methods. Test Engineering and Management, 83: 11314-

11318.

[12] Kumar, S., Jafri, S.A.A., Nigam, N., Gupta, N., Gupta,

G., Singh, S.K. (2019). A new user identity based

authentication, using security and distributed for cloud

computing. IOP Conf. Ser.: Mater. Sci. Eng., 748:

012026. https://doi.org/10.1088/1757-

899X/748/1/012026

[13] Matsunaga, S., Adachi, N. (2019). Message

authentication scheme for ad hoc networks with

homomorphic hash function. 2019 2nd World

Symposium on Communication Engineering (WSCE),

Nagoya, Japan, pp. 138-141.

https://doi.org/10.1109/WSCE49000.2019.9040951

[14] Bebe, P.C., Akila, D (2019). Orchini similarity user

authentication based Streebog hash function for secured

data storage in cloud. 2019 International Conference on

Computational Intelligence and Knowledge Economy

(ICCIKE), Dubai, United Arab Emirates, pp. 461-466.

https://doi.org/10.1109/ICCIKE47802.2019.9004393

[15] Nielsen, G., Vedel, M., Jensen, C.D. (2014). Improving

usability of passphrase authentication. 2014 Twelfth

Annual International Conference on Privacy, Security

and Trust, Toronto, ON, pp. 189-198.

https://doi.org/10.1109/PST.2014.6890939

[16] Arya, M.S., Rani, M., Bedi, C.S. (2016). Improved

capacity image steganography algorithm using 16-pixel

differencing with n-bit LSB substitution for RGB images

International Journal of Electrical and Computer

Engineering, 6(6): 2735-2741.

https://doi.org/10.11591/ijece.v6i6.10792

[17] Aumasson, J.P., Meier, W., Phan, R.C.W. (1998).

Information Security and Cryptography. Springer-Verlag

Berlin Heidelberg.

[18] Shimizu, A., Horioka, T., Inagaki, H. (1998). A password

authentication methods for contents communication on

the Internet. IEICE Transactions on Communications, pp

1666-1673.

[19] Gajula, R., Qyser, A.A.M., Rajender, N. (2017).

Combining two factor authentication and public key

encryption to ensure the authentication in cloud

computing. International Journal of Recent Trends in

Engineering and Research, pp. 118-121.

[20] Burr, W.E., Dodson, D.F., Polk, T.W. (2011) Electronic

authentication guideline: information security. NIST

Special Publication 800-63-1.

[21] van Thanh, D., Jorstad, I., Jonvik, T. (2009). Strong

authentication with mobile phone as security token. 2009

IEEE 6th International Conference on Mobile Adhoc and

Sensor Systems, Macau, pp. 777-782.

https://doi.org/10.1109/MOBHOC.2009.5336918

[22] Gupta, B.B. (2019) Computer and Cyber Security:

Principles, Algorithm, Applications, and Perspectives.

CRC Press. 666-695.

[23] Bhargavan, K., Leurent, G. (2016). Transcript collision

attacks: Breaking authentication in TLS, IKE and SSH

NDSS 2016. Network and Distributed System Security

Symposium – NDSS 2016, Feb 2016, San Diego, United

States. https://doi.org/10.14722/ndss.2016.23418

[24] Leurent, G., Peyrin, T. (2020). SHA-1 is a shambles:

First chosen-prefix collision on SHA-1 and application

to the PGP web of trust. Proceedings of the 29th USENIX

Security Symposium2020, pp. 1839-1856

[25] Ramya, P., Sairamvamsi, T. (2018). Impact analysis of

blackhole, flooding, and grayhole attacks and security

enhancements in mobile ad hoc networks using SHA3

algorithm In: Anguera J., Satapathy S., Bhateja V.,

Sunitha K. (eds) Microelectronics, Electromagnetics and

Telecommunications. Lecture Notes in Electrical

Engineering, vol 471. Springer, Singapore.

https://doi.org/10.1007/978-981-10-7329-8_65

[26] Zhang, L., Tan, C., Yu, F. (2017). An improved rainbow

table attack for long passwords. Procedia Computer

Science, 107: 47-52.

https://doi.org/10.1016/j.procs.2017.03.054

[27] De La Hoz, E., Cochrane, G., Moreira-Lemus, J.M.,

Paez-Reyes, R., Marsa-Maestre, I., Alarcos, B. (2014).

Detecting and defeating advanced man-in-the-middle

795

attacks against TLS. 2014 6th International Conference

on Cyber Conflict (CyCon 2014), Tallinn, pp. 209-221.

https://doi.org/10.1109/CYCON.2014.6916404

[28] Kundi, D., Aziz, A. (2016). A low-power SHA-3 designs

using embedded digital signal processing slice on FPGA.

Computers and Electrical Engineering, 55: 138-152.

https://doi.org/10.1016/j.compeleceng.2016.04.004

[29] Wu, L., Weaver, C., Austin, T. (2001). CryptoManiac: A

fast flexible architecture for secure communication.

Proceedings 28th Annual International Symposium on

Computer Architecture, Goteborg, Sweden, pp. 110-119.

https://doi.org/10.1109/ISCA.2001.937439

[30] Sayilar, G., Chiou, D. (2014). Cryptoraptor: High

throughput reconfigurable cryptographic processor. 2014

IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), San Jose, CA, pp. 155-161.

https://doi.org/10.1109/ICCAD.2014.7001346

[31] Touil, H., El Akkad, N., Satori, K. (2020). Text

Encryption: Hybrid cryptographic method using

Vigenere and Hill Ciphers. 2020 International

Conference on Intelligent Systems and Computer Vision

(ISCV), Fez, Morocco, pp. 1-6.

https://doi.org/10.1109/ISCV49265.2020.9204095

[32] Elazzaby, F., El Akkad, N., Kabbaj, S. (2020). Advanced

encryption of image based on S-box and chaos 2D

(LSMCL). 2020 1st International Conference on

Innovative Research in Applied Science, Engineering

and Technology (IRASET), Meknes, Morocco, pp. 1-7.

https://doi.org/10.1109/IRASET48871.2020.9092254

[33] Lin, C., Sun, H., Hwang, T. (2001). Attacks and solutions

on strong-password authentication, IEICE Transactions

on Communications, 84(9): 2622-2627.

796

