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 Proxy-based sliding mode control PSMC is an improved version of PID control that 

combines the features of PID and sliding mode control SMC with continuously dynamic 

behaviour. However, the stability of the control architecture maybe not well addressed. 

Consequently, this work is focused on modification of the original version of the proxy-

based sliding mode control PSMC by adding an adaptive approximation compensator 

AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is 

to compensate for unmodelled dynamics and make the stability proof more easily. The 

stability of the proposed control algorithm is systematically proved using Lyapunov 

theory. Multi-modal equation of motion is derived using the Galerkin method. The state 

variables of the multi-modal equation are expressed in terms of modal amplitudes that 

should be regulated via the proposed control system. The proposed control structure is 

implemented on a simply supported beam with two piezo-patches. The simulation 

experiments are performed using MATLAB/SIMULINK package. The locations of piezo-

transducers are optimally placed on the beam. A detailed comparison study is implemented 

including three scenarios. Scenario 1 includes disturbing the smart beam while no 

feedback loop is established (open-loop system). In scenario 2, a PD controller is applied 

on the vibrating beam. Whereas, scenario 3 includes implementation of the PSMC+AAC. 

For all previously mentioned scenarios, two types of disturbances are applied separately: 

1) an impulse force of 1 N peak and 1 s pulse width, and 2) a sinusoidal disturbance with 

0.5 N amplitude and 20 Hz frequency. For impulse disturbance signals, the results show 

the superiority of the PSMC+AAC in comparison with the conventional PD control. 

Whereas, both the PSMC+ACC and the PD control work well in the case of a sinusoidal 

disturbance signal and the superiority of the PSMC is not clear. 
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1. INTRODUCTION 

 

Much attention has been paid to active vibration control of 

flexible structures. These structures have been widely used in 

miscellaneous applications such as space robotics, aircraft 

structures, gas turbine rotors, skyscrapers, and bridges [1-4]. 

They may damage if they undergo unwanted vibrational loads 

because of possible fatigue and instability. Therefore, they 

need a suitable control system to suppress the vibrational 

motion and maintain structural stability. The use of smart 

materials as actuators and/or sensors witnesses progress in 

practice and research fields proving a potential solution to 

reduce the failure of the structures. A smart beam-like 

structure consists of a regular beam with attached distributed 

smart materials behaving as actuators and/or sensors. They can 

actively suppress produced oscillations instead of using 

passive damping parts [5]. As a result, this work is concerned 

with modelling and control of slender beams with surface 

bonded piezo-patches (actuators/sensors). Design of a suitable 

control architecture requires good mathematical modelling for 

the target dynamic system. In general, three beam theories 

have been reported in the literature: Euler-Bernoulli theory 

that neglects the rotational inertia and shear deformation, 

Rayleigh theory that considers the shear deformation only 

while Timoshenko beam theory considers both the rotational 

inertia and shear deformation [6-8]. The current work is 

focused on an Euler-Bernoulli beam model with attached 

piezo-materials. The vibrating beam has infinite degrees-of-

freedom with a large number of vibrational modes. However, 

the objective of the designed controller is to stabilize the 

vibration of the first mode shapes since they are dominant in 

the low-frequency region of the dynamic response. Therefore, 

the partial differential equation PDF is transformed into 

discrete ordinary differential equations ODEs with a definite 

number of mode shapes. 

Miscellaneous control approaches have been used for 

vibration control of smart flexible beams such as strain rate 

feedback [9], positive position feedback [10], pulse frequency 

modulator [11], PID controller [12], Linear quadratic regulator 

(LQR), state feedback [13], model predictive control [14], and 

more recent works [15-20]. However, the performance and 

stability of the above-mentioned control schemes could be 

corrupted if undesired external disturbances are applied or 

unmodeled dynamics are neglected. Above all, the PID family 

controller has a simple structure but it can work well at the 

low-frequency region; the control system performance could 

be destabilized beyond the cut-off frequency [21]. To 

overcome PID limitations, a feedforward term is added to the 

PID term to obtain high bandwidth control. However, if the 

dynamic modelling includes uncertainties, the adaptive 
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control is integrated such that the parameters associated with 

the feedforward term are updated based on Lyapunov theory 

[22-33]. In effect, there are two basic strategies for adaptive 

control: regressor-based control and approximation-based 

control. In contrast to the regressor approach, the adaptive 

approximation technique is a model-free control includes 

representation of the uncertainties in terms of weighting and 

basis function vectors/matrices. The weighting coefficients are 

updates based on Lyapunov theory, see the papers [22-33] for 

more details. However, modelling error should be 

compensated by using a robust sliding term. The sliding mode 

control is a powerful robust control strategy for stabilization 

of motion of dynamic systems with uncertain modelling. It 

includes a nonlinear discontinuous function, e.g. signum-type 

function, to enforce the state variables approaching to the 

sliding surface (modelling and position errors are convergent 

to zero). However, due to the presence of a discontinuous 

signum function in the closed-loop dynamics, this could lead 

to chattering problem and hence stability and performance of 

the sliding mode control can be degraded. Chattering problem 

can cause high-frequency dynamics with large position error 

[34]. In general, there are three approaches for attenuation of 

chattering problem: 1) boundary layer method [35], 2) high 

order sliding control [36], and 3) proxy-based sliding control 

[37]. Boundary layer method replaces the discontinuous 

signum function by a continuous function, e.g. a saturated 

function or a hyperbolic tangent function, etc. However, due 

to the presence of approximation error, the stability of the 

control system can be degraded. On the other hand, high order 

sliding mode control requires a state observer to estimate 

derivatives of state variables. Above all, proxy-based sliding 

mode control PSMC has brought the attention of most 

researchers for its simplicity of control architecture. It 

integrates the features of the PID controller and sliding mode 

control with ensured continuous closed-loop dynamics. In the 

PSMC, the signum function is rolled out to a saturated function 

without any approximation and hence the closed-loop 

dynamics have continuous behaviour. PMSC is applied to soft 

robotics for its superiority to ensure safety and precision in 

motion [38-43]. However, the stability of PSMC is not well 

treated and further work is required. Thus, the key point of this 

work is that it integrates three control units (PID+SMC+AAC) 

to obtain high control performance. First, it reformulates the 

structure of the PID controller integrating the features of the 

robust sliding mode control. Secondly, an adaptive 

approximation compensator is added to the control 

architecture to compensate for modelling errors if exist. 

In view of the above, this paper deals with modelling and 

PMSC with an AAC term for flexible beams with piezo-

patches. The role of AAC is to compensating for unmodelled 

dynamics and to ease the task of proof of system stability. 

Whereas the PMSC unit attempts to capture the features of the 

PID control and the SMC with continuous closed-loop 

dynamics. The Euler-Bernoulli beam theory is used for 

derivation of dynamics of the target smart beam. The partial 

differential equation PDF of the vibrating beam is transformed 

into second-order differential equations ODEs with definite 

mode shapes using the Galerkin method. A simply supported 

beam is simulated by MATLAB/SIMULINK package 

considering the first two-mode shapes. Two collocated piezo-

patches are placed optimally on the vibrating beam working as 

actuators and sensors. Several experiments are performed to 

prove verification and precise regulation of PMSC. 

The rest of the paper is organized as follows. Dynamic 

modelling of the Euler-Bernoulli beam and the proposed 

control structure are presented in Section 2. Section. 

Simulation experiments are introduced in Section 3 while 

Section 4 concludes.  

 

 

2. METHODOLOGY 

 
2.1 Dynamic modelling of smart beams 
 

In general, there are three well-known beam theories for 

derivation of equation of motion: 1) Euler-Bernoulli theory 

that neglects rotational inertia and shear deformation and it is 

suitable for thin beams, 2) Rayleigh theory in which shear 

deformation is considered, and 3) Timoshenko beam that 

considers both rotational inertia and shear deformation and it 

is suitable for thick beams [8]. This paper is focused on Euler-

Bernoulli beam theory in the modelling of flexible beams. In 

Figure 1, a thin prismatic beam with constant flexural rigidity 

𝐸𝑏𝐼𝑏. It is excited by a distributed force f (x, t) over the length 

of the beam and provided with surface bonded piezo-patches. 

The dimension of the beam and piezo-patches are shown in the 

figure. The following assumptions are proposed for modelling 

of the target beam. 

Assumption 1. The beam is thin enough that Euler beam 

theory is applied. 

Assumption 2. The stiffness and inertia of the piezo-patches 

are neglected. 

Assumption 3. Sufficient transducers (or piezo-sensors) are 

available such that modal amplitudes are measurable. 

 

 
 

Figure 1. A flexible beam with piezo-patches 
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Remark 1. In effect, all three assumptions mentioned above 

are reasonable and necessary for our current work. In 

Assumption 1, the beam is considered thin such that we can 

apply Euler-Bernoulli beam theory. If the beam is considered 

thick then we should depend on Timoshenko beam theory for 

modelling purpose [8]. For Assumption 2, the dynamics of the 

piezo-transducers are neglected since the vibration 

characteristics of the vibrating beam would not be affected by 

the attached piezo-transducers [44]. Assumption 3 means that 

the modal amplitudes can be observed (measured) depending 

on installing a sufficient number of sensors [7]. 

The governing PDF for the transverse bending deflection y 

of Euler-Bernoulli beams can be expressed as [7, 45]: 

 

𝐸𝑏𝐼𝑏
𝜕4𝑦(𝑥, 𝑡)

𝜕𝑥4
+ 𝑐

𝜕𝑦

𝜕𝑡
+ 𝜌𝑏𝐴𝑏

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
= 𝑓(𝑥, 𝑡) −

𝜕2𝑀𝑝(𝑡)

𝜕𝑥2
 (1) 

 

where, 𝐸𝑏 , 𝐼𝑏 , 𝜌𝑏, 𝐴𝑏 and c are modulus of elasticity, moment 

of inertia, density, cross-sectional area of the beam, and 

damping coefficient respectively. Mp (x, t) represents the 

applied bending moment exerted by a piezo-actuator and it can 

be expressed as [7]: 

 

𝑀𝑝(𝑥, 𝑡) = 𝐷𝑣𝑎(𝑡)[𝐻(𝑥 − 𝑥1) − 𝐻(𝑥 − 𝑥2)] (2) 

 

where, 𝑣𝑎(𝑡)  is an excitation voltage applied to the piezo-

actuator. The constant D depends on the dimensions and 

material properties of both beam and piezo-actuator [13], 𝑥(.) 

refers to the location of piezo-actuator, and H(.) is a Heaviside 

step function. Using Galerkin method, the transverse 

displacement of the target beam can be approximated as: 

 

𝑦(𝑥, 𝑡) ≅∑𝜙𝑖(𝑥)𝑞𝑖(𝑡)

𝑁

𝑖=1

        𝑖 = 1, 2, 3,⋯𝑁 (3) 

 

where, qi(t) is a time dependent function (modal amplitudes), 

N  refers to the number of mode shapes, and 𝜙𝑖(𝑥) is the mode 

shape of the beam. Thus, Eq. (1) can be expressed as: 

 

𝐸𝑏𝐼𝑏∑𝜙𝑗
′′′′(𝑥)

𝑁

𝑗=1

𝑞𝑗(𝑡) + 𝑐∑ 𝜙𝑗(𝑥)�̇�𝑗(𝑡)
𝑁

𝑗=1

+𝜌𝑏𝐴𝑏∑𝜙𝑗(𝑥)�̈�𝑗(𝑡)

𝑁

𝑗=1

= 𝑓(𝑥, 𝑡) − 𝐷𝑣𝑎(𝑡)
𝜕2

𝜕𝑥2
[𝐻(𝑥 − 𝑥1)

− 𝐻(𝑥 − 𝑥2)] 

(4) 

 

Multiplying Eq. (4) by 𝜙𝑖(𝑥), (𝑖 ≠ 𝑗) and integrating over 

the length of the beam to obtain the following decoupled 

system. 

 

𝐸𝑏𝐼𝑏∫ 𝜙𝑖
′′′′(𝑥)𝜙𝑖(𝑥)

𝑙𝑏

0

𝑑𝑥 𝑞𝑗(𝑡)

+ 𝑐∫ 𝜙𝑖(𝑥)𝜙𝑖(𝑥)𝑑𝑥 �̇�𝑗(𝑡)
𝑙𝑏

0

+ 𝜌𝑏𝐴𝑏∫ 𝜙𝑖(𝑥)𝜙𝑖(𝑥)𝑑𝑥 �̈�𝑗(𝑡)
𝑙𝑏

0

= ∫ 𝑓(𝑥, 𝑡)𝜙𝑖(𝑥)𝑑𝑥
𝑙𝑏

0

−∫ 𝐷𝑣𝑎(𝑡)𝜙𝑖(𝑥)
𝜕2

𝜕𝑥2
[𝐻(𝑥 − 𝑥1)

𝑙𝑏

0

− 𝐻(𝑥 − 𝑥2)] 𝑑𝑥 

(5) 

Eq. (5) can systematically be expressed as: 

 

𝑚𝑖�̈�𝑖(𝑡) + 𝑐𝑖�̇�𝑖(𝑡) + 𝑘𝑖𝑞𝑖(𝑡) = 𝑔𝑖(𝑥, 𝑡) − 𝜇𝑖𝑣𝑎(𝑡),   
𝑖 = 1,2,3, … , 𝑁 (6) 

 

with 

 

𝑚𝑖 = 𝜌𝑏𝐴𝑏∫ 𝜙𝑖(𝑥)𝜙𝑖(𝑥)𝑑𝑥
𝑙𝑏

0

,  

𝑐𝑖 = 𝑐∫ 𝜙𝑖(𝑥)𝜙𝑖(𝑥)𝑑𝑥
𝑙𝑏

0

,  

𝑘𝑖 = 𝐸𝑏𝐼𝑏 ∫ 𝜙𝑖
′′′′(𝑥)𝜙𝑖(𝑥)

𝑙𝑏

0

𝑑𝑥,  

𝑤𝑛𝑖
2 =

𝑘𝑖
𝑚𝑖

, 

𝑔𝑖(𝑡) = ∫ 𝑓(𝑥, 𝑡)𝜙𝑖(𝑥)𝑑𝑥
𝑙𝑏

0

,  

𝜇𝑖 = 𝐷(𝜙𝑖
′(𝑥2) − 𝜙𝑖

′(𝑥1)) 

(7) 

 

However, there are 𝑁𝑎 piezo-actuators bonded on the beam 

and hence by using superposition technique, Eq. (6) can be 

rewritten as: 

 

𝑚𝑖�̈�𝑖(𝑡) + 𝑐𝑖�̇�𝑖(𝑡) + 𝑘𝑖𝑞𝑖(𝑡)

= 𝑔𝑖(𝑥, 𝑡) −∑ 𝜇𝑖𝑘𝑣𝑎𝑘(𝑡)
𝑁𝑎

𝑘=1
 

                               , 𝑖 = 1,2,3, … , 𝑁  

(8) 

 

with 𝑁𝑎  being the number of piezo-actuators and μik  being 

defined in Eq. (7) with modification of subscripts for x1 and x2 

to 𝑥1𝑘 and 𝑥2𝑘 respectively to distinguish locations of multi-

piezo-actuators, where k=1,2,3…𝑁𝑎. 

Eq. (8) can extend for multi-modal analysis using matrix 

representation to get, 

 

𝑀�̈� + 𝐶�̇� + 𝐾𝑞 + 𝑔 = 𝑢 (9) 

 

where, 

 

M = (
𝑚1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑚𝑁

) ∈ 𝑅𝑁×𝑁 , 𝐶 = (
𝑐1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑐𝑁

) ∈ 𝑅𝑁×𝑁 , 

 𝐾 = (
𝑘1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑘𝑁

) ∈ 𝑅𝑁×𝑁, 𝑔 = (

−𝑔1
⋮

−𝑔𝑁
) ∈ 𝑅𝑁 , 

 𝜇 = (

−𝜇11 ⋯ −𝜇1𝑁𝑁𝑎
⋮ ⋱ ⋮

−𝜇𝑁1 ⋯ −𝜇𝑁𝑁𝑎

)𝑅𝑁×𝑁𝑎 , 𝑢 = 𝜇𝑣𝑎 ∈ 𝑅
𝑁 

 

Eq. (9) is similar to multi-degrees-of-freedom 2nd-order 

discrete dynamic systems. The following points should be 

noted: 

I. The matrices M, C and K are diagonal matrices and 

hence the dynamic system is decoupled on the left-

side of Eq. (9). However, the coupling interaction at 

the input coefficient μ for multi-modal dynamics. 

II. The matrix M has constant-value elements (assuming 

beams with constant cross-section) while C is 

assumed a positive definite matrix.  

III. The state variable q cannot be sensed (measured) 

directly, its reading depends on sensor voltage 

readings.  

827



 

In the following, we will attempt to reformulate Eq. (9) such 

that the output state variables are piezo-sensor voltages vs. 

Thus, vs can be represented as [7]: 

 

𝑣𝑠𝑗 =∑ 𝛼𝑗𝑘𝑞𝑘(𝑡) = [𝛼𝑗1 … 𝛼𝑗𝑁]
𝑁

𝑘=1
[

𝑞1
⋮
𝑞𝑁
], 

 𝑗 = 1,2,3, … , 𝑁𝑠 

(10) 

 

where, α(.) is a constant that depends on the location of piezo-

sensors and Ns is the number of piezo-sensors that are equal to 

𝑁𝑎  in case of collocated patches. In matrix/vector 

representation, Eq. (10) can be rewritten as: 

 

vs =  𝛼 𝑞,       𝛼 = (

𝛼11 ⋯ 𝛼1𝑁
⋮ ⋱ ⋮

𝛼𝑁𝑠1 ⋯ 𝛼𝑁𝑠𝑁
) ∈ 𝑅𝑁𝑠×𝑁 (11) 

 

Therefore, substituting Eq. (11) into Eq. (9) results in 

 

𝑀𝛼+v̈s + 𝐶𝛼
+v̇s + 𝐾𝛼

+vs + 𝑔 = 𝑢 (12) 

where, 𝛼+ ∈ 𝑅𝑁×𝑁𝑠 is the Moore-Penrose inverse matrix of 

sensor gain matrix (𝛼), see the paper [46] for more details. 

 

2.2 Control structure 
 

This subsection deals with integration of the PSMC and the 

AAC for vibration suppression of smart beams. The PSMC 

was well applied to different applications especially soft 

robotics. It is an improved and continuous version of sliding 

mode control that integrates the features of PID control family 

and the robust sliding mode control. The key idea of this 

strategy is to impose a null virtual mass called a proxy in 

between PID controller on the side of output target system (the 

dynamic system that is required to be controlled) and a sliding 

mode control on the end of the virtual proxy object. It attempts 

to control (regulate) local and global dynamics associated with 

the PID control and the SMC respectively [38]. As a result, the 

PSMC has superior features of accurate tracking and safe 

recovery while the disturbed system is under external 

disturbances.  

 

 
Figure 2. A simplified sketch showing the concept of the PSMC 

 

Figure 2 describes concept of PSMC for the target smart 

system (equivalent system according to Eq. (9)). The stability 

of the PSMC is not well addressed. Besides, most previous 

work was focused on proving that the closed loop dynamics is 

passive in order to compensate for disturbances if exist. To this 

end, this section proposes the PSMC combined with an 

adaptive approximation term to compensate for disturbances 

if exist. This technique simplifies proof of stability of the 

dynamic system and makes the derivation straightforward. 

According to the principle of PSMC described in Figure 2, 

consider the following position errors and sliding surfaces: 

 

𝑒 = 𝑞𝑑 − 𝑞, 𝜎 = (𝑞𝑑 − 𝑞) + 𝛬(�̇�𝑑 − �̇�) = 𝑒 + 𝛬�̇�  (13a) 

𝑒𝜒 = 𝜒 − 𝑞, 

𝜎𝜒 = (𝜒 − 𝑞) + 𝛬(�̇� − �̇�) = 𝑒𝜒 + 𝛬�̇�𝜒 

 

(13b) 

𝑒𝑠 = 𝑞𝑑 − 𝜒, 

𝜎𝑠 = (𝑞𝑑 − 𝜒) + 𝛬(�̇�𝑑 − �̇�) = 𝑒𝑠 + 𝛬�̇�𝑠 
(13c) 

 

where, e, ex and 𝑒𝑠 ∈ R
Nare actual position error, position error 

associated with PD, and position error associated with sliding 

mode control respectively with corresponding sliding surfaces 

𝜎, 𝜎𝜒  and 𝜎𝑠 ∈ R
N. 𝑞𝑑 ∈ R

N is the desired trajectory, 𝜒 ∈ RN 

is the proxy position while 𝛬 ∈ RN×N is a diagonal positive 

definite feedback gain matrix. According to Figure 2, the 

intuitive control law for can be designed as: 

 

𝑢 = 𝑢1 = 𝜉⏟
𝐴𝐴𝐶

+ 𝐾𝜒𝑒𝜒 + 𝐾𝑑�̇�𝜒⏟        
𝑃𝐷

 
(14a) 

 

with 

𝜉 = �̂��̈�𝑑 + �̂��̇�𝑑 + 𝐾𝑞𝑑 + �̂� = �̂��̈�𝑑 + �̂��̇�𝑑 + �̂�,  

�̂� = 𝐾𝑞𝑑 + �̂� 

 

where, 𝜉 ∈ RN  is a lumped uncertain vector that can be 

approximated by a linear combination of orthogonal functions, 

and the symbol (.̂ ) refers to estimation. Thus, the estimated 

term 𝜉 can be expressed as: 

 

𝜉 = �̂�𝑇𝜑 (14b) 

 

where, �̂� ∈ RNβ×N  is the weighting coefficient matrix that 

should be updated and 𝜑 ∈ RNβ is the orthogonal basis vector, 

with β referring to the number of basis function terms. The 

following update law is selected with ensured stability: 

 

�̇̂� = 𝑄−1𝜑�̇�𝑇 (14c) 

 

where, 𝑄 ∈ RNβ×Nβ  a diagonal positive-definite adaptation 

gain matrix. Now the role of PSMC comes. Using the principle 

of proxy-based sliding mode control (see Figure 2) with 

modification of original version proposed by Kikuuwe et al. 

[37], the dynamics of proxy can be modelled as 

 

𝑚𝜒�̈� = 0 = 𝑢1 − 𝑢2 (15) 

 

with 𝑚𝜒 ∈ R
N×N being the virtual proxy mass, and 

 

𝑢2 = 𝜉 + 𝑈𝑠𝑔𝑛(𝜎𝑠) (16) 

 

where, U ∈ RN  is constant coefficient vector that limits the 

values of control input. Alternatively, Eq. (15) can be 

expressed as: 
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𝜉 + 𝐾𝜒𝑒𝜒 + 𝐾𝑑�̇�𝜒 = 𝜉 + 𝑈𝑠𝑔𝑛(𝜎𝑠)    (17) 

 

Eq. (17) can be rewritten as: 

 

𝐾𝜒𝑒𝜒 + 𝐾𝑑�̇�𝜒 = 𝑈𝑠𝑔𝑛(𝜓 − 𝛬�̇�𝜒)      (18) 

 

with 𝜓 = 𝜎 − 𝑒𝜒 . Using the following mathematical 

expression [37, 38], 

 

𝑎1 = 𝑎2 + 𝑎3𝑠𝑔𝑛(𝑎4 − 𝑎5𝑎1) 

      = 𝑎2 + 𝑎3𝑠𝑎𝑡 (
𝑎4
𝑎5𝑎3

−
𝑎2
𝑎3
) 

(19) 

 

According to the above equation, Eq. (18) can be 

reformulated as: 

 

�̇�𝜒 = −𝐾𝑑
−1𝐾𝜒𝑒𝜒 + 𝐾𝑑

−1𝑈𝑠𝑎𝑡(𝑈−1𝐾𝑑 𝛬
−1𝜓

+ 𝑈−1𝐾𝜒𝑒𝜒) 
(20) 

 

Thus, the desired control voltage presented in Eq. (14a) can 

be designed as: 

 

𝑢 = 𝑢1 = 𝜉 + 𝑈𝑠𝑎𝑡(𝑈
−1𝐾𝑑 𝛬

−1𝜓 + 𝑈−1𝐾𝜒𝑒𝜒) (21) 

 

Equating Eq. (9) to Eq. (14a) leads to the following closed-

loop dynamics, 

 

𝑀�̈� + 𝐶�̇� + 𝐾𝑞 + 𝑔⏟    
𝜂

= �̂��̈�𝑑 + �̂��̇�𝑑 + 𝐾𝑞𝑑 + �̂�⏟    
�̂�

+

𝐾𝜒𝑒𝜒 + 𝐾𝑑�̇�𝜒  
(22) 

 

By adding (−𝑀�̈�𝑑 − 𝐶�̇�𝑑 − 𝜂) to both sides of above 

equation to obtain, 

 

−𝑀�̈� − 𝐶�̇� = �̃��̈�𝑑 + �̃��̇�𝑑 + �̃� + 𝐾𝜒𝑒𝜒 + 𝐾𝑑�̇�𝜒 + 𝜖 (23) 

 

with (.̂ ) − (. ) = (.̃ ). Eq. (23) can be represented as: 

 

𝑀�̈� + 𝐶�̇� = −𝜉 − 𝐾𝜒𝑒𝜒 − 𝐾𝑑�̇�𝜒 + 𝜖  

                          = −�̃�𝑇𝜑 − 𝐾𝜒𝑒𝜒 − 𝐾𝑑 �̇�𝜒 + 𝜖 
(24) 

 

where, 𝜖 ∈ RN is the approximation modelling error. 

 

Theorem. The dynamics of the target smart beam modelled 

in Eq. (9) with the control law presented in Eq. (21), the 

adaptive law of Eq. (14c), and the closed-loop dynamics given 

in Eq. (24) is stable in the sense of Lyapunov theory. 

Proof. 

Consider the following Lyapunov-like candidate along the 

trajectory of Eq. (24) 

 

𝑉 =
1

2
�̇�𝑇𝑀�̇� +

1

2
𝑡𝑟(�̃�𝑇𝑄�̃�) +

1

2
𝑒𝜒
𝑇𝐾𝜒𝑒𝜒

+ ‖𝑈𝑒𝑠‖1 
(25) 

 

Taking derivative of above equation and substituting Eq. 

(23) into Eq. (25) to get, 

 

�̇� = �̇�𝑇(−𝐶�̇� − �̃�𝑇𝜑 − 𝐾𝜒𝑒𝜒 − 𝐾𝑑�̇�𝜒 + 𝜖)

+ 𝑡𝑟 (�̃�𝑇𝑄�̇̂�) + �̇�𝜒
𝑇𝐾𝜒𝑒𝜒

+ �̇�𝑠𝑈𝑠𝑔𝑛(𝑒𝑠) 

(26) 

 

Substituting Eq. (17) into above equation to obtain, 

 

�̇� = −�̇�𝑇𝐶�̇� + �̇�𝑇𝜖 + 𝑡𝑟 (�̃�𝑇 (−𝜑�̇�𝑇 + 𝑄�̇̂�))

− �̇�𝑇𝑈𝑠𝑔𝑛(𝜎𝑠)+�̇�𝜒
𝑇(𝑈𝑠𝑔𝑛(𝜎𝑠)

− 𝐾𝑑 �̇�𝜒) + �̇�𝑠𝑈𝑠𝑔𝑛(𝑒𝑠) 

(27) 

 

Applying Eq. (14c) keeping in mind that C ≥ 0, then the 

above equation is reduced to, 

 

�̇� = −�̇�𝑇𝐶�̇� + �̇�𝑇𝜖 − �̇�𝜒
𝑇𝐾𝑑�̇�𝜒 − �̇�

𝑇𝑈𝑠𝑔𝑛(𝜎𝑠)

+ �̇�𝜒
𝑇𝑈𝑠𝑔𝑛(𝜎𝑠) + �̇�𝑠𝑈𝑠𝑔𝑛(𝑒𝑠) 

(28) 

 

From Eq. (13), we can get, 

 

�̇�𝜒 + �̇�𝑠 = �̇� (29) 

 

Substituting Eqns. (29) and (13c) into Eq. (28) leads to, 

 

�̇� = −�̇�𝑇𝐶�̇� + �̇�𝑇𝜖 − �̇�𝜒
𝑇𝐾𝑑�̇�𝜒

− �̇�𝑠
𝑇𝑈𝑠𝑔𝑛(𝑒𝑠 + 𝛬�̇�𝑠)

+ �̇�𝑠
𝑇𝑈𝑠𝑔𝑛(𝑒𝑠) 

(30) 

 

Using the following mathematical inequality, 

 

𝑦𝑇𝑈[𝑠𝑔𝑛(𝑧 + 𝑦) − 𝑠𝑔𝑛(𝑧)] ≥ 0 (31) 

 

Therefore, Eq. (30) is reduced to: 

 

�̇� ≤ −�̇�𝑇𝐶�̇� − �̇�𝜒
𝑇𝐾𝑑�̇�𝜒 + �̇�

𝑇𝜖 (32a) 

 

Now let us deal with the last term exploiting the following 

inequality [47]: 

 

�̇�𝑇𝜖 ≤ �̇�𝑇Ω−1�̇� + 𝜖𝑇Ω𝜖 ≤ �̇�𝑇Ω−1�̇� + 𝜖 ̅ (32b) 

 

Thus, Eq. (32a) becomes, 

 

�̇� ≤ −�̇�𝑇𝐶�̇� − �̇�𝜒
𝑇𝐾𝑑�̇�𝜒 + �̇�

𝑇Ω−1�̇� + 𝜖  ̅ (32c) 

 

where 𝜖̅  is the upper bound of 𝝐  such that 𝜖𝑇Ω𝜖 ≤ 𝜖̅ . To 

ensure stability, it is necessary to have (𝐶 ≥ Ω−1) then the 

tracking error is bounded and converges to 𝜖.̅ Thus, the system 

is stable in sense of Lyapunov stability [23-28]. 

Remark 2. The above-mentioned stability proof requires 

knowledge of lower bounds of the damping matrix C. Other 

robust approaches are possible to avoid this choice such as 

dead-zone technique, see, e.g. [48] for more details. 

 

 

3. SIMULATION RESULTS AND DISCUSSIONS 

 

This section deals with simulation of a simply supported 

beam depicting in Figure 3. The physical parameters of the 

investigated smart beam are given in Tables 1 and 2. Two 

collocated piezo-patches are bonded to the surface of the beam 

for suppression of the resulted vibration. The dynamics of 

piezo-patches are neglected in comparison with the regular 

beam dynamics, see the paper [44] for more details. In effect, 

considering dynamics of piezo-patches would complicate the 

control problem since the equation of motion for the overall 

system is no longer decoupled and advanced control strategies 

are required. 
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Figure 3. A flexible simply supported beam with the surface-

bonded piezo-patches. The symbols A and S refer to piezo-

actuator and sensor respectively. The function h(t) can be 

impulse or sinusoidal force 

 

Table 1. Parameters of the beam 

 

Property Value 

Density, 𝜌𝑏 8030 kg/m3 

Young’s modulus, Eb 193×109pa 

Length, lb 0.3 m 

Section width, wb 0.03 m 

Section thickness, tb 0.5 × 10−3𝑚 

Damping coefficients 
𝑐1 = 00068 𝑁.

𝑠

𝑚
 

𝑐2 = 0.028 𝑁.
𝑠

𝑚
 

 

Table 2. Parameters of the piezo-patches* 

 
Property Value 

Young’s modulus, Ep 68 × 109𝑃𝑎 

Length, lp 0.075m 

Section width, wp 0.025m 

Section thickness, tp 0.35 × 10−3𝑚 

Location of 1st piezo, x11, x21 
𝑥11 = 0.3(𝑙𝑏) −

𝑙𝑝

2
, 

𝑥21 = 0.3(𝑙𝑏) +
𝑙𝑝

2
 

Location of 2nd piezo, x12, x22 
𝑥12 = 0.7(𝑙𝑏) −

𝑙𝑝

2
, 

𝑥22 = 0.7(𝑙𝑏) +
𝑙𝑝

2
 

*For detailed formulae used for evaluation of values of D and α(.), see ref. [8]. 

 

Below, we will describe the mode shapes and frequency 

response for the first two modes shapes neglecting high order 

mode shapes. Then, a detailed comparison study is 

implemented including three scenarios. Scenario 1 includes 

disturbing the smart beam while no feedback loop is 

established (open-loop system). In scenario 2, a PD controller 

is applied on the vibrating beam to attenuate the produced 

vibration due to the excitation disturbance force. Whereas, 

scenario 3 includes application of the proposed control 

structure (PSMC+AAC) for vibration suppression of the 

flexible beam. For all previously mentioned scenarios, two 

types of disturbances are investigated separately: 1) an 

impulse force of 1 N peak and 1 s pulse width, and 2) 

sinusoidal disturbance with 0.5 N amplitude and 20 Hz 

frequency. 

 

3.1 Frequency response and mode shapes 

 

This subsection is focused on frequency response for the 

vibrating simply supported beam considering multi-piezo-

patches. The piezo-patches are located where large sensor 

voltage readings are obtained. To capture the transfer 

functions for multi-input multi-output systems, let us recall Eq. 

(12a) with null excitation force, g=0. 

𝛼+𝑀v̈𝑠 + 𝛼
+𝐶v̇𝑠 + 𝛼

+𝐾v𝑠 = 𝑢 (33) 

 

Multiplying Eq. (33) by 𝛼, taking Laplace transform, and 

substituting 𝑢 = 𝜇𝑣𝑎, it becomes: 

 
𝑉𝑠(𝑠)

𝑉𝑎(𝑠)
= 𝛼(𝑀𝑠2 + 𝐶𝑠 + 𝐾𝑠)−1 𝜇 (34) 

 

Fortunately, 𝑁𝑎 = 𝑁𝑠 = 2, hence four transfer functions are 

obtained, 

 
𝑉𝑠(𝑠)

𝑉𝑎(𝑠)
= [
𝑔11 𝑔12
𝑔21 𝑔22

] (35) 

 

Eq. (34) can be reformulated to represent the output in terms 

of the modal amplitudes as follows. Since 𝑉𝑠(𝑠) =  𝛼 𝑄(𝑠), 
hence Eq. (34) becomes, 

 
𝑄(𝑠)

𝑉𝑎(𝑠)
= (𝑀𝑠2 + 𝐶𝑠 + 𝐾𝑠)−1𝜇 (36) 

 

However, it is realistic to deal with the total deflection of 

the plate as an output. By recalling Eq. (8), the following 

transfer function is obtained, 

 

𝐺(𝑥, 𝑠) = ∑
𝜙𝑖(𝑥)

𝑚𝑖𝑠
2 + 𝑐𝑖𝑠 + 𝑘𝑖𝑠

𝑁

𝑖=1
[𝜇𝑖1 … 𝜇𝑖𝑁𝑎] (37) 

 

Eq. (37) is used as a basis for determination of frequency 

response of the vibrating beam considering multi-piezo-

patches with multi-mode shapes. Here the deflection 

frequency response depends on the basis function 𝜙𝑖(𝑥) that 

is a function of the displacement 𝑥. Besides, the first two mode 

shapes in the low-frequency region are considered since they 

have larger amplitudes in comparison to high-frequency 

amplitudes. 

 

3.2 Impulse disturbance 

 

Now consider the simply supported beam described in 

Figure 3. The target beam is subjected to an impulse force with 

10 N peak and 2 s pulse width. Three experiments are 

implemented to investigate the validity of the proposed 

controller. In experiment 1, the target beam is vibrated under 

the impulse force without using a feedback control (open-loop 

system). Experiment 2 includes implementation of the PD 

controller on the target-vibrating beam while in experiment 3, 

the proposed PSMC+AAC is performed. The feedback gains 

used in experiment 2 are: 𝐾𝑝 = 400𝐼2, 𝐾𝑑 = 100𝐼2, where Ii is 

i×i identity matrix. Whereas, for experiment 3, the following 

feedback and adaptation gains are used in simulation: 𝛬 =
20𝐼2, 𝐾𝑝 = 400𝐼2, 𝐾𝑑 = 100𝐼2, 𝑈 = 𝐼2, 𝑄 = 75𝐼22. 

According to Eq. (8), the i-mode equation of motion for the 

simply supported beam can be expressed as: 
 

𝑚𝑖�̈�𝑖(𝑡) + 𝑐𝑖�̇�𝑖 + 𝑘𝑖𝑞𝑖(𝑡)

=∑ 𝜇𝑖𝑘𝑣𝑎𝑘(𝑡)
𝑁𝑎

𝑘=1
− 𝑔𝑖(𝑥, 𝑡) 

 

, 𝑖 = 1,2. 

(38) 

 

with 𝑚𝑖 , 𝑐𝑖 , 𝑘𝑖  being defined in Eq. (6), 𝑁 = 𝑁𝑎 = 𝑁𝑠 = 2 

such that the actuator and sensor gain matrices are square that 
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can facilitate the task of controller, and the exciting force is 

selected as: 

 

𝑔𝑖(𝑥, 𝑡) = ∫ 𝑓(𝑥, 𝑡)𝜙𝑖(𝑥)𝑑𝑥
𝑙𝑏
0

= ℎ(𝑡) ∫
𝑦0𝑥

𝑙𝑏

𝑙𝑏
0

𝑠𝑖𝑛
𝑖𝜋𝑥

𝑙𝑏
𝑑𝑥 =

−
𝑙𝑏𝑦0

𝑖𝜋
ℎ(𝑡)(−1)𝑖 , 𝑖 = 1,2  

(39) 

 

where, y0=1 and h(t) are the excitation impulse force. The 

objective of the controller is to attenuate (suppress) the 

vibration resulted due to the applied impulse force. The 

proposed control law described in Eq. (21) with the update 

adaptive law presented in Eq. (14c) is implemented using 

MATLAB/SIMULINK package. As aforementioned, the 

control law consists of two terms: a PSMC term plus an AAC 

term for compensation purposes. Orthogonal Chebyshev 

polynomials with ꞵ=15 is used as approximators. In the tuning 

process, the gains are gradually increased from zero to a value 

at which the system is oscillating then the gain values are 

halved. The output amplitude displacements are depicted in 

Figure 4 while the control input is plotted in Figure 5. As seen 

in the plots, it can be concluded that the proposed control 

architecture damps out the resulted vibration with high 

performance in comparison with conventional PD. In addition, 

if the number of piezo-patches are not equal to the number of 

mode shapes, then a pseudo-inverse matrix is a powerful tool 

to determine the input voltages. 

 

 
 

Figure 4. The modal displacement response-impulse disturbance signal 

 

 
 

Figure 5. The control input voltages-impulse disturbance signal 

 

 
 

Figure 6. The modal displacement response-sinusoidal disturbance signal 
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Figure 7. The control input voltages-sinusoidal disturbance signal 

 

3.3 Sinusoidal disturbance 

 

In a similar manner to Sec. 3.2, three experiments are 

performed including the open-loop system, the PD controller, 

and the PSMC+AAC respectively. This section differs from 

the previous sub-section in the type of disturbance signal used. 

A sinusoidal  

Excitation force with 0.5 N amplitude and 20 Hz frequency 

is used for all three experiments. In experiment 1, the vibrating 

smart beam is disturbed without application of any feedback 

loop (open-loop system) and hence the beam system will 

vibrate freely. Whereas, in experiments 2 and 3 a PD controller 

and a PSMC+AAC are applied separately and respectively on 

the vibrating beam under a harmonic excited force. The same 

feedback gains mentioned for Sec. 3.2 are used here. In 

addition, Chebyshev polynomials with ꞵ=15 are used as 

approximators for adaptive scheme. As expected, the 

PSMC+AAC works well in vibration suppression of the 

vibrating beam. The modal responses for the first two mode 

shapes are depicted in Figure 6 while the response of the input 

control is described in Figure 7. It should be noted that both 

the PD and the PSMC work well in a sinusoidal disturbance 

signal and there could be no superiority for the PSMC in the 

case of a harmonic sinusoidal disturbance. 

 

 

4. CONCLUSIONS 

 

This paper is concerned with a modified version of the 

PSMC by adding AAC term for vibration control of Euler-

Bernoulli beam. The key idea of the PSMC is to combine the 

features of the PID and the SMC. Whereas, the AAC includes 

representation of the uncertainty in terms of a weighting 

coefficient and basis function matrices/vectors. The 

performance and stability of the proposed control structure is 

approved using Lyapunov theory. The dynamics of vibrating 

beam with the attached piezo-patches are derived 

systematically in standard 2nd order differential equations 

considering definite mode shapes. Despite the current work 

does not consider a nonlinear model for the smart beam, it can 

be straightforward used for complex dynamics of smart beams 

with miscellaneous disturbance signals since the control 

structure includes a robust feedback term represented by the 

PSMC and a feedforward term denoted by the adaptive 

approximation compensator. Future works are required to deal 

with the following issues: 

(1) Spillover phenomenon resulted from the effect of 

vibration of unmodelled mode shapes.  

(2) The nonlinear dynamics are not modelled in the current 

work; however, our proposed control is a promising control 

scheme for nonlinear beam models. 

(3) Vibration suppression of large-scale flexible structures 

such as plates and shells.  

(4) Considering dynamics of the piezo-transducers in beam 

modelling. This can complicate the control problem since the 

mode shapes are coupled in this case. 

 

 

REFERENCES  

 

[1] Hu, Q.L. (2009). A composite control scheme for attitude 

maneuvering and elastic mode stabilization of flexible 

spacecraft with measurable output feedback. Journal of 

Aerospace Science and Technology, 13(2-3): 81-91. 

https://doi.org/10.1016/j.ast.2007.06.007 

[2] Suleman, A., Costa, A.P. (2004). Adaptive control of an 

aeroelastic flight vehicle using piezoelectric actuators. 

Journal of Computers & Structures, 82(17-19): 1303-

1314. https://doi.org/10.1016/j.compstruc.2004.03.027 

[3] Liu, L.K., Zheng, G.T. (2007). Parameter analysis of 

PAF for a whole-spacecraft vibration isolation. Journal 

of Aerospace Science and Technology, 11(6): 464-472. 

https://doi.org/10.1016/j.ast.2007.02.006 

[4] García, B., Burgos, J.C., Alonso, Á. (2005). Winding 

deformations detection in power transformers by tank 

vibrations monitoring. Journal of Electric Power Systems 

Research, 74(1): 129-138. 

https://doi.org/10.1016/j.epsr.2004.09.010 

[5] Kircali, Ö.F. (2006). Active vibration control of a smart 

beam: a spatial approach. MSc Thesis, Graduate School 

of Natural and Applied Sciences, Middle East Technical 

University, Turkey. 

[6] Bandyopadhyay, B., Manjunath, T.C., Umapathy, M. 

(2007). Modeling, Control and Implementation of Smart 

Structures: A FEM-State Space Approach. Springer-

Verlag Berlin Heidelberg. 

[7] Wagg, D., Neild, S. (2010). Nonlinear Vibration with 

Control. Springer, Cham. https://doi.org/10.1007/978-

3-319-10644-1 

[8] Rao, S.S. (2007). Vibration of Continuous Systems. John 

Wiley and Sons, Inc.  

[9] Weldegiorgis, R., Krishna, P., Gangadharan, K.V. (2014). 

832

https://doi.org/10.1016/j.ast.2007.06.007
https://doi.org/10.1016/j.compstruc.2004.03.027
https://doi.org/10.1016/j.ast.2007.02.006
https://doi.org/10.1016/j.epsr.2004.09.010


 

Vibration control of smart cantilever beam using strain 

rate feedback. Procedia Materials Science, 5: 113-122. 

https://doi.org/10.1016/j.mspro.2014.07.248 

[10] Omidi, E., Mahmoodi, S.N., Shepard, W.S. (2016). Multi 

positive feedback control method for active vibration 

suppression in flexible structures. Mechatronics, 33: 23-

33. https://doi.org/10.1016/j.mechatronics.2015.12.003  

[11] Song, G., Agrawal, N.B. (2001). Vibration suppression 

of flexible spacecraft during attitude control. Acta 

Astronautica, 49: 73-83. https://doi.org/10.1016/S0094-

5765(00)00163-6 

[12] Zhang, S., Schmidt, R., Qin, X. (2015). Active vibration 

control of piezoelectric bonded smart structures using 

PID algorithm. Chinese Journal of Aeronautics, 28: 305-

313. https://doi.org/10.1016/j.cja.2014.12.005 

[13] Le, S. (2009). Active Vibration Control of a Flexible 

Beam. Master thesis, San Jose State University, USA. 

[14] Jovanova, J., Gvriloski, V., Djidrov, M., Tasevsk G. 

(2015). Model based vibration control of smart flexible 

structure using piezoelectric transducers. FME 

Transactions, 43: 70-75. 

https://doi.org/10.5937/fmet1501070J 

[15] Wang, X., Gao, Z., Fang, Y., Hu , J., Zhu , X. (2019). 

Active vibration control of smart flexible piezoelectric 

beam with a tip mass using hybrid FX-VSSLMS 

algorithm. The Journal of Engineering, 2019(13): 172-

174. https://doi.org/10.1049/joe.2018.9033 

[16] Özer, A.Ö. (2017). Modeling and controlling an active 

constrained layer (ACL) beam actuated by two voltage 

sources with/without magnetic effects. IEEE 

Transactions on Automatic Control, 62(12): 6445-6450. 

https://doi.org/10.1109/TAC.2017.2653361 

[17] Khot, S.M., Yelve, N.P., Kumar, P., Singh, D., Purohit, 

G.A. (2017). Simulation study of active vibration control 

of beams supported at both ends using optimal 

controllers. International Conference on Nascent 

Technologies in Engineering (ICNTE), Navi Mumbai, pp. 

1-8. https://doi.org/10.1109/ICNTE.2017.7947894 

[18] Da Silva, C.A.X., Colombo, D.A., Koroishi, E.H., 

Molina, F.A.L., Taketa, E., Faria, A.W. (2016). 

Comparative study of the active vibration control using 

LQR and H-infinity norm in a beam of composite 

material. 2016 12th IEEE International Conference on 

Industry Applications (INDUSCON), Curitiba, 2016, pp. 

1-6. https://doi.org/10.1109/INDUSCON.2016.7874526  

[19] Djokoto, S.S., Dragašius E., Jūrėnas, V., Agelin-Chaab, 

M. (2020). Controlling of vibrations in micro-cantilever 

beam using a layer of active electrorheological fluid 

support. IEEE Sensors Journal, 20(8): 4072-4079. 

https://doi.org/10.1109/JSEN.2019.2961380 

[20] Muresan, C.I., Folea, S., Birs, I.R., Ionescu, C.M. (2017). 

Fractional order modeling and control of a smart beam. 

2017 IEEE Conference on Control Technology and 

Applications (CCTA), Mauna Lani, HI, pp. 1517-1523. 

https://doi.org/10.1109 /CCTA. 2017. 8062672 

[21] Zhu, W.H. (2010). Virtual Decomposition Control: 

Toward Hyper Degrees of Freedom Robots. Springer-

Verlag Berlin Heidelberg. 

[22] Abdeljaber, O., Avci, O., Inman D.J. (2016). Active 

vibration control of flexible cantilever plates using 

piezoelectric materials and artificial neural networks. 

Journal of Sound and Vibration, 363: 33-53. 

https://doi.org/10.1016/j.jsv.2015.10.029 

[23] Al-Shuka, H.F.N., Song, R. (2019). Decentralized 

adaptive partitioned approximation control of high 

degrees-of-freedom robotic manipulators considering 

three actuator control modes. International Journal of 

Dynamics and Control, 7: 744-757. 

https://doi.org/10.1007/s40435-018-0482-3 

[24] Lewis, F.L., Yesildirek, A., Liu, K. (1995). Neural net 

robot controller: Structure and stability proofs. Journal of 

Intelligent and Robotic Systems, 13: 1-23. 

https://doi.org/10.1007/BF01262965 

[25] Lewis, F.L., Liu, K., Yesildirek, A. (1995). Neural net 

robot controller with guaranteed tracking performance. 

IEEE Transactions on Neural Networks, 6(3): 703-716. 

https://doi.org/10.1109/72.377975 

[26] Lewis, F.L., Yesildirek, A., Liu, K. (1996). Multilayer 

neural net robot controller with guaranteed tracking 

performance. IEEE Transactions on Neural Networks, 

7(2): 1-12. https://doi.org/10.1109/72.485674 

[27] Liu, J. (2013). Radial Basis Function (RBF) Neural 

Network Control for Mechanical Systems: Design, 

Analysis and Matlab Simulation. Tsinghua University 

Press, Beijing and Springer-Verlag Berlin Heidelberg. 

[28] Huang, A.C., Chien, M.C. (2010). Adaptive Control of 

Robot Manipulators: A Unified Regressor-Free 

Approach. World Scientific Publishing Company; 

Illustrated edition. 

[29] Ge, S.S., Lee, T.H., Harris, C.J. (1998). Adaptive Neural 

Network Control of Robotic Manipulators, World 

Scientific Publishing Co., Inc. River Edge, NJ, USA. 

[30] Al-Shuka, H.F.N., Corves, B., Zhu, W.H. (2013). 

Function approximation technique-based adaptive 

virtual decomposition control for a serial-chain 

manipulator. Cambridge Journals, 32(3): 375-399. 

https://doi.org/10.1017/S0263574713000775 

[31] Al-Shuka, H.F.N. (2018). On local approximation-based 

adaptive control with applications to robotic 

manipulators and biped robots. International Journal of 

Dynamics and Control, 6: 339-353. 

https://doi.org/10.1007/s40435-016-0302-6 

[32] Al-Shuka, H.F.N., Song, R. (2018). Hybrid regressor and 

approximation-based adaptive control of piezoelectric 

flexible beams. 2018 2nd IEEE Advanced Information 

Management, Communicates, Electronic and 

Automation Control Conference (IMCEC), Xi'an, pp. 

330-334. https://doi.org/10.1109/IMCEC.2018.8469279 

[33] Al-Shuka, H.F.N., Song, R. (2018). Hybrid regressor and 

approximation-based adaptive control of robotic 

manipulators with contact-free motion. 2018 2nd IEEE 

Advanced Information Management, Communicates, 

Electronic and Automation Control Conference 

(IMCEC), Xi'an, pp. 325-329. 

https://doi.org/10.1109/IMCEC.2018.8469628 

[34] Ding, G., Huang, J., Cao, Y. (2017). Proxy based sliding 

mode control for a class of second-order nonlinear 

system. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) 

Intelligent Robotics and Applications. ICIRA 2017. 

Lecture Notes in Computer Science, vol 10463. 

Springer, Cham. https://doi.org/10.1007/978-3-319-

65292-4_76 

[35] Slotine, J., Li, W. (1991). Applied Nonlinear Control. 

Prentice Hall, Upper Saddle River. 

[36] Shtessel, Y., Edwards, C., Fridman, L., Levant, A. (2014). 

Sliding Mode Control and Observation. Springer.  

[37] Kikuuwe, R., Yasukouchi, S., Fujitomo, H., Yamamoto, 

M. (2010) Proxy-based sliding mode control: A safer 

833

https://doi.org/10.1016/j.mspro.2014.07.248
https://doi.org/10.1016/j.mechatronics.2015.12.003
https://doi.org/10.1016/S0094-5765(00)00163-6
https://doi.org/10.1016/S0094-5765(00)00163-6
https://doi.org/10.1016/j.cja.2014.12.005
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5937%2Ffmet1501070J
https://ieeexplore.ieee.org/document/8707318/
https://ieeexplore.ieee.org/document/8707318/
https://ieeexplore.ieee.org/document/8707318/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7864294
https://doi.org/10.1049/joe.2018.9033
https://ieeexplore.ieee.org/author/37846345600
https://ieeexplore.ieee.org/document/7817738/
https://ieeexplore.ieee.org/document/7817738/
https://ieeexplore.ieee.org/document/7817738/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
https://doi.org/10.1109/TAC.2017.2653361
https://ieeexplore.ieee.org/author/37086135410
https://ieeexplore.ieee.org/author/37086134738
https://ieeexplore.ieee.org/document/7947894/
https://ieeexplore.ieee.org/document/7947894/
https://ieeexplore.ieee.org/document/7947894/
https://doi.org/10.1109/ICNTE.2017.7947894
https://ieeexplore.ieee.org/document/7874526/
https://ieeexplore.ieee.org/document/7874526/
https://ieeexplore.ieee.org/document/7874526/
https://doi.org/10.1109/INDUSCON.2016.7874526
https://ieeexplore.ieee.org/author/38232621500
https://ieeexplore.ieee.org/author/37086049009
https://ieeexplore.ieee.org/document/8938808/
https://ieeexplore.ieee.org/document/8938808/
https://ieeexplore.ieee.org/document/8938808/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361
https://doi.org/10.1109/JSEN.2019.2961380
https://ieeexplore.ieee.org/document/8062672/
https://doi.org/10.1109/CCTA.2017.8062672
http://library.lol/main/4834AF3C3D95473619AB9C1897BB0611
http://library.lol/main/4834AF3C3D95473619AB9C1897BB0611
https://doi.org/10.1016/j.jsv.2015.10.029
https://doi.org/10.1007/s40435-018-0482-3
https://doi.org/10.1007/BF01262965
https://doi.org/10.1109/72.377975


extension of PID control. IEEE Trans. Robot, 26(4): 670-

683. https://doi.org/10.1109/TRO.2010.2051188

[38] Kashiri, N., Tsagarakis, N.G., Van Damme, M.,

Vanderborght, B., Caldwell, D.G. (2016). Proxy-based

sliding mode control of compliant joint manipulators.

In: Filipe, J., Gusikhin, O., Madani, K., Sasiadek, J. (eds)

Informatics in Control, Automation and Robotics.

Lecture Notes in Electrical Engineering, vol 370.

Springer, Cham. https://doi.org/10.1007/978-3-319-

26453-0_14

[39] Kashiri, N., Lee, J., Tsagarakis, N.G., Van Damme, M.,

Vanderborght, B., Caldwell, D.G. (2016). Proxy-based

position control of manipulators with passive compliant

actuators: stability analysis and experiments. Robotics

and Autonomous Systems, 75: 398-408.

https://doi.org/10.1016/j.robot.2015.09.003

[40] Van Damme, M., Vanderborght, B., Verrelst, B., Van

Ham, R., Daerden, F., Lefeber, D. (2009). Proxy-based

sliding mode control of a planar pneumatic manipulator.

The International Journal of Robotics Research, 28(2):

266-284. https://doi.org/10.1177/0278364908095842

[41] Ding, G., Huang, J., Hu, B., Guan, Z. (2017). Proxy-

based sliding mode stabilization of a class of second-

order nonlinear system. 2017 11th Asian Control

Conference (ASCC), Gold Coast, QLD, pp. 2917-2922.

https://doi.org/10.1109/ASCC.2017.8287641

[42] Wah, N., Aung, M.T.S. (2017). Proxy based sliding

mode control augmented with friction compensator for

use in 1-DOF freehand ultrasound probe. IECON 2017 -

43rd Annual Conference of the IEEE Industrial

Electronics Society, Beijing, 2017, pp. 2911-2916.

https://doi.org/10.1109/IECON.2017.8216491

[43] Gong, X., Sun, L., Liu, J. (2019). Proxy based sliding

mode control for series elastic actuator based on

algebraic identification and motion planning. Chinese

Control and Decision Conference (CCDC), Nanchang,

China, pp. 863-868.

https://doi.org/10.1109/CCDC.2019.8832935

[44] Zhang, W., Meng, G., Li, H. (2006). Adaptive vibration

control of micro-cantilever beam with piezoelectric

actuator in MEMS. The International Journal of

Advanced Manufacturing Technology, 28: 321-327.

https://doi.org/10.1007/s00170-004-2363-5

[45] Shaba, A.A. (1996). Vibration of Continuous and

Discrete Systems. Springer-Verlag New York, Inc.

[46] Campbell, S.L., Mayer, C.D. (2009). Generalized

Inverses of Linear Transformations. SIAM.

[47] Yu, W., Li, X., Irwin, G.W. (2008). Stable anti-swing

control for an overhead crane with velocity estimation

and fuzzy compensation. In: Lowen, R., Verschoren, A.

(eds.), Foundations of Generic Optimization,

Applications of Fuzzy Control, Genetic Algorithms and

Neural Networks, 2: 223-240.

https://doi.org/10.1007/978-1-4020-6668-9_6

[48] Ioannou, P., Fidan, B. (2006). Adaptive Control Tutorial.

SIAM. https://doi.org/10.1137/1.9780898718652 

NOMENCLATURE 

Ab Cross-sectional area of beam, 𝑚2

Eb Young’s modulus of beam, 𝑁/𝑚2

Ep Young’s modulus of piezo-material, 𝑁/𝑚2

f(x,t) Excitation force, 𝑁 

𝐻(.) Heaviside step function 

Ib Moment of inertia of beam, 𝑘𝑔/𝑚3

lb Length of beam, m 

Mp Piezo-moment per unit length, 𝑁.𝑚/𝑚  

N Number of mode shapes 

N𝑎 Number of piezo-actuator 

Ns Number of piezo-sensor 

tb Thickness of beam cross-section, m 

tp Thickness of piezo cross-section, m 

𝑣𝑎(𝑡) Voltage of piezo-actuator, volt 

wb Width of beam cross-section, m 

wp Width of piezo cross-section, m 

𝑥(.) Location of piezo-actuators, m 

y Deflection of beam, 𝑚 

C ∈ 𝑅𝑁×𝑁, damping matrix, N.s/m

e(.) ∈ 𝑅𝑁, position error, m

g ∈ 𝑅𝑁, excitation force vector, N

k ∈ 𝑅𝑁×𝑁, stiffness matrix, N/m

𝐾𝑑 ∈ 𝑅𝑁×𝑁, derivative gain matrix

𝐾𝜒 ∈ 𝑅𝑁×𝑁, proportional gain matrix

M ∈ 𝑅𝑁×𝑁, mass matrix, kg

q Modal displacement vector, m 

Q ∈ RNβ×Nβ, adaptation matrix

W ∈ RNβ×N, weighting matrix

u ∈ 𝑅𝑁, input vector, N

vs ∈ 𝑅𝑁𝑠  the piezo-sensor voltage vector, volt

Greek symbols 

𝜌𝑏 Density of beam, 𝑘𝑔 𝑚3⁄
𝛽 Number of basis function terms 

𝜙 (𝑥) Mode shape of beam 

𝜎(.) ∈ 𝑅𝑁, sliding surface vector, m

𝛼 ∈ 𝑅𝑁𝑠×𝑁, sensor gain matrix, m/volt

𝜇 ∈ 𝑅𝑁×𝑁𝑎 , input coefficient matrix, N/volt

𝜉 ∈ 𝑅𝑁, a lumped uncertain vector

𝜑 ∈ 𝑅𝑁𝛽, basis function vector

𝜒 ∈ 𝑅𝑁, proxy position vector, m

Subscripts 

b beam 

p Piezo-material 

834

https://www.sciencedirect.com/science/article/abs/pii/S0921889015001918#!
https://doi.org/10.1016/j.robot.2015.09.003
https://doi.org/10.1177%2F0278364908095842
https://doi.org/10.1007/s00170-004-2363-5
https://doi.org/10.1137/1.9780898718652



