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ABSTRACT

The application of genetic algorithms to the optimization of certain aspects of low-enthalpy geothermal district
heating schemes is presented. In particular, minimization of the cost due to pumping and amortization of the
construction of the pipe network inside the geothermal field is investigated. An outline of the optimization
code is given and its performance is evaluated through application examples to geothermal fields with uniform
and non-uniform water temperature distribution. In addition, a procedure to decide the number of new wells
that should be drilled is discussed. It has been concluded that the use of the proposed technique may result in
substantial cost reduction, thus promoting the direct use of geothermal energy.

Keywords: amortization cost, cost minimization, direct use, genetic algorithms, geothermal energy,
pumping cost.

1 INTRODUCTION
Geothermal energy, together with other renewable energy sources, constitutes in the long term the
only viable solution for a sustainable future. The earth will provide us with heat in the next million
years at predictable rates [1]. Our task is to harness and manage it properly, in other words, to manage
the heat transportation means, namely water or steam, in a sustainable way.

Geothermal and other soft energy sources meet another crucial criterion for a sustainable future:
very low environmental impact — soil, water and air pollution (e.g. emission of greenhouse gases) is
low even from high-enthalpy geothermal fields compared to the impact of fossil fuels.

Moreover, an increased share of renewable energy in the energy market promotes global stability,
as it reduces the dependence of energy consumers on remote oil producers, on the mode of oil transfer
(tankers or pipes) and on big oil companies.

High-enthalpy geothermal energy looks more attractive since it can be transformed to electricity. On
the other hand, low-enthalpy geothermal sources are much more abundant. Distributed in most areas
of the world, they can provide heat for space heating and other direct uses, thus covering an important
part of energy demand. Analysis of their financial performance is rather complex [2]. A comprehensive
report is offered by Lund and Freeston [3]. Their current contribution to the energy balance is probably
underestimated, as very often their use is not adequately recorded, at least quantitatively. It is certain,
though, that their share can substantially increase in many areas of the world, including the energy
importing part of Europe. Greece is one of the countries with a large unexploited potential [4].

While the cost of energy production from renewable sources has generally declined, it has remained
higher than that of oil and coal plants [5]. This comparatively high cost (when environmental and
social factors are not taken into account) is a major obstacle to the wider use of geothermal and other
renewable energy sources. Thus, optimization of their financial performance is crucial. This is not an
easy task since many different factors are involved.

Genetic algorithms, outlined in the following paragraphs, constitute a very flexible optimization
tool for such multiparametric problems. This paper deals with their application to cost minimization
of some major components of geothermal district heating schemes, which are probably the most
promising application of low-enthalpy geothermal energy [6].
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2 THE OPTIMIZATION TOOL
Genetic algorithms, initially introduced by Holland [7], are a mathematical tool with a very wide
range of applications. They are particularly efficient in optimization problems, especially when the
respective objective functions exhibit many local optima or discontinuous derivatives.

There are already extensive books [8—11], which deal with the theoretical background, the perspec-
tives, the computational details and the applications of genetic algorithms (and other evolutionary
techniques). Their main concepts, together with the features of the particular code used in this paper,
are briefly described in the following paragraphs.

Genetic algorithms are essentially a mathematical imitation of a biological process, namely that of
evolution of species. They start with a number of random, potential solutions of the investigated prob-
lem. These solutions, which are called chromosomes, constitute the population of the first generation.
In binary genetic algorithms, each chromosome is a binary string of predetermined length.

Each chromosome of the first generation undergoes evaluation by means of a pertinent function
or process, which depends entirely on the specific application of genetic algorithms. Then, the next
generation is produced by means of certain operators which imitate biological processes and are
applied to the chromosomes of the first generation. The main genetic operators are: (a) selection,
(b) crossover and (c) mutation. Many other operators have also been proposed and used.

Selection is used first. It leads to an intermediate population in which better chromosomes have
statistically more copies. These copies eventually replace some of the bad chromosomes. Then, the
other operators apply to a number of randomly selected members of this intermediate population.
The result is an equal number of new chromosomes, i.e. new solutions, which replace the old ones.
Thus, the next generation is formed.

The whole process, i.e. evaluation—selection—crossover—mutation—other operators, is repeated
for a predetermined number of generations. It is anticipated that at least in the last generation a
chromosome will prevail, which represents the optimal (or at least a very good) solution to the
examined problem.

The features of the genetic operators, which have been used in this paper for the minimization of
the sum of certain important cost elements of a geothermal district heating scheme, are outlined in
the following paragraphs.

2.1 Selection

Selection can be accomplished in many ways. The most common processes are: (a) the biased roulette
wheel and (b) the tournament method. The latter has been preferred because it applies equally well
to maximization and to minimization problems, while the former applies naturally (namely, without
a definite need of scaling) to maximization problems only.

Selection through the tournament method requires the determination of the respective selection
constant KK. Then it proceeds in the following way: KK chromosomes are randomly selected from
the current generation and their fitness values are compared to each other. The chromosome with
the best (smallest in the investigated case) fitness value passes to the intermediate population. This
process is repeated PS times, PS being the population size. In this way, the intermediate population is
formed. Moreover, in our genetic code, we have adopted an elitist approach — the best chromosome
of each generation is separately passed to the new one.

2.2 Crossover

Crossover applies to pairs of chromosomes, which are binary strings of length SL. Two chromosomes,
which are named parents, are randomly selected from the intermediate population. An integer number
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XX, between 0 and (SL-1), is randomly selected, too. Then each parent binary string is cut into two
pieces, immediately after the position XX. The first piece of each parent is combined with the second
piece of the other. In this way, two new chromosomes are formed, which are called offsprings and
replace their parents in the next generation.

Crossover aims at combining the best features of both parents in one offspring. All chromosomes
of the intermediate population have equal probability of undergoing crossover. But this probability
is actually larger for the better chromosomes of the parent generation because they have more copies
in the intermediate population.

2.3 Mutation

Mutation applies to characters (genes), which form the chromosomes. In binary genetic algorithms,
the gene selected for mutation is changed from O to 1 and vice versa. This process aims at: (a)
extending the search to more areas of the solution space (mainly in the first generations) and
(b) helping local refinement of good solutions (mainly in the last generations). The mutation prob-
ability is equal for all genes of all chromosomes. Its magnitude depends on the chromosome length
SL, but generally is much smaller than the respective crossover probability because the latter refers
to chromosomes and not to genes.

2.4 Antimetathesis

Many additional operators have been proposed in the literature to further improve the performance of
genetic algorithms. A number of them are problem specific, while others are for general use. In this
application, one more operator of general use has been included. This operator has been proposed
by Katsifarakis and Karpouzos [12] and Katsifarakis et al. [13]. It applies to pairs of successive
positions (genes) of a chromosome. Any position (except for the last one) can be selected with equal
probability p,. If the value of the selected gene equals 1, it is set to 0, while that of the following gene
is set to 1 (irrespective of its original value). The opposite happens if the value of the selected gene
is 0. Thus, the proposed operator is equivalent either to simple mutation or to the mutation of two
successive genes. Moreover, it can be interpreted as a limiting case of the inversion operator. The
operator has been called antimetathesis, based on its function (when different from simple mutation).
This name is in line with the tradition in genetic algorithms terminology, which calls for terms of
Greek origin. Antimetathesis and mutation are used interchangeably (in the even and odd genera-
tions, respectively). It has been anticipated that this combination is the most effective, as the two
operators are complementary to each other, both in refinement of good solutions and in exploring
different areas of the solution space.

2.5 Handling constraints

In many applications, optimization is subject to constraints. This means that chromosomes, which
result from genetic operators, may represent infeasible solutions. The usual way to deal with con-
straints is to include penalty functions in the evaluation process. Each penalty function affects the
fitness value of chromosomes, which violate the respective constraint, increasing it in minimiza-
tion problems and decreasing it in maximization ones. Repair of chromosomes, in order to fulfill
the constraints, is the best choice in certain cases. Other approaches include rejection of infeasible
chromosomes and modification of genetic operators, in order to produce feasible solutions only.

Handling of constraints depends essentially on the particular problem. For this reason, it is further
discussed in the frame of the application to optimization of geothermal heating schemes.
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3 OPTIMIZATION OF GEOTHERMAL DISTRICT HEATING SCHEMES
To illustrate the application of genetic algorithms to optimization of geothermal district heating
schemes, we considered minimization of the combined cost of two major geothermal components:
(a) annual pumping (operation) cost and (b) amortization of the construction cost of the pipe network
carrying hot water from the wells to a central station. Two examples are presented. In the first, the
temperature of water produced is constant, while in the second it depends on the location of each
producing well.

3.1 Geothermal field with uniform temperature distribution

A low-enthalpy geothermal field, stretching over an area of 3000 x 3000 m, produces water of 80°C,
which is suitable for house heating. The water will be used by a nearby small town, requiring an
average flow rate of Qr = 500 l/s during the heating period. There are already four wells in the field
and six more will be constructed. The coordinates of the existing wells are shown in Fig. 1.

The optimization problem is to find the positions of the 6 new wells and the distribution of the total
flow rate Qr to the 10 wells (old and new), which minimizes a cost function including: (a) operation
(pumping) cost and (b) amortization of the construction cost of the pipe network that connects the
wells with a central station at the edge of the field (its coordinates are xy = 0, y, = 2000). The
central station is also shown in Fig. 1.

3.1.1 Chromosome construction

Each chromosome represents a solution to the problem. In our case, the solution is a combination
of the flow rate values Q; of 10 wells and 12 coordinate values (x and y for the 6 new wells). It is
reasonable to assume that no single well will pump more than half the total flow rate Qr. Each Q;
then ranges from O to 250 and each coordinate from 0 to 3000, requiring, in binary form, 8 and 12
digits (genes), respectively. The resulting total chromosome length is 8 x 10+ 12 x 12 = 224 digits.
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Figure 1: Layout of the existing wells and the central station (CST).
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3.1.2 Observance of the constraints
There are two main constraints: (a) the sum SQ of the 10 Q; should be equal to Or = 500 and
(b) coordinate values should be smaller than 3000.

Each chromosome, when decoded, renders Q; values from 0 to 255. Thus, SQ ranges from 0 to
2550, practically never fulfilling the first constraint. To ‘repair’ the solution, each Q; is multiplied by
the factor Or/SQ. In this way, the proportions between the well flow rates are preserved.

Coordinate values resulting from the chromosomes range from 0 to 4095. To observe the second
constraint, two procedures have been tried: (a) to set the values larger than 3000 equal to 3000 and
(b) to multiply each ‘raw’ coordinate value by 3000/4095. The second procedure was finally adopted
to avoid any bias towards larger coordinate values.

3.1.3 The evaluation procedure

The fitness value of each chromosome solution equals the respective total (pumping and network
amortization) cost. Pumping cost C, depends on the piezometric level drawdown at the wells. It is
reduced when the mutual interference of the wells decreases, i.e. it obtains lower values when the
wells are fairly spread over the entire field. Network amortization cost C, is directly proportional to
the initial network cost. The latter depends on the total length (and the diameter) of the pipes. It is
reduced with the distance of the wells from the central station, i.e. it obtains lower values when the
wells are clustered around the central station. Thus, small C,, values correspond to large C, values
and vice versa. C,, is given by the following simple formula:

10
Co=A4p-) 0i-Hi e))
i=1

where A, is a pumping cost coefficient, incorporating the duration of pumping (set equal to 5 months),
pump efficiency (set equal to 0.8) and an electricity cost of 0.06€ per kW h. It follows that A, = 2.7,
when Q;, namely well flow rates, are expressed in I/s. Finally, H; is the distance between the water
level at well i and a predefined level, e.g. water level at the central station (the additional piezometric
head to carry water from each well to the central station is considered negligible). Then

H; =d; + s, )

where d; is the distance between the initial piezometric level and the predefined reference level and s;
is the piezometric level drawdown at the perimeter of well i. To calculate s;, the following assumptions
have been made: (a) the confined geothermal aquifer is horizontal, homogeneous and isotropic and
(b) the aquifer is ‘infinite’ and flow is due to the operation of the geothermal wells only. Then the
drawdown s at any point x, y is given as:

n - ) — - 5
J~Z@mwx”;@yW 3)
where T is the aquifer transmissivity, n is the number of wells affecting the piezometric level at the
point of interest, x; and y; are the coordinates of well i and R is the radius of influence of the wells.
The values of T and R used in all application examples are 0.001 m?/s and 3000 m, respectively.
Due to the aforementioned assumptions, only s; values enter the optimization procedure and the
respective pumping cost is given as:

10
Cp1 :Ap'ZQi'Si- @
i=1
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The amortization cost C, is estimated in the following way: the network construction cost, based on
average conditions in Greece, is taken equal to 45 and 60€ per meter for small and large pipe diameters,
respectively. The threshold is set at Q = 501/s, since the pipe diameter is selected according to the
flow rate. Assuming an amortization period of 10 years and an interest rate of 5%, the amortization
cost per meter is A;; = 6 and A,» = 8€ for small and large pipe diameters, respectively. Thus, C, is
given by the following formula:

10
Ca=) Au-Li )
i=1

where A,; is equal either to A, or to A, and L; is the length of the pipe that carries water away from
well i. Given the well coordinates, the task is: (a) to produce the shortest tree-type pipe network,
connecting the wells to the central station and (b) to calculate the flow rate QL; through each pipe
i, in order to select the proper A,; value. To accomplish this, the wells are labeled according to their
distance from the central station. The label of the most distant well is set equal to 1. Thus, to find the
shortest L; from well i, only wells with larger label values are checked. Moreover, QL calculations
start from the most distant well and proceed towards an increasing label order.

In summary, the evaluation procedure includes the following steps: (a) calculation of s; for each well
by means of eqn (@), which is used n = 10 times, (b) calculation of Cp; using eqn (), (c) calculation
of L; and QL;, (d) calculation of C, using eqn (3) and (e) calculation of the sum Ct = Cp1 + Ca.

3.1.4 Preliminary tests

Before addressing the main problem, three preliminary tests were conducted, to check the optimization
tool and to increase our insight into the problem. In the first, the evaluation function included network
amortization cost only. The program was run many times. Typical best results are summarized in
Table 1 and shown in Fig. 2. All of them exhibit the following basic features: (a) All the new wells
(shown as small circles) have been placed inside the polygon defined by the existing ones and
the central station. (b) Some new wells (6, 7 and 9 in Fig. 2) have almost zero contribution to the
cost, since they are located on the pipe connecting a more distant well (5 in Fig. 2) to the central
station. (c) The largest part of Qr is pumped from wells 7 and 9, which are the closest to the central
station. Thus, only QL, and QL, exceed the threshold of 501/s and only L7 and Ly are multiplied by
the largest cost coefficient A,;.

The same evaluation function was used in the second test, but the pumping scheme included six
new wells only. All of them have been placed very close to each other and to the central station, as
expected.

In the third test, the evaluation function included pumping cost only (for the complete set of wells).
In all the runs, all the new wells were placed on the field boundaries (four of them exactly on the
four field corners). Typical best results are summarized in Table 1 and shown in Fig. 3. It is worth
mentioning that differences between s; values are very small, indicating a near optimum outflow rate
distribution.

3.1.5 Main results

The complete program (including both pumping and amortization costs in the evaluation function)
was conducted many times to derive a statistically sound estimate of its efficiency. All runs resulted
in similar final costs (between 205,000 and 207,000€ and final cost differences did not exceed 1%).
Cost reductions for the cheapest solution of the respective first generation (which can be considered
to represent unoptimized planning) ranged between 13% and 17%.
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Table 1: Typical best solutions.

435

Amortization cost only

Pumping cost only

Xi Vi 0 Si Xi Vi 0 Si
Well 1 500 200 7.97 62.26 500 200 47.04 99.49
Well 2 1600 600 1.14 47.84 1600 600 43.84 99.35
Well 3 2500 1900 4.56 32.39 2500 1900 43.11 98.84
Well 4 2000 2800 5.69 40.40 2000 2800 48.28 99.65
Well 5 749 1453 6.83 151.20 3000 790 47.04 99.27
Well 6 723 1474 4.56 155.64 0 3000 57.64 99.47
Well 7 546 1598 200.46 377.18 3000 3000 54.93 99.52
Well 8 985 733 11.39 86.97 0 1989 51.23 99.89
Well 9 94 1922 256.26 442.07 0 0 53.20 99.72
Well 10 1990 2251 1.14 45.37 3000 0 53.69 99.34
Cost Cp, =520,045; C, = 35,430; C, = 134,281; C, = 84,059;
Crt = 555,475 Cr = 218,340
(0,3000) (3000,3000)

CS.T.

- (3000,0)

Figure 2: Typical best solution (pipe network amortization cost only).

Well locations and pipe network patterns of the aforementioned best solutions could be easily
classified in two groups, which are adequately represented by the two typical solutions shown in
Fig. 4a and b. The respective well flow rates, coordinates and piezometric level drawdowns are
summarized in Table 2.

3.1.6 Additional constraints
An additional constraint, which may be imposed in certain cases is that the drawdown values should
not exceed a certain limit sy,,x. The reasons can be: (a) to avoid ground subsidence and (b) to avoid
inflow of colder water to the geothermal aquifer.
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Figure 3: Typical best solution (pumping cost only).

Table 2: Typical best solutions (C, + Cp).

Solution A Solution B
Xi Vi Qi Si Xi Vi 0 Si

Well 1 500 200 49.67 112.57 500 200 50.49 110.34
Well 2 1600 600 49.97 110.84 1600 600 49.71 107.26
Well 3 2500 1900 49.97 106.58 2500 1900 49.97 111.70
Well 4 2000 2800 48.15 109.81 2000 2800 49.71 110.19
Well 5 1057 3000 49.67 112.08 0 1234 49.97 111.17
Well 6 0 934 51.18 112.87 375 2987 52.06 111.11
Well 7 0 2090 49.67 111.85 96 0 49.97 103.87
Well 8 253 2812 51.79 111.95 1218 3000 48.41 111.09
Well 9 2857 3000 49.97 97.70 0 2343 49.97 110.84
Well 10 947 97 49.97 112.25 3000 1688 49.71 100.41
Cost 205,174 205,344

The effect of the constraint depends on the magnitude of spax, relative to the s; values of the
optimum solution of the unconstrained case. If sy,,x exceeds all s;, then the constraint has no effect
at all. If, on the contrary, sp,x is comparatively small, it might be impossible to observe the constraint
without increasing the number of new wells.

The best way to deal with such constraints is to introduce a penalty function to the evaluation
procedure. In our case, we simply add a fictitious cost, Pen, to the total cost, Cr, rendering the final
fitness value worse. A strong dependence of Pen on the magnitude of the violation at each particular
well is desired in order to ‘attack’ larger violations first. If s,,x < s; at m wells, an efficient form of
the penalty function is:

Pen = Bpen : Z (Si — Smax — 1)2- (6)

i=1



K.L. Katsifarakis et al., Int. J. Sus. Dev. Plann. Vol. 1, No. 4 (2006) 437

@) (0,3000) (3000,3000)
|
|
|
CST.47 :
|
|
|
|
|
|
|
|
|
ooL-———"—"——————— — 3000.0)
® 03000 (3000,3000)

CS.T.

10

0o ————"—"————————— (3000,0)

Figure 4: (a) Type A best solution (for both pumping and amortization cost) and (b) Type B best
solution (for both pumping and amortization cost).

Subtraction of 1 in the last term of eqn (@) guarantees that each term included in the sum is greater
than 1, even if 5; exceeds smax slightly only. So, if the value of the constant B, is large enough, the
constraint is guaranteed, provided that its observance is possible, of course.

In certain cases, the constraints are ‘soft’, that is, small violations can be tolerated. For such
constraints, smaller Bpe, values should be used, with the following form of the penalty function:

Pen = Bpen - Z (si — smax)z- @)
i=1

To illustrate the aforementioned procedure, we consider the solutions depicted in Fig. 4a and b.
According to Table 2, the respective s; values do not exceed 113 m. Then, if s« > 113, the constraint
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Table 3: Typical best solutions for sp,x = 105 m.

Rigid constraint Soft constraint
Xi i 0 Si X Vi Qi Si

Well 1 500 200 46.73 104.39 500 200 53.17 105.08
Well 2 1600 600 43.92 104.96 1,600 600 43.36 104.29
Well 3 2500 1900 49.80 104.20 2,500 1900 47.89 104.7
Well 4 2000 2800 53.12 104.99 2,000 2800 51.28 105.25
Well 5 2719 434 47.50 104.08 0 1012 47.89 99.24
Well 6 3000 21 54.65 104.98 2,977 0 56.18 104.88
Well 7 0 1125 48.77 103.16 2,250 12 49.40 105.11
Well 8 92 2813 55.16 104.45 2,934 3000 47.89 90.07
Well 9 0 0 48.77 98.49 374 2956 55.05 105.11
Well 10 935 3000 51.58 104.78 0 2251 47.89 99.12
Fitness 209,582 209,387

Cost 209,582 209,348

will not actually affect the optimization procedure. Suppose now that s, = 105 m. Use of eqn (&)
with Bpe, = 2,000 guarantees strict observance of the constraint. Use of eqn () with Bye, = 400
permits small constraint violations. Typical results are summarized in Table 3.

Finally, it should be mentioned that control points may not coincide with wells. If the drawdown
constraint is applied to a sub-area of the geothermal field, control points should be placed on the
perimeter of this sub-area, too.

3.1.7 Number of new wells

In the case studied so far, the number of new wells was included in the data set. In many actual
studies though, it belongs to the output list. An extra new well will certainly reduce the pump-
ing cost Cp, while its impact on C, may be negligible (e.g. if the well is added along an exist-
ing pipe). Of course, it introduces an additional cost for the amortization of its construction and
equipment.

Inclusion of the number of new wells to the chromosome of the genetic algorithm gives rise to
substantial technical problems (like increased chromosome length and step changes in the evaluation
function). A more efficient approach is the following: (a) calculate the amortization cost C, for
construction and equipment of one well and (b) run the program for different successive numbers
of new wells. The cost of the optimum solution Cy will generally decline with the increase in the
number of wells. But, if this cost reduction is smaller than Cy,, no additional well should be drilled.
This approach is efficient if Cy, is larger than the acertainty in the calculation of best Cr. In our
example, if C,, = 4000€, we have found with reasonable confidence that the optimum number of
new wells is 7.

It should be mentioned, though, that the number of new wells may be restricted by the availability
of initial capital or by plans for stepwise development of the energy source.

3.1.8 Brief sensitivity analysis
Each optimum solution results as a compromise between the optimization processes of C, and
C,. Thus, it is affected by their relative importance, namely, the relative magnitude of A, versus
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Table 4: Well outflow rates.

Well 1 2 3 4 5 6 7 8 9 10
i 50 50 50 50 50 52 50 48 50 50

A, and Ay,. Errors will shift the point of compromise resulting in a smaller than calculated cost
reduction.

Overestimation of aquifer transmissivity has the same result as an equal percentage of underes-
timation of A,. On the contrary, selection of the radius of influence does not affect seriously the
optimization process, provided that the selected value is large enough.

Accuracy to two decimal digits in the values of well flow rates is practically meaningless. To
investigate the effect of round off, the optimum solution of Fig. 4b is considered, where the total cost
is equal to 205,344€. Rounding off well outflow rates, namely using Q; values from Table 4, one
obtains practically the same cost.

3.2 Geothermal field with non-uniform temperature distribution

In most geothermal fields, temperature distribution is not uniform. As an example, we consider a
geothermal aquifer with three distinct temperature zones, as shown in Fig. 5. Temperature ranges
from 80°C in the central area to 70°C and 60°C in the two perimetric zones. All other aquifer features
are the same as in the previous example. The positions of the central station and of the existing wells
and the number of new wells are also the same.

In this case, thermal power provided by the system of wells depends both on total well flow rate
QOr and on the average geothermal water tepmperature T,,. We assume that the required Ot varies
linearly from 500 to 6001/s, as T,y varies from 80°C to 60°C respectively. Since Qr depends on Ty,
the latter affects the pumping cost C}, and probably C,, too. To handle the respective constraints, we
proceed in the following way: (a) we calculate the average water temperature for the ‘raw’ well flow
rates Q;, which result from chromosome decoding, (b) we calculate the required total well flow rate
QOrr for this particular water temperature and (c) we multiply each ‘raw’ Q; by the factor Qrr/SQ
(SQ being the sum of Q;, as mentioned in Section 3.1.2).

A necessary input to the aforementioned calculations is the temperature zone in which each new
well lies. This is achieved by means of a rather simple technique introduced by Katsifarakis and
Latinopoulos [14].

The program has been run many times. Well locations and pipe network patterns of the
respective best solutions could be easily classified into three groups, which are represented by the
three typical solutions shown in Fig. 5a, b and c. The respective well flow rates, coordinates and
piezometric level drawdowns are summarized in Table 5. All runs resulted in similar final costs
(between 240,300 and 244,300€ and the final cost differences did not exceed 1.7%). The most promi-
nent feature of all the best solutions is that no new well is located at the lowest temperature (60°C)
zone, while in the best pattern of all (shown in Fig. 5¢), two new wells are placed just inside the hottest
field zone. This is their major difference from the best solution patterns achieved for the uniform tem-
perature field. Moreover, the total cost is around 17% higher for the non-uniform temperature field,
because: (a) piezometric level drawdowns at the wells are larger since they are placed closer to each
other in order to avoid the lowest temperature field areas and (b) the required total flow rate is larger.
Actually QOrr is equal to 554.51/s for patterns A and B (which have many similarities) and a little
lower at 543.8 /s for pattern C.



440 K.L. Katsifarakis et al., Int. J. Sus. Dev. Plann. Vol. 1, No. 4 (2006)

(@) (0,3000) (3000,3000)

(3000,3000)

Figure 5: (a) Type A best solution for geothermal field with non-uniform temperature distribution;
(b) Type B best solution for geothermal field with non-uniform temperature distribution and
(c) Type C best solution for geothermal field with non-uniform temperature distribution.
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Table 5: Typical best solutions (non-uniform temperature distribution).

x; (m) yi (m) Q; (I/s) s; (m) T (°0O)
Type A best solution
Well 1 500 200 49.99 107.39 60
Well 2 1600 600 49.99 115.45 70
Well 3 2500 1900 55.48 129.40 70
Well 4 2000 2800 56.06 127.24 70
Well 5 0 1500 56.64 127.22 70
Well 6 3000 1687 65.30 127.90 70
Well 7 0 2437 55.19 127.00 70
Well 8 302 3000 57.79 126.67 70
Well 9 1242 3000 55.48 129.07 70
Well 10 750 750 52.59 127.10 70
554.51
Type B best solution
Well 1 500 200 49.36 108.49 60
Well 2 1600 600 49.68 111.74 70
Well 3 2500 1900 50.00 112.85 70
Well 4 2000 2800 56.41 128.69 70
Well 5 2919 3000 69.23 126.02 70
Well 6 749 751 54.16 130.73 70
Well 7 1 3000 61.85 127.61 70
Well 8 949 3000 54.16 127.02 70
Well 9 375 1292 51.60 128.58 70
Well 10 0 2289 58.01 131.66 70
554.46
Type C best solution
Well 1 500 200 49.63 103.31 60
Well 2 1600 600 49.63 117.09 70
Well 3 2500 1900 49.63 121.10 70
Well 4 2000 2800 50.67 127.14 70
Well 5 1158 1092 61.43 146.62 80
Well 6 3000 3000 60.73 128.54 70
Well 7 0 3000 49.97 98.82 70
Well 8 947 1697 55.53 141.51 80
Well 9 0 2000 61.77 129.02 70
Well 10 2645 3000 54.83 130.28 70
543.82

4 CONCLUSIONS
Improvement of financial performance of a geothermal district heating scheme has been investigated
by means of genetic algorithms. Two significant cost elements have been studied, namely operation
(pumping) cost and amortization of construction of the pipe network inside the geothermal field.
Optimization has been achieved through: (a) proper location of new wells in the geothermal area and
(b) proper distribution of total water demand (flow rate) to the individual wells. Application examples
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to geothermal fields with uniform and non-uniform water temperature distribution indicate that genetic
algorithms can be used efficiently in geothermal problems too. In all the cases, a cost reduction larger
than 10% was achieved, with respect to unoptimized planning of well and pipe network layout. Such
cost reductions can contribute to the promotion of the direct use of geothermal energy.
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