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 Despite the unique capabilities of hyperspectral images for classification tasks, handling the 

high dimension of these data is challenging. Therefore, dimension reduction algorithms have 

been proposed to solve this challenge. In this paper, an unsupervised Feature Selection (FS) 

algorithm was proposed for hyperspectral image classification. First, the entropy values of 

hyperspectral bands were employed to identify and remove noisy bands. Afterward, the 

Structural Similarity (SSIM) index and the k-means clustering algorithm were combined to 

select a few representative bands. Subsequently, the selected bands were injected into a 

supervised classifier, and the obtained Overall Accuracy (OA) and Kappa Coefficient (KC) 

were used to evaluate the performance of the proposed method. Finally, the results were 

compared with the ones achieved from other well-known and state-of-the-art FS approaches. 

The results revealed that the proposed method outperformed other FS algorithms. 

Furthermore, the proposed FS algorithm obtained equal or higher OA and KC in comparison 

with the case of employing all hyperspectral bands. Additionally, a stability analysis step 

was performed to investigate the consistency of the proposed method. The results suggest 

the potential of the FS approach for hyperspectral image classification. 
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1. INTRODUCTION 

 

Earth Observation (EO) imagery enabled the acquisition of 

valuable information from the Earth’s surface. Consequently, 

EO images have been used in a wide range of applications, 

including land cover mapping [1, 2], surface studies [3, 4], and 

disaster management [5]. Through all EO data sources, 

hyperspectral images are a rich source of data due to their 

capability of recording the Earth’s surface in hundreds of 

bands. Therefore, hyperspectral data were employed for 

detailed and precise investigations in many fields [6, 7].  

Despite the unique capabilities of hyperspectral data, 

handling their high dimension possess specific difficulties. In 

particular, employing hyperspectral data for classification 

purposes increase the computational complexity and may 

reduce the classifier performance [8, 9]. Consequently, a 

preprocessing algorithm for dimension reduction is inevitable. 

Additionally, dimension reduction algorithms decrease the 

computational burden while can improve the classification 

accuracy [10-12]. These reasons became desirable motivations 

for scholars to develop various dimension reduction 

algorithms. Generally, dimension reduction methods are 

categorized into two groups of Feature Selection (FS) and 

Feature Extraction (FE), both in supervised and unsupervised 

manners [12]. FE algorithms aim at extracting informative 

features by transforming data into a new dimensional space, 

while FS methods attempt to select suitable features that 

provide discriminative information. Hence, FS methods can 

retain the physical meaning of the original data [13]. 

Various theoretical aspects were considered to develop FS 

algorithms to handle the high dimensional data for 

classification purposes. For instance, Rashwan and Dobigeon 

[14] proposed an unsupervised FS method based on Split-and-

Merge (SM) concept in order to classify hyperspectral images. 

They split the adjacent features without altering their physical 

characteristics to provide relevant spectral sub-features. 

Afterward, the highly correlated features were successively 

identified and averaged to produce a dataset with a lower 

dimension. Additionally, mutual information was applied to 

estimate Maximal Statistical Dependency (MSD) between 

features [15]. The MSD first derived equivalent named 

Minimal-Redundancy-Maximal-Relevance (mRMR) criterion 

was developed to resolve the complexity of MSD 

computations. Subsequently, the mRMR and a sophisticated 

search method were integrated for FS. Moreover, Liu and 

Zhang [16] developed an unsupervised filter-type FS 

algorithm called Sparsity Score (SS). This method attempted 

to choose discriminative features by preserving a pre-defined 

graph structure through an ℓ1-norm criterion. The ℓ1-norm, 

robust to data noises, was applied to determine the affinity 

weight matrix of the graph adjacency structure. Likewise, the 

Infinite Latent FS (ILFS) was developed by applying a 

probabilistic latent graph-based approach [17]. This method 

used a ranking strategy by considering all possible subset of 

features as graph paths through an analytical procedure. 

Moreover, the ReliefF algorithm, a multi-class extent of Relief, 

was proposed to identify conditional dependencies of features 

to estimate their quality for classification purposes [18]. This 

approach utilized training samples to assess the contribution 

of each feature for sample separation by employing a K-

Nearest Neighbor (KNN) strategy. Finally, the features with a 

high separation rate were determined as informative ones. 
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Previous FS methods employed similarity measures from 

information theory or statistics (e.g., correlation, mutual 

information). It is worth noting that these measures treat 

images as signals, thus disrupting the spatial structure when 

computing the similarity values. Therefore, in this study, the 

Structural Similarity (SSIM) index from image processing was 

applied to propose an unsupervised FS approach. The intention 

of employing the SSIM index was the capability of measuring 

the similarity of two bands locally while preserving the 2D 

structure [19]. This comes into attention since the spatially 

proximate pixels are dependent and carry critical information, 

making the SSIM robust for similarity investigations [19]. In 

this regard, first, the entropy value of each hyperspectral band 

was used to identify and remove noisy bands. Afterward, the 

SSIM index was combined with the k-means algorithm to 

select a few representative bands that can obtain high overall 

accuracy. It should be pointed out that only a few bands were 

selected to assess the effectiveness of the proposed method; 

because the dominance of an FS method can be properly 

evaluated when the number of selected bands is small and the 

classification accuracy is satisfying [20]. In other words, FS 

methods that select a few informative bands while achieving 

satisfactory performance are practically more appealing, as 

they improve the computational efficacy and reduce the 

storage burden [20]. 

Finally, the performance of the proposed method was 

compared with the other well-known and state-of-the-art FS 

algorithms. Supervised methods of mRMR, ILFS, ReliefF, in 

addition to unsupervised methods of SS and SM, were 

employed for comparison. The evaluation was conducted 

based on the Overall Accuracy (OA) and Kappa Coefficient 

(KC) of the Support Vector Machine (SVM) classifier using 

two benchmark hyperspectral datasets. Moreover, as the 

collection of reference samples are costly and challenging, a 

small number of training samples were utilized to investigate 

whether the selected bands can lead to acceptable 

classification results when only a few samples are available. 

 

 

2. METHODOLOGY 
 

The proposed method comprises two steps of noisy bands 

removal and informative bands selection, and Figure 1 shows 

the workflow of the proposed FS algorithm. 

In the first step, the entropy value of each hyperspectral 

band was calculated based on Eq. (1): 

 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑏𝑖) = −∑𝑝(𝑏𝑖) log p(𝑏𝑖) (1) 

 

where, bi and p(bi) are the ith band of the hyperspectral data and 

probability density function (PDF) of bi, respectively. When 

working with images, the ratio of the image histogram by the 

total number of pixels is considered as the PDF. The entropy 

value was recognized as a measure of randomness [21]. 

Accordingly, it was employed as a criterion to investigate the 

randomness of an image [22]. Therefore, this measure can be 

utilized to separate noisy bands of the hyperspectral data since 

their degree of randomness is different in comparison with 

pure bands. To this end, the entropy values of hyperspectral 

bands were applied to a Normal Probability Plot (NPP) 

inspired workflow to determine the noisy bands. The NPP is a 

statistical approach that enables the identification of outliers 

(i.e., noisy bands) from pure data [23]. Since the hyperspectral 

observations follow normality, it was presumed that their 

entropy values should follow normality [24]. The cumulative 

probabilities and their corresponding normal scores were 

computed to produce an NPP. Finally, instead of using a 

theoretical normal distribution, a Normal Probability 

Distribution (NPD) was fitted to the entropy values and their 

corresponding normal scores. This modification facilitated the 

determination of noisy bands. In fact, the fitted NPD would be 

a straight line, and the disparity from this line illustrates the 

departure of an entropy value from normality. 

 

 
 

Figure 1. Flowchart of the proposed method for 

hyperspectral band selection and classification 

 

After removing noisy bands, the SSIM index was applied to 

measure the similarity of the remaining hyperspectral bands, 

resulting in a similarity matrix. The similarity matrix is dd 

(d is the number of remaining bands) symmetric matrix 

containing the pair-wise SSIM values of hyperspectral bands. 

The SSIM approaches one when two bands are the same. In 

contrast, the SSIM approaches zero when two bands are 

dissimilar. SSIM index comprises three elements, as shown in 

Eq. (2): 

 

𝑆𝑆𝐼𝑀(𝑏𝑖 , 𝑏𝑗) = [𝑙(𝑏𝑖 , 𝑏𝑗)]
𝛼 . [𝑐(𝑏𝑖 , 𝑏𝑗)]

𝛽
. [𝑠(𝑏𝑖 , 𝑏𝑗)]

𝛾
 (2) 

 

where, l is the luminance (see Eq. (3)), c is the contrast (see 

Eq. (4)), and 𝑠 is the structural similarity (see Eq. (5)). α, β and 

γ are the adjusting parameters that are used to define the 

relative importance of each element. In this study, all adjusting 

parameters were set the same to exploit the potential of three 

elements equally. 

 

𝑙(𝑏𝑖 , 𝑏𝑗) =
2𝜇𝑏𝑖𝜇𝑏𝑗 + 𝐶1

𝜇𝑏𝑖
2 + 𝜇𝑏𝑗

2 + 𝐶1
 (3) 

 

𝑐(𝑏𝑖 , 𝑏𝑗) =
2𝜎𝑏𝑖𝜎𝑏𝑗 + 𝐶2

𝜎𝑏𝑖
2 + 𝜎𝑏𝑗

2 + 𝐶2
 (4) 

 

𝑠(𝑏𝑖 , 𝑏𝑗) =
𝜎𝑏𝑖𝑏𝑗 + 𝐶3

𝜎𝑏𝑖𝜎𝑏𝑗 + 𝐶3
 (5) 
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where, μb and σb are the mean intensity and standard deviation 

of intensity values of the corresponding bands, and 𝜎𝑏𝑖𝑏𝑗 is the 

covariance value between ith and jth bands. C1, C2 and C3 are 

the constant values that were used to avoid instability in the 

calculation of each component. 

The advantage of the SSIM index compared to other 

similarity indices is that it was developed in a 2D approach. In 

other words, the SSIM index measures the similarity of two 

bands locally and preserve the 2D image structure [19], 

whereas other similarity measures (e.g., correlation and 

mutual information) treat images as signals and disrupt the 

image structure, which carries critical information. 

Furthermore, the SSIM index is relatively uncomplicated to 

implement while providing superior performance in 

comparison with other similarity indices [25, 26]. 

After calculating the similarity matrix, the k-means 

clustering algorithm was applied to cluster hyperspectral 

bands into N user-defined dissimilar sub-bands. Afterward, 

the cumulative SSIM value of each band within each sub-band 

was calculated. Finally, a band with the highest cumulative 

SSIM value was determined as the representative candidate 

from each sub-band. These steps resulted in a dataset with a 

lower dimension by preserving and removing discriminative 

and redundant bands, respectively. The computation of the 

cumulative SSIM value enabled the selection of a band that 

could be a suitable representative of the corresponding sub-

band since it is highly similar to other bands. 

 

 

3. DATA DESCRIPTION 

 

In this study, two well-known benchmark hyperspectral 

datasets were used to evaluate the performance of the proposed 

FS algorithm. Both datasets were captured by the Reflective 

Optics System Imaging Spectrometer (ROSIS) sensor in a 1.3 

m spatial resolution. The first dataset was acquired in 102 

bands over Pavia Centre, Italy, and the second dataset was 

captured in 103 bands over Pavia University, Italy. The former 

has a dimension of 1096715 pixels, and the latter has a size 

of 610340 pixels. Both datasets, along with their Ground 

Truth (GT) data, in nine classes, are shown in Figure 2. Two 

training sets comprising 20 (set 1) and 25 (set 2) samples per 

class were randomly collected from GT data for each dataset. 

Likewise, one independent test set containing 300 samples per 

class was selected for statistical assessment. The intention of 

employing a small number of training samples was to 

investigate the robustness of the proposed method when only 

a few samples are available. 

 

 
 

Figure 2. Hyperspectral datasets of Pavia University (a) and Pavia Centre (b) with their corresponding GT data 

 

 

4. EXPERIMENTAL RESULTS 

 

The proposed noisy band identification result, along with a 

sample noisy and pure band are shown in Figure 3. Figure 3(a) 

shows that most of the entropy values are closely at the sides 

of the fitted NPD, and only a few values are far from this line. 

Hyperspectral bands which their entropy values had a higher 

departure from the fitted NPD were identified as noisy bands 

and were removed for further steps. Furthermore, Figure 3(b) 

presents a sample noisy band in which the undesirable 

variation of the digital numbers made this band less 

informative. Its entropy value was more distant from the fitted 

NPD in comparison with other pure bands (e.g., Figure 3(c)). 

Moreover, a visual inspection was performed to ensure the 

correctness of the proposed noisy band identification approach. 

In this regard, all identified noisy bands were visually checked, 

and it was observed that the NPP-inspired workflow was 

correctly able to determine noisy bands. 

After removing noisy bands, the proposed FS approach was 

applied to the remaining hyperspectral bands. Then, the 

selected bands were injected into the supervised classifier of 

SVM with a radial basis kernel function [27]. The obtained OA 

and KC were computed to evaluate the performance of 

different FS methods.  

Figure 4 shows the achieved OAs of the Pavia Centre 

dataset when the selected features from five different FS 

algorithms are employed for classification. It is apparent that 

the proposed unsupervised FS method outperformed other 

supervised and unsupervised FS algorithms in nearly all steps. 

Furthermore, FS algorithms of SS, ReliefF, and ILFS were 

found to have weak performance, especially when a smaller 

number of training samples were employed. Moreover, the 

proposed method achieved higher classification accuracy in 

comparison with the case of exploiting all hyperspectral bands, 

indicating the capability of the proposed method to select 

discriminative bands. Likewise, the obtained OAs for Pavia 

University are presented in Figure 5. Figure 5 conveys that the 

proposed method not only achieved higher classification 

accuracy than other FS methods but also was able to attain 

better or similar results compared with the case of using all 

bands. The results illustrate that ReliefF (see Figure 5(a)) and 

ILFS (see Figure 5(b)) performed weakly in comparison with 

other methods. This performance may lie in the inherent 

characteristics of these supervised methods that require 

training samples, and they performed unstable when a small 

number of training samples were employed. Therefore, it can 

be stated that these methods are dependent on the number of 

training samples to be capable of selecting discriminative 

features. 
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The obtained results demonstrate the potential of the 

proposed algorithm for hyperspectral band selection and 

classification. Moreover, the proposed method proved to be 

more stable as the achieved OAs increased and became 

consistent in further steps, whereas other FS methods (e.g., SS, 

ILFS, and ReliefF) experienced several fluctuations, making 

them less stable. Additionally, Figures 4 and 5 illustrate a 

relatively similar behavior between the proposed and the 

mRMR FS methods. However, it should be noted that in 

addition to obtaining higher OA, the proposed method is an 

unsupervised FS algorithm, while the mRMR is a supervised 

approach. Therefore, the proposed approach is applicable 

when no reference samples are available. Furthermore, the 

proposed method effectively selected a few bands that 

achieved high OA and also reduced the computational 

complexity for training and applying the classifier, especially 

in the case of employing a small number of training samples 

[20].

 

 
 

Figure 3. Proposed NPP-inspired workflow for noisy band identification (a), sample noisy band (b), and sample pure band (c) for 

the Pavia Centre dataset 

 

 
 

Figure 4. Obtained overall accuracies of different FS algorithms and all hyperspectral bands of the Pavia Centre dataset using 

training set 1 (a) and set 2 (b) 

 

 
 

Figure 5. Obtained overall accuracies of different FS algorithms and all hyperspectral bands of the Pavia University dataset using 

training set 1 (a) and set 2 (b) 
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Table 1. Best-obtained overall accuracies and kappa coefficients of different FS algorithms and all hyperspectral bands 

 
Dataset Training set Quantity measure All ILFS SS mRMR ReliefF SM Proposed 

Pavia Centre 

Set 1 
OA (%) 89.33 54.59 67.96 87.81 84.55 86.11 90.00 

KC 0.880 0.489 0.639 0.869 0.826 0.843 0.887 

Set 2 
OA (%) 91.40 87.29 78.44 89.77 53.62 89.74 91.37 

KC 0.903 0.857 0.671 0.885 0.478 0.884 0.902 

Pavia University 

Set 1 
OA (%) 70.96 70.55 70.81 70.88 54.85 69.51 72.85 

KC 0.673 0.668 0.671 0.672 0.491 0.657 0.694 

Set 2 
OA (%) 74.03 72.92 73.07 73.81 54.14 73.25 74.37 

KC 0.707 0.695 0.697 0.705 0.482 0.69 0.711 

 

 
 

Figure 6. Box plots of the obtained overall accuracies from 20 repeating times of each step for Pavia Centre (a) and Pavia 

University (b) 

 

Table 2. Standard deviation values of obtained overall accuracies from 20 repeating times 

 
Number of bands 1 2 3 4 5 6 7 8 9 10 

Pavia Centre 

SD (%) 0.00 0.15 0.03 0.17 0.21 0.29 0.30 0.28 0.19 0.18 

Pavia University 

SD (%) 0.00 0.00 0.03 0.09 0.24 0.40 0.28 0.57 0.52 0.53 

 

The best-obtained OAs of the mentioned Fs methods for 

Pavia Centre and Pavia University are provided in Table 1. 

The proposed FS method improved the classification results 

between 2.5% (1.7%) and 64.8% (70.4%) employing training 

set 1 (2) for the Pavia Centre dataset. Likewise, the 

classification results of Pavia University were refined between 

2.6% (0.07%) and 32.8% (37.3%) using training set 1 (2) when 

the proposed FS approach was applied. Moreover, the 

proposed FS approach was capable of achieving higher OA 

and KC in comparison to the SM FS algorithm. It should be 

noted that the results of the SM algorithm are only provided in 

Table 1, as this method only returns a set of sub-band. 

Additionally, Table 1 indicates that the proposed FS algorithm 

obtained better or similar OA and KC in comparison with 

using all hyperspectral bands, while approximately 10% of 

bands were employed for classification. 

Since the proposed method employed a clustering algorithm, 

a stability analysis was essential to assess the consistency of 

the selected features. This is rooted in the inherent 

characteristics of the k-means algorithm in which the final 

result is dependent on initial seeds. In other words, as the 

initial seeds change, the final clustering result change. In this 

regard, each step was repeated 20 times, and the obtained OAs 

were used to generate box plots. Figure 6 shows the stability 

analysis of the proposed FS algorithm based on the achieved 

OAs. The interquartile ranges (the difference between the first 

and the third quartiles) of almost all steps were lower than 1%, 

illustrating a low variability in obtained OA values [28]. The 

compactness of the interquartile ranges suggests the 

consistency of the proposed FS method. Furthermore, the 

whisker ranges also indicate the same variation, as they were 

lower than 2% in all steps. Moreover, the Standard Deviation 

(SD) of obtained OAs were computed (see Table 2). From 

Table 2, it is inferred that the proposed FS algorithm acquired 

reasonable stability in all steps since the highest SD values 

were 0.30% and 0.57% for Pavia Centre and Pavia University, 

respectively.  

 

 

5. CONCLUSION 

 

This study presents an unsupervised FS method for 

hyperspectral band selection. Entropy and the SSIM index 

were employed to remove noisy bands and select informative 

bands, respectively. The manual assessment revealed that the 

noisy band removal procedure successfully determined the 

noisy bands. Moreover, the proposed approach efficiently 

selects discriminative bands by removing redundant and 

preserving suitable bands. The selected bands were applied to 

an SVM classifier, and the results were evaluated based on OA 

and KC criteria. The results indicated that the proposed FS 

algorithm was able to improve the classification accuracy of 
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two benchmark hyperspectral images in comparison with other 

well-known and state-of-the-art FS methods. Furthermore, the 

effectiveness of the proposed method was proved as it was 

capable of selecting a few bands while resulting in equal or 

higher classification accuracy in comparison with exploiting 

all hyperspectral bands. Finally, a stability analysis was 

performed to investigate the consistency of the proposed FS 

method, which confirmed a satisfactory stable manner. The 

proposed method can be efficiently applied to other 

hyperspectral images to select a few discriminative bands, 

which can result in acceptable OA, especially when a small 

number of training samples are available. 
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