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 In this paper, a novel feature extraction technique called SuperMNF is proposed, which is 

an extension of the minimum noise fraction (MNF) transformation. In SuperMNF, each 

superpixel has its own transformation matrix and MNF transformation is performed on each 

superpixel individually. The basic idea behind the SuperMNF is that each superpixel 

contains its specific signal and noise covariance matrices which are different from the 

adjacent superpixels. The extracted features, owning spatial-spectral content and provided 

in the lower dimension, are classified by maximum likelihood classifier and support vector 

machines. Experiments that are conducted on two real hyperspectral images, named Indian 

Pines and Pavia University, demonstrate the efficiency of SuperMNF since it yielded more 

promising results than some other feature extraction methods (MNF, PCA, SuperPCA, 

KPCA, and MMP). 
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1. INTRODUCTION 

 

The high dimensionality of hyperspectral data and the 

limited size of training samples make the supervised 

classification of hyperspectral images challenging. The so-

called Hughes phenomenon states that this high 

dimensionality will not necessarily lead to better performance 

of classification algorithms. To alleviate these challenges, 

commonly, dimensionality reduction (DR) techniques are 

used that are divided into two major groups; feature selection 

and feature extraction. In feature extraction (FE) methods that 

are the subject of this paper, original spectral bands are 

transformed into a new low dimensional space. FE methods 

are divided into supervised or unsupervised techniques based 

on whether the training samples are used. 

Linear discriminant analysis (LDA) [1], non-parametric 

weighted feature extraction (NWFE) [2], clustering-based 

feature extraction (CBFE) [3], and local fisher discriminant 

analysis (LFDA) [4] are perhaps the most used supervised 

methods. Generally, the performance of supervised methods 

depends on the quality and numbers of training samples. On 

the other hand, unsupervised methods do not require any 

training samples.  

Principal components analysis (PCA) is a simple 

unsupervised FE method that is used in many fields of remote 

sensing image analysis. PCA transforms the original spectral 

feature of HSI into a new space in which the extracted features 

are sorted based on their variances, and the most informative 

features lie on the first few components. In recent years, some 

spatial-spectral classification methods are proposed in 

literature based on the PCA technique. Residual deep PCA 

(RDPCA) that are proposed to combine Deep PCA with 

residual-based multi-scale feature extraction for HSI 

classification [5]. Gabor based random patches network is 

proposed for classification of hyperspectral image based on 

the idea of PCANet to extract the deep features [6]. The 

minimum noise fraction (MNF) method incorporates the noise 

covariance matrix in the process of FE, and final features are 

sorted based on the signal-to-noise ratio (SNR) [7, 8]. 

Different version of PCA method named, PCA and SPCA 

(Segmented-PCA), SSPCA (Spectrally SegmentedPCA), 

FPCA (Folded-PCA), KPCA (Kernel-PCA) and KECA 

(kernel Entropy Component Analysis) are compared with 

MNF transform [9] and final results shows the superiority of 

MNF transform in classification accuracy.  

In addition to mentioned information-based methods some 

other FE methods based on graph learning and manifold-

learning methods are proposed in literature. Local 

neighborhood structure preserving embedding (LNSPE) 

method is newly proposed method [10] the branch of graph-

based method which uses the scatter information and the dual 

graph structure to extract the new features. In the branch of 

manifold-based methods, locality preserving projection (LPP) 

[11] and its new version (TwoSP) [12] are proposed for 

classification of hyperspectral images. In addition to 

mentioned unsupervised methods, some semi-supervised 

methods are proposed in the literature, such as maximum 

margin projection (MMP) that utilizes both labelled and 

unlabelled samples [13].  

In contrast to the above-mentioned transformation-based 

methods in which whole pixels of HSI are transformed into 

new feature space via one transformation matrix, some pixel-

based unsupervised FE methods are proposed in the literature. 

As an example, the rational function curve fitting feature 

extraction method (RFCF) fitted a rational function to the 

spectral signature curve of each pixel, and its coefficients are 

regarded as the new extracted features [14]. Another example 

is spectral segmentation and integration (SSI) method based 

on PSO optimization [15]. In this method each spectral curve 

is spilited to segments based on PSO optimization and in each 

segment weighted mean operator is used to extract the new 

spectral feature.  
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As proved in literature, incorporating the spatial 

information can improve the HSI classification accuracy. 

Random patches network (RPNet) that is proposed by Xu et al. 

[16] is the multilayer deep model based on PCA transform for 

extracting the spatial-spectral HSI features. A novel hybrid 

neural network (HNN) for hyperspectral image classification 

method is proposed by Li et al. [17] that use a multi-branch 

architecture, deconvolution structure, batch normalization 

(BN) technique, and parametric rectified linear units (PReLU) 

to extract deep hyperspectral image features. 

Generally, the transformation matrices of traditional FE 

methods (such as PCA and MNF) is computed based on the 

statistics that are estimated from the entire image, so they 

cannot obtain the local characteristics of pixels in HSI. 

Recently some spatial-spectral dimensionality reduction 

methods such as Superpixel-based PCA (SuperPCA) proposed 

to address this issue [18]. Based on SuperPCA, it is proved that 

the transformation matrix of the PCA has a local characteristic. 

The basic idea behind SuperPCA is that different superpixels 

need different PCA transformation matrices. This concept is 

extended further [19] named band grouping SuperPCA 

(BG_SuperPCA) in which SuperPCA is used to extract the 

new features in each correlated band group, separately. A new 

method is proposed by Zhang et al. [20] in which a multiscale 

classifier system is designed based on Superpixel-based 

Kernel PCA. Another classification method [21] is proposed 

based on the superpixel pattern features that are extracted by 

PCA and kernel extreme learning machine (KELM). As one 

can see, superpixel-based dimensionality reduction of 

hyperspectral images is a hot topic in literature. 

Although SuperPCA outperforms the traditional PCA, it 

just attempts to provide local new features with maximum 

dispersion while the noise content is not taken into 

consideration. In this paper, we put forward the question that 

“Does it make sense to implement the traditional MNF on 

individual superpixels and how effective it could be in 

comparison to the traditional MNF and the SuperPCA 

methods?”. In other words, in this study, a novel method called 

Superpixel-based MNF (SuperMNF) is proposed in which 

extracted features of each superpixel are sorted based on SNR 

rather than variance (SuperPCA). 

In the next section, the concept of MNF transformation and 

entropy rate superpixel (ERS) generation method are reviewed 

as the background. It is followed by the introduction of 

SuperMNF. The next section deals with the experimental 

results, and the paper ends with the conclusions. 
 

 

2. BACKGROUND 

 

This section reviews the concept of MNF transformation 

and the entropy rate superpixel (ERS) generation method.  
 

2.1 MNF transform 
 

Given W∈RM×d as the transformation matrix, and X∈RM×N as 

the original spectral data matrix in which, M is the number of 

HSI bands, N is the number of HSI pixels, and d is the new 

dimension size of data. Extracted features matrix of MNF 𝑌 ∈
𝑅𝑑 × 𝑁 can be shown as (1):  

 

𝑌 = 𝑊𝑇  𝑋 (1) 
 

X as the original data matrix, herein an HSI, can be regarded 

as a signal part S and an additive noise part N (2): 

𝑋 = 𝑆 + 𝑁 (2) 

 

Therefore, the covariance matrix of X is the summation of 

signal and noise covariance matrices as follows:  

 

∑𝑋 = ∑𝑆 + ∑𝑁 (3) 

 

where, ∑S is the covariance of signal and ∑N is the covariance 

of noise. MNF, as a linear transformation, aims to provide new 

features (Y) in a way to be sorted according to their SNR. W 

can be obtained by solving the following problem [22]: 

 

𝑎𝑟𝑔𝑚𝑎𝑥𝑊  
𝑊𝑇  ∑𝑋𝑊

𝑊𝑇  ∑𝑁𝑊
− 1 (4) 

 

For that purpose, W must be made up of the eigenvectors 

associated with sorted eigenvalues of ∑𝑁
−1∑𝑋. To estimate the 

covariance of noise ∑N, minimum/maximum auto-correlation 

factor (MAF) [8] is used in this paper. This method consists of 

two stages. At the first stage, noise image is produced from 

each band of HSI based on formula (5): 
 

Noise image=𝑥(𝑖,𝑗,𝑘) − 𝑥(𝑖+∆1,𝑗+∆2,𝑘) (5) 
 

In (5) x(i,j,k) represents the kth spectral band of HSI image in 

which the row and column of pixels are shown by i and j, 

respectively. ∆1 and ∆2 are the spatial lags along each 

coordinate axes which are usually assumed to 1. After that, 

covariance of noise ∑𝑁 is estimated based on (6) [8]: 
 

∑𝑁 = 0.5 𝑐𝑜𝑣(𝑁𝑜𝑖𝑠𝑒 𝑖𝑚𝑎𝑔𝑒) (6) 
 

2.2 Entropy rate superpixel segmentation (ERS) 
 

ERS is the efficient graph-based method for implementing 

the superpixel segmentation. In this method, graph G= (V, E) 

is considered in which V and E represent the pixels and 

pairwise similarities, respectively. ERS aims at selecting a 

subset of edges A (A⊆ E) in a way so as to yield graph G= (V, 

A) containing the K sub-graphs. The objective function of 

ERS is as follows [23]:  
 

𝑚𝑎𝑥𝐴  𝐻(𝐴) + 𝜏 𝐵(𝐴)  𝑠. 𝑡. 𝐴 ⊆ 𝐸 (7) 
 

where, H(A) named entropy rate, B(A) is balancing term and 𝜏 

is the non-negative weight of balancing term. Entropy rate 

H(A) and balancing term B(A) are considered to create 

compact and homogeneous superpixels with similar sizes. 

Greedy algorithm is used to solve the (7). Given Q as the 1-

band superpixels are obtained based on formula (8) [18]: 
 

𝑄 =∪𝑛=1
𝑛 𝐾𝑛  𝑠. 𝑡.  𝐾𝑖 ∩ 𝐾𝑗 = ∅ for each i≠j (8) 

 

where, Kn representing nth superpixel. 

 

 

3. SUPERMNF 
 

The main critique of traditional MNF is that it considers 

global noise and signal covariance matrices for the whole 

image to estimate the transformation matrix W, while these 

matrices have local characteristics. In Figure 1, the global 

noise and signal covariance matrices that are estimated from 

entire image are shown beside two local ones, each of which 

estimated for a specific superpixel. 
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Figure 1. ∑X and ∑N of -a,b) the whole image- c,d) a specific super pixel- e,f) another superpixel 

 

 
 

Figure 2. Flowchart of SuperMNF feature extraction method 

 

The Figure 1 confirms the idea of SuperPCA states that 

signal covariance matrices (∑X) have local characteristics 

(Figure 1. b, d, f). As the new result this study found that noise 

covariance matrices have the local characteristics (Figure 1. a, 

c, e) same as signal covariance matrices, since there are 

significant differences between the matrices of different 

superpixels as well as the whole image. In this study, the 

SuperMNF method is proposed in that the transformation 

matrix (W) is computed for each superpixel individually. The 

resultant MNF transformation is also confined to those pixels 

of the corresponding superpixel. 

Figure 2 shows the flowchart of SuperMNF. According to 

Figure 2 SuperMNF method has the seven stages as below: 

 

1) With the similar idea of SuperPCA that uses the 

traditional PCA as the input of ERS, in SuperMNF for 

providing the single-band input of ERS, traditional MNF 

is performed on original HSI to extract the first MNF 

component with the large value of SNR. 

2) ERS superpixel method with user-defined number of 

superpixels is then performed on first MNF component to 

provide the segmentation map. 

3) Noise images are estimated from original HSI based on (5) 

with spatial lags of 1. 

4) Extracted superpixels are overlaid on the original HSI and 

noise images to extract the 3D superpixels of original HSI 

images and noise images. 

5) Based on the results of 3D superpixels, local covariance 

matrices of signal (∑X) and noise ( ∑N
−1) are computed 

for each superpixel. 

6) Final transformation matrix of each superpixel (W) is 

computed based on eigenvectors of ∑N
−1∑X.  

7) For each pixel of HSI, corresponding superpixel is 

determined and the transformation matrix of that 

superpixel is performed (based on (1)) on the desired pixel 

to extract the final SuperMNF features of each pixel. 

 

Unlike the MNF transform in that ∑X and ∑N are computed 

based on the entire image, in SuperMNF Methods these 

matrices are estimated in each superpixel separately. 

Therefore, in SuperMNF estimated covariance matrices have 

local characteristics in that the information of a specific 

superpixel has no impact on another superpixel.  

4. EXPERIMENTAL RESULTS 

 

4.1 Data sets 

 

Indian Pines: Indian Pines scene is collected by AVIRIS 

airborne hyperspectral sensor in 224 spectral bands. It has 

145×145 pixels with a 20-meter spatial resolution. After 

discarding the noisy and water absorption bands, the 

remaining 204 spectral bands are used in analyses. 16 

agricultural classes are recognized in this image based on 

ground truth. Figure 3 shows the color composite of Indian 

Pines followed by its ground truth image [24]. 

 

 
a colour composite image              b ground truth image 

 

Figure 3. Indian Pines data set 

 

    
a colour composite image                 b ground truth image 

 

Figure 4. Pavia University data set 
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Pavia University: Pavia University hyperspectral image is 

gathered by ROSIS airborne hyperspectral sensor in 115 

spectral bands. It has 610×340 pixels with a 1.3-meter spatial 

resolution from an urban area. After removing the 12 noisy and 

water absorption bands, the remaining 103 bands are used in 

analyses. Figure 4 shows the color composite of Pavia 

University, followed by its ground truth image. 

 

4.2 Parameters analysis 

 

The number of superpixels is an important factor of 

SuperMNF, so in the first experiment, we study the effect of 

this parameter in the performance of SuperMNF. Different 

numbers of superpixels have been examined in this experiment. 

In each situation with the specific number of the superpixel, 1 

to 10 extracted features of SuperMNF are fed to maximum 

likelihood classifier (MLC), and the maximum of the overall 

accuracies in each case is reported in Figure 5 for both data 

sets. 

 

 
a 

 
b 

 

Figure 5. Profiles of the max overall accuracy of SuperMNF 

features- a) Indian Pines-b) Pavia University 

 

According to Figure 5, the optimum number of superpixel 

for Indian Pines and Pavia University are 34 and 11, 

respectively. The optimum number of superpixels is affected 

by the number, size, and spatial distribution of classes. Indian 

Pines image contains different crops in rather small spatial 

sizes and therefore, a higher number of superpixels is required 

to represent the local distribution of the scene. It should be 

noted that choosing the large numbers of superpixels may lead 

to near singular estimation of signal or/and noise covariance 

matrices (numbers of superpixels above 37 and 12 for Indian 

pines and Pavia University, respectively). As the rule of thumb, 

virtual dimensionality (VD) estimation with Harsanyi–

Farrand–Chang (HFC) Method [25] can be used to estimate 

the optimum number of superpixels in SuperMNF method 

(VD estimation with false alarm of 10−7  are 34 and 11 for 

Indian Pines and Pavia University, respectively). 

 

4.3 Comparison with some conventional FE methods 

 

To investigate the robustness of proposed method, for both 

data sets two sizes of training samples (15 and 30 samples in 

each class for Indian Pines, 15 and 45 samples in each class 

for Pavia University data set) are randomly chosen from 

ground truths for training the supervised classifiers, and 

remainder samples of ground truths are chosen as test samples 

for evaluating the classification accuracy. 

By considering the optimum numbers of superpixels for 

both data sets from previous sub-section (4.2), different 

numbers of extracted features (from 1 to 10) of SuperMNF and 

other five FE methods (traditional MNF, PCA, KPCA, 

SuperPCA, and MMP) are classified via maximum likelihood 

and support vector machines (SVM). Parameters of SVM with 

radial basis functions are set via cross-validation. 

The obtained results of overall accuracies are shown in 

Figure 6 for Indian Pines and Pavia University, respectively. 

As a result, SuperMNF is superior in comparison to other FE 

methods. This superiority can be traced to the ability of 

SuperMNF to extract the local features that are derived from 

local transformation matrices. 

In general, based on the experiments it can be concluded 

that the SuperPCA is the most important competitor method as 

it has the nearer results to SuperMNF than other methods. The 

highest difference between the results of SuperPCA and 

SuperMNF is achieved in the Pavia University data set when 

we used the MLC as the classifier and 15 training samples. 

From this result, we can conclude that the proposed method 

can be successfully used in the challenging urban areas even 

when very few training samples are available for the 

classification of HSI.  

Achieved highest overall accuracies (OA) and highest 

average accuracies (AA) of each feature extraction method for 

both data sets are shown in Table 1. Due to the high 

dimensionality of original data and few numbers of training 

samples, MLC failed to estimate its parameter that is shown 

by “NAN” in this Table 1. Based on Table 1, it is clear that the 

SuperMNF method is superior against all other FE methods in 

the term of OA and AA accuracy measures. In comparison to 

SuperPCA, commonly, SuperMNF achieves the highest 

accuracies in the fewer number of features which can decrease 

the storage for saving the HSI image. Another important result 

from Table 1 is that the mean accuracy of classification in the 

SuperMNF method in Indian pines (agricultural areas) is 

higher than the Pavia University (urban areas). In other words, 

it seems that the proposed SuperMNF has a better performance 

in agricultural areas than urban areas. 
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Table 1. Classification accuracies of different FE methods in different data sets maximum OA [maximum AA](# of features) 

 
Classifiers MLC classifier SVM classifier 

Data sets Indian Pines Pavia University Indian Pines Pavia University 

# of training samples 15 30 15 45 15 30 15 45 

M
et

h
o
d

s 

Original 

Spectral 
NAN NAN NAN NAN 

63.68 

[74.5] 

(200) 

67 [66.27] 

(200) 

72.93 

[82.57] 

(103) 

85.98 

[88.36] 

(103) 

SuperMNF 

89.47 

[89.57] 

(9) 

90.77 

[82.17] 

(9) 

82.12 

[86.87] 

(6) 

89.69 

[91.81] 

(6) 

91.63 

[94.4] 

(8) 

94.13 

[84.3] 

(7) 

82.40 

[88.33] 

(3) 

94.01 

[95.5] 

(5) 

SuperPCA 

85.68 

[89.14] 

(10) 

86.77 

[79.29] 

(7) 

70.11 

[77.23] 

(6) 

87.61 

[89.11] 

(10) 

89.02 

[92.37] 

(8) 

86.77 

[80.49] 

(7) 

80.99 [87] 

(9) 

92.89 

[94.24] 

(10) 

MNF 

67.16 

[79.95] 

(7) 

71.86 

[70.51] 

(8) 

81.34 

[84.79] 

(4) 

87.16 

[88.76] 

(6) 

72.77 

[84.45] 

(8) 

77.16 

[74.4] 

(8) 

79.72 

[86.7] 

(9) 

86.4 

[88.71] 

(9) 

PCA 
58.4 [65.4] 

(6) 

59.35 

[57.17] 

(5) 

77.02 

[81.61] 

(7) 

88.22 

[88.95] 

(7) 

56.07 

[68.2] 

(5) 

58.5 [58.3] 

(5) 

79.41 

[85.5] 

(6) 

87.14 

[89.61] 

(8) 

KPCA 

54.71 

[59.23] 

(7) 

56.08 

[55.09] 

(10) 

65.90 [78] 

(8) 

60.10 

[78.63] 

(10) 

52.77 

[66.09] 

(10) 

57.5 

[58.83] 

(10) 

69.36 

[78.67] 

(10) 

75.59 

[83.12] 

(10) 

MMP 

52.12 

[56.88] 

(7) 

55.52 

[52.49] 

(8) 

78.42 

[77.52] 

(9) 

88.08 

[88.2] 

(9) 

50.69 

[62.58] 

(10) 

56.18 

[57.36] 

(10) 

79.11 

[86.6] 

(10) 

86.22 

[87.8] 

(10) 

 

 

MLC accuracies of Indian Pines for 15 training samples 

 

SVM accuracies of Indian Pines for 15 training samples 

 

MLC accuracies of Indian Pines for 30 training samples 

 

SVM accuracies of Indian Pines for 30 training samples 

 

MLC accuracies of Pavia University for 15 training 

samples 

 

SVM accuracies of Pavia University for 15 training 

samples 
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MLC accuracies of Pavia University for 45 training 

samples 

 

SVM accuracies of Pavia University for 45 training 

samples 

 

Figure 6. Profiles of the overall accuracy of 1 to 10 

SuperMNF features against other FE 

 

To visually comparison of classification results which are 

achieved in each method, ground truth and MLC classification 

maps of each method for the both data set are shown in Figure 

7 and Figure 8 when 15 training samples are available. Based 

on these images, result of best classification method is as near 

as ground truth in each data set. As can understand from the 

figures, the SuperMNF method has produced smoother 

classification maps in comparison to other FE methods.  

 

 
 

Figure 7. Indian Pines data set- Classified Maps of MLC in 

different FE methods- a) Ground truth – b) SuperMNF – c) 

SuperPCA – d) MNF – e) PCA – f) KPCA – g) MMP 

 
 

Figure 8. Pavia University data set-Classified Maps of MLC 

in different FE methods- a) Ground truth – b) SuperMNF – c) 

SuperPCA – d) MNF – e) PCA – f) KPCA – g) MMP 

 

Table 2. Processing times in second and percent for different 

FE methods 

 
SuperMNF SuperPCA MNF PCA KPCA MMP 

2.5 1.17 1.11 0.5 121 2.72 

ref 46.7% 44.4% 20% 4840% 108.8% 

 

Table 2 provides the spent processing times at the cores of 

each FE method in Indian Pines data set. All experiments are 

implemented in Matlab 2018b with a desktop computer with 

specifications of Intel(R) Core(TM) i5-6400 CPU and 8.00 GB 

RAM. 

Although the proposed SuperMNF is not superior in 

computational time aspects, its processing time is still in the 

competition with many other FE methods. Generally, the MNF 

method has more steps for extracting new features than PCA. 

These steps include noise image calculation and noise 

covariance estimation. As the result in general MNF is slower 

than PCA so SuperMNF is slower than SuperPCA. From the 

comparison of SuperMNF and MNF, it can understand that 

more processing time of SuperMNF is due to the superpixel 

segmentation stage and estimating the covariance of noise and 

its inverse in each superpixel. 

 

 

5. CONCLUSIONS 

 

In this paper, A new extension of classical MNF named 

SuperMNF is proposed in which local features are extracted 

by applying the classical MNF to each superpixel, individually. 

Extracted features are then classified via two classifiers, 

maximum likelihood (MLC) and support vector machines 

(SVM). Final classification accuracies results proved the 

superiority of SuperMNF in comparison to traditional MNF, 

PCA, KPCA, SuperPCA, and MMP. Based on our 

experimental results, we can summarize the achievements of 

paper in the following points: 

• Both Signal and Noise covariance matrices have local 

characteristics. 

• By considering the superpixel-based signal and noise 

covariance matrices in the SuperMNF method, the 

820



 

performance of classical Sorting the features based on 

SNR each superpixel is hugely better than the variance for 

HSI classification (superiority of SuperMNF against the 

SuperPCA). 

• Commonly, in comparison to other FE methods, fewer 

numbers of SuperMNF features are needed for the 

appropriate classification results. 

• Although in the aspect of processing time the SuperMNF 

is not superior, its computation time is still in the 

competition with many other FE methods. 

In the future study, we will design the multiple classifier 

systems based on multiscale Super MNF is hugely improved. 
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