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The primary step in search of the gene prediction is an identification of the coding region 

from genomic DNA sequence. Gene structure in the case of a eukaryotic organism is 

composed of promoter, intron, start codon, exons, stop codon, etc. Splice site prediction, 

which separates the junction between exon and intron, though the sequence beside. The 

splice sites have huge preservation; however, the precision of the tool exhibits less than 

90 %. The main objective of this work to exhibits a hybrid technique that efficiently 

improves the existing gene recognition technique. Therefore, to enhance the identification 

of splice sites, the respective algorithm needs to be improved. Our proposed method, 

‘SpliceCombo’ involves three stages. At initial stage, which considers the principal 

Component Analysis, based on the feature extracted. In the intermediate stage, i.e., the 

second stage Case- Based Reasoning is done, i.e., feature selection. The third stage uses 

support vector machine based along with polynomial kernel function for final classification. 

In comparison with other methods, the proposed SpliceCombo model outperforms other 

prediction models with respect to prediction accuracies. Particularly for donor splice site 

the methodology exhibits sensitivity is 97.25 % accurate and specificity is 97.46 % accurate. 

For acceptor Splice Site the sensitivity is 96.51 % and Specificity is 94.48 % correct 
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1. INTRODUCTION

In the eukaryotes, it’s very challenging to predict exon-

intron structure in a sequence due to its complex structure and 

vast length. Research and analysis on the human genome show 

nearly 20,000–25,000 protein-coding gene exist [1]. There are 

nearly 100,000 genes in the human genome. Which indicates 

a huge number of genes are still unidentified [2-3]. Most of the 

computational techniques achieve better performance, but 

inherent legacy with few drawbacks [4]. There are four 

different nucleotides in the DNA sequence i.e., A, C, G and T, 

in which group with three nucleotides symbolizes codon [5]. 

The eukaryotic genes coding sequence is separated by non-

coding sequences, called as introns, which is absent in 

prokaryotes. An ORF is a DNA sequence commencing with a 

start codon (ATG) and terminating with the stop codon (TAA, 

TAG or TGA). The separating junction among the exon and 

intron is known as a donor splice site whereas, in case of an 

intron and an exon, it is called an acceptor splice site. The 

Figure 1 shows the central dogma of splice site [6]. 

The splice site identification is performed by discriminating 

true from the rest of splice sites for both acceptor and donor 

sites. A wide range of tools has been designed based on the 

probabilistic approach [2-4, 7-11]. Those are support vector 

machine and neural network [8, 12-14], discriminant analysis 

based techniques [15-16] and the information theory [17-18]. 

The non-linear transformation through neural networks (NN) 

and Support vector machines (SVM) describe the feature of 

adjoining di-nucleotides AG/GT. 

Figure 1. Central dogma of splice site 

Through the weight matrix method (WMM) many 

researchers have identified splice sites Arita et al., [17], 

adopted this technique in Net Plant Gene [19] and NNSplice 

[10]. A better accuracy was accomplished by first order 

Markov model (MM1, WAM) [20], [9]. Burge developed a 

tool Gen scan, it is maximal dependence decomposition 

(MDD) in the decision tree methodology [7]. It has been

recommended that by combining signal/content methods, with

other statistical tools, like MDD, WMM, MM1 etc., a

noticeable improvement can be possible. GeneSplicer is

combination of second order Markov models and MDD also a

process under this category [15]. Rajapakse presented a hybrid

tool that collaborates back propagation neural networks

(BPNN) and MM2, its need large sequence windows [16]. A

statistical technique like Principal component analysis (PCA)
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is most frequently used for making predictive models. Overton 

and Haas have described a case-based system, which uses 

grammars and features of genes for instance promoter regions 

and other signals [21]. Our proposed method considers PCA 

and CBR which combine with SVM to enhance the accuracy 

and efficiency of splice site prediction. It has been found that 

this proposed model i.e., SpliceCombo shows superior 

performance when analyzed with other present splice site 

prediction programs. 

The main objective of this work to exhibits a hybrid 

technique that efficiently improves the existing gene 

recognition technique. 

 

 

2. MATERIALS AND METHODOLOGY 
 

2.1 Evaluation datasets 

 

To measure the performance of proposed algorithm, we 

have considered three datasets of the splice site. The detail 

description of the datasets is summarized as follows.  

HS3D (Homo Sapiens Splice Sites data set), a dataset of 

intron, exons and splice sites, is our first considered dataset 

[20]. This Human gene dataset had been extracted from the 

GenBank and the length of each splice site sequence is 140bp. 

True donor and pseudo donor splice sites, which contained 

“GT” dinucleotides, are 2796 and 271937 in number 

respectively. Whereas true acceptor and pseudo acceptor sites, 

containing “AG” dinucleotides, are 2880 and 329374 number 

respectively. For acceptor splice site, AG is conserved at the 

index positions -69 and -70 of the sequences of the gene. 

Whereas for donor splice site, GT dinucleotide is conserved at 

positions -71 and -72 of the sequences. The ratio of the pseudo 

splice site with true splice site is brought as 10:1 this dataset is 

used to extract features for further modeling. The second 

dataset, DGSplicer [22], which is a true dataset, had been 

created by extracting 2381 member of true acceptor splice sites 

along with 2381 member of true donor splice sites from 462 

distinguished human genes with multiple-exon [20]. After 

excluding two donors and one acceptor splice site from the set 

to create a group of 2380 true acceptor and 2379 true donor 

splice sites. A huge group of 283062 pseudo donor and 400314 

pseudo acceptor sites are accumulated from 462 members of 

human genes, to form the imposter dataset. The donor splice 

site’s window size is18 nucleotides in with the range {-9 to +9} 

among GT, at the locations +1 and +2. Whereas the same for 

the acceptor splice sites of 36 nucleotides are {-27 to +9} 

among AG at the locations -26 and -27. The third dataset is 

created with the Drosophila genomic sequence model. Which 

is trained in a dataset provided by the organizers of the GASP 

experiment [23] and comprised of DNA entries from to 

GenBank. The complete dataset consisted with of 275 

members of multiple exons and member of 141 single exon 

Drosophila genes. Moreover, for the purpose of training the 

codon usage Markov models, which is well-annotated gene 

structure data set and all available coding sequences from 

mRNA sequence. The entries in GenBank for Drosophila 

melanogaster are also used. The contiguous genomic Adh 

sequence is run against the non-redundant GenBank protein 

database. BDGP Web site provides a comprehensive analysis 

of this Adh region [24]. 

 

 

 

2.2 Overview of the propose model 

 

The Process of splice site identification is segmented into 

two separate classification modules – donor site classification 

and acceptor site classification. Additionally, two modules 

consisting of three phases, those are assembled to recognize 

acceptor and donor splice sites. This model applies for various 

significant aspects i.e., features extraction, feature selection, 

and classification. The fundamental steps are as follows: 

(1). Feature extraction: Principal component analyses 

(PCA) are used to generate derived values or features 

projected to be informative and non-redundant, from the initial 

set of measured data.  

(2). Feature selection: Assessment of difference between 

every feature is carried out to select more enlightening features. 

This is performed by using case-based reasoning (CBR). 

(3). Classification: The Support Vector Machine 

Classifier with the polynomial kernel is trained on the 

probabilistic frameworks. Here Figure 2 depicts the proposed 

model’s architecture. 

 

 
 

Figure 2. Splice combo model 

 

(1) Feature extraction 

For the extraction of features from microarray data, 

principal component analysis (PCA) has been extensively 

used for the analysis of the image and speech data [25]. It is 

extensively used in various software packages [26, 27]. Figure 

3 presents a two-variable data set with a solid ellipse, and 

mapped in the U-W coordinate. The U axis indicates the 

principal direction along the variation of data, while W axis is 

the other principal direction orthogonal to U. The data are 

transformed into (U, W) coordinate value for each (X, Y) 

coordinate data. By using principal directions of the variance 

(i.e., the U-W axis system according to Figure 3) the principal 

component analysis can find the axis system, for a given data 

set. The directions U and W are labeled as principal 

components. 
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Figure 3. Representation of Principle Component Analysis 

for the given data 

 

It is possible to project from d dimensional gene expressions 

into a small number of Principal Components (i.e., PC). Let Z 

is the p index random vector such that Z= [Z1,Z2,…,ZP]T. 

Here the matrix M represents the covariance of Z1, Z2, . . ., 

Zp. 

 

𝑀 =

[
 
 
 
 
𝑀11 𝑀12 . . . 𝑀1𝑝

𝑀21 𝑀22 . . . 𝑀2𝑝

. . . .

. . . .
𝑀𝑝1 𝑀𝑝2 𝑀𝑝3 𝑀𝑝𝑝]

 
 
 
 

 

 

Now, the diagonal elements M11, M22, ..., Mpp represent 

the variance for Z1, Z2, ..., Zp. It is reflected on the p index 

variation degree. Therefore, the total variation degree of p 

index will be expressed as M11+M22+•••+Mpp. If we want to 

obtain a new index instead of the original p index, then new 

index will include the original information, and expressed 

according to  

 

Y=AZ, here, 𝑌𝑖 = 𝑎𝑖1𝑍1 + 𝑎𝑖2 𝑍2 + ⋯+ 𝑎𝑖𝑝𝑍𝑝 

 

[

𝑌1

𝑌2

:
𝑌𝑝

] = [

𝑎11 . . . . 𝑎1𝑝

𝑎21 . . . . 𝑎2𝑝

: : : :
𝑎𝑝1 . . . . 𝑎𝑝𝑝

] [

𝑍1

𝑍2

:
𝑍𝑝

] 

 

Assume that λ1≥λ2≥···≥λγ(γ≤p) are the non-zero value for the 

characteristic equation, 𝑑𝑒𝑡|𝐴 − 𝜆𝛪| = 0 . Then 

M11+M22+··· +Mpp=λ1+λ2+···+λγ. So, we can retrieve the 𝛾 on 

the whole index of y1, y2, ..., yγ, whose variance is equal to the 

variance of p index array. The information transfers in the 𝛾 

index is equal to the original p index contains information. If 

p is much larger than γ, then (PCA) technique will reduce the 

index without affecting the result. Because of the overall index 

𝑌𝑖 = 𝑎𝑖1𝑍1 + ⋯+ 𝑎𝑖𝑝𝑍𝑝 is larger when the variance is λi, so 

the ability to synthesize the p index of yi is the strongest. The 

first, second… and the γth principal components are defined 

by y1, y2, …, yγ, respectively. Now 

 

1 2 11 22... ... ppM M M

 



 

  
=

+ + + + + +
                 (1) 

 

In the above expression, the proportion of yγ variance in the 

total variance is the variance contribution rate along the γth 

principal component [29]. 

(2) Feature selection 

Feature selection has an important role in pattern 

classification for better interpretation of results. The Case-

Based Reasoning (CBR) doesn’t need an explicit domain 

model, it learns by procuring new knowledge as cases. So the 

maintenance of large volumes of information is easy [30]. 

A system of the CBR working cycle contains four REs 

(reference Figure 4). 

(1). RETRIEVE the most analogous cases. 

(2). REUSE the cases to resolve the current obstacle.  

(3). REVISE the projected solution if required.  

(4). RETAIN the contemporary solution as a portion of 

that case. 

 

 
 

Figure 4. Case-Based Reasoning (CBR) cycle 

 

Costello and Wilson show the application of a CBR 

methodology for gene prediction, which performs the 

comparisons between DNA to isolate significant coding 

sections [32]. After selecting input variables through PCA, 

CBR is employed to compute the weightings for these 

variables. Then the cluster of these cases forming into groups. 

There are two phases in this reasoning: 

First Phase: 

Identify the minimum evaluation value E(v) by taking the 

following steps.  

Step 1: Calculate Weight Distance Matrix. The initial value 

is produced randomly. 

 
1 1

( ) ( ) 2 2 2 22 2

1 1

( , ) ( ( ) ) ( )
T T

v v

pd p q j pj qj j j

j j

d d e e v x x v x
= =

= = − = 
            (2)

   

 

 

𝑣𝑗 : 𝑤𝑒𝑖𝑔ℎ𝑡, 𝑣𝑗 ∈ [0,1], 𝑗(1 ≤ 𝑗 ≤ 𝑎) 
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T: Total number of cases 

ep, eq: case p; q; 

a: All of the important factors 

Step 2: After calculating 𝑑𝑝𝑞
(𝑣)

 for each case first, then 

calculate the similar matrix 𝐺𝑁𝑝𝑞
(𝑣)

. 

P =1,...,L, 𝑞 ≺ 𝑝 
𝛼: User defined. 

 

( )

( )

1

1 .

v

pq v

pq

GN
d

=
+

                                                    (3) 

 

Step 3: Calculate E(v) 

 

( )

( )( )( ) (1) (1) ( )

( )

2. 1 (1 )

.( 1)

v v

pq pq pq pq

pq q p

GN GN GN GN

E v
T T



 
− + − 

 
=

−

 

       (4) 

 

𝐺𝑁𝑝𝑞
(1)

: Weight equals 1 for each important variable. 

Step 4: Use gradient descent technique to change the 

weighting of ∆𝑣𝑗 to minimize the value E(v) 

 

j

j

E
v

v



 = −


                                                                       (5) 

 

 𝜂: Learning stage  

 

( )

( )

( ) ( )

1

( )

2 1 2
( )

1

v v

pq pq

pq v
pq q p jpq

j

GN d
GN

vdE v

v T T



  
−    

   
=

 −

 

         (6) 

 

( )

( )

2
( )1

v

pq

v
v

pq
pq

SM

d d





 −
=

 + 
                                        (7) 

 

( )

( )( )

2
( )

1

22
2

1

v
j pj qjpq

j a

j pj qj

j

v x xd

v

v x x
=

−
=


 

− 
 


                                           (8) 

 

Second Phase: Find the best clusters for the case 

Step 1: Provide a threshold value β ϵ (0, 1). 

Step 2: assume GN = 𝐺𝑁𝑝𝑞
𝑣   

Step 3: Initialize GN1=GN, GN = 𝑠𝑝𝑞  

max (min( , ))v v

pq k pk kqs GN GN=                                   (9) 

 

Step 4: When GN1   GN then moves to step 5; if not, 

Assume GN = GN1, and then go back to the step 3  

Step 5: Identify the clusters, if result of the Case q and Case p 

are equal while𝑆𝑝𝑞 ≥ 𝛽 then they will belong to the same 

group. 

 

(3) Classification 

The data classification is the process of organizing data into 

multiple categories in more efficient way. Structural Risk 

Minimization (SRM) technique is an inductive principle used 

for the formulation of SVM [33], [34]. That is superior to the 

Empirical Risk Minimization (ERM) principle and used with 

neural networks. In case of SVM classifier, the generalization 

error gets reduced when the margin is high [35]. Figure 5 

shows the SVM with hyper-plane and margin. 

 

 
 

Figure 5. Support Vector Machine with hyper-plane and 

margin 

 

Dual formulation in SVM is obtained by using the Lagrange 

multipliers technique, expressed through variables 𝛼𝑖 . For 

solving the optimization problem, SVM classification is given 

by:  

 

( )

1 1 1

( )

1
( , )

2= = =
= −  

C C C

I I J I J I JI I J

Max f

B B K A A



  
           (10) 

 

Subject to 

 

∑ 𝛼𝐼𝑌𝐽
𝐶
𝐼=1 = 0, 0 ≤ 𝛼𝐼 ≤ 𝐻,𝐼 = 1, . . . 𝐶 

 

In the above equation C, denotes the number of training data, 

A  is input vectors and B  defines the class value that can be 

either -1 or 1 and H  is trade-off parameter for performance 

generalization. Here f is the objective function, and 𝑌𝑖 

expression is achieved with the base 8 from above equation. 

The dual foundation stimulates the growth of the weight vector 

with reference to the input: 

                

1

C

I I II
w B A

=
=                                                                (11) 

 

In case of a soft-margin SVM distinct data points of AI in 

which 𝛼𝐼 > 0  are those positions that are within or on the 

margin, known as support vectors. 

Assume that D is the given DNA sequence, the SVM 

classifies is trained on the decision function: 

 

( ) ( , )I I I

I T

o D sign y K A D
=

 
=  

 
                                          (12) 

 

Set of support vectors are represented by T. 

For classification purpose, we have used Support vector 

Machine along with polynomial kernel function. According to 

the weighted sample on the non-parallel hyper-plane, the 
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quadratic programming problems are given as follows: 

 
2( , ) ( 1)K A D A D=  •  +             (13) 

 

The Dot product is symbolized by<•>. 

Then equation (6) becomes 

 

( )
( , )

( , ) (1,1) 1

,

( , )( , ) ( 2 )( 2 ) 1
= =

= + + 
m m m

I J I J I I

I J I

K A D

A A D D A D
                (14) 

 

In the above equation, the number of dimensions in vectors 

A and D are considered as m, ith element in vectors 𝐴𝐼 and𝐷𝐼 . 

After substituting equation (7) into (5), the output 𝛰(𝐷) 

becomes 2nd order polynomial function over D. Therefore the 

sequence of length C, is a vector of conditional probabilities 

denoted by D: 

 

2 1 3 2 1( ), ( ),..., ( )C CD P Q Q P Q Q P Q Q −
 =
 

                       (15) 

 

2.3 Model design 

 

Splice site identification process is separated into two 

different modules i.e., acceptor site and donor site module. For 

each module different tools are produced, e.g., for HS3D 

donor data-set, one SpliceCombo tool is created and trained. 

The HS3D donor test dataset is utilized for assessing the 

classification performance of the model similarly. Another 

SpliceCombo tool is trained and tested with HS3D acceptor 

dataset. DGSplice and Drosophila, donor and acceptor datasets 

are used for training and testing purpose. 

 

(1) Model learning 

The proposed model’s training is accomplished in three 

phases i.e., feature extraction using PCA, feature selection 

using CBR and the SVM with polynomial kernel training of 

degree 2. SpliceCombo model uses true and false splice site 

training data. The desired output for a result is fixed to +1 or -

1 that depends on their class label. We have used MATLAB 

for implementing the support vector machine based 

classification [28, 36]. 

 

(2) Model comparison 

For performance comparison among SpliceCombo and 

other models, we have selected closely related method. 

Support Vector Machine (SVM) with zero order Markov 

Model (MM0) was used for preprocessing performance 

comparison with our proposed models. 

 

2.4 Performance measures 

 

This model’s classification performance is assessed through 

the Receiver Operating Characteristic (ROC) curve that 

provides a degree of tradeoff between the true positive rate 

(TPR) and false positive rate (FPR). Percentage of accurate 

prediction of true splice sites is called sensitivity, 𝑆𝑛  while 

specificity, 𝑆𝑝  is referred to as the percentage of accurate 

prediction of pseudo splice sites. 𝑆𝑁  (TPR) and FPR,𝑆𝑃  are 

shown through the below equations: 

 

( )N

TP
Sensitivity S

TP FN
=

+
                                               (16) 

 

( )P

TN
Specificity S

TN FP
=

+
                                                (17) 

 

1 p

FP
FPR S

FP TN
= − =

+
                                                   (18) 

 

TP
precision

TP FP
=

+
                                                         (19) 

 

FN->False Negative TP-> True positive 

TN->True negative                FP->False Positive 

A true donor or true acceptor site is categorized as true 

donor or true acceptor site. Here TP it is known as a true 

positive. A false donor or false acceptor is wrongly anticipated 

as a true donor or true acceptor site, FP is known as a false 

positive. In similar a manner, the false donor or false acceptor 

site which is also categorized as a false donor or false acceptor 

site. As it is known as a true negative and if a true donor or 

true acceptor site is wrongly categorized as a false donor or 

false acceptor. It is recognized as a false negative as specified 

in Table 1. 

 

Table 1. Interpretations of TP, TN, FP and FN 

 

 Predicted positive Predicted negative 

Actual positive True positives, TP False negatives, FN 

Actual negative False positives, FP True negatives, TN 

 

Accuracy (𝐴𝐶𝐶) is the amount of the candidate sites which 

are correctly classified in the test data set by using the 

proposed SpliceCombo tool; it was evaluated through the 

following formula: 

 

TN TP
ACC

TN TP FN FP

+
=

+ + +
                                              (20) 

 

Matthews’s correlation coefficient (MCC) is the correlation 

coefficient within the observed and predicted binary 

classifications. It is outlined by the formula. 

 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

Where MCC returns a value between -1 and 1. Here 

completely well-trained classifiers have the value 1.  
 

2.5 ROC analysis  

 

The receiver operating characteristic (ROC) curve is most 

popularly used to exhibits the performance of a binary 

classification [37]. The graph is plotted between1-specificity 

(x-axis) vs. sensitivity (y-axis). The Euclidean matrix is used 

for approximating TPR as well as FPR. The more specific 

model represents the curve that approximates to (0, 0) point; 

(refer to Figure 6 to Figure 13). 
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Figure 6. Performance comparison among MM0-SVM and 

SpliceCombo using HS3D donor dataset 

 
 

Figure 7. Performance comparison among MM0-SVM and 

SpliceCombo using HS3D acceptor dataset 

   
 

Figure 8. Performance comparison of methods for table 2    

   
 

Figure 9. Performance comparison of methods for table 3 

     
 

Figure 10. Predictive performance comparison among the 

MDD and SpliceCombo are shown using DGSplicer donor 

dataset 

 
 

Figure 11. Predictive performance comparison among the 

MDD and SpliceCombo are shown using DGSplicer acceptor 

dataset 
 

 
 

Figure 12. Predictive performance comparison among genie, 

Geneid SpliceCombo are shown using drosophila donor 

dataset 
 

 
 

Figure 13. Predictive performance comparison among genie, 

and Geneid and SpliceCombo are shown using drosophila 

acceptor dataset 

72



Table 2. Performance of donor splicecombo with polynomial kernel degree 2 for identifying donor (5’ splice) sites 

 

S. No. No of True Donor No of Pseudo Donor TP FP TN FN Sensitivity (Sn) Specificity (Sp) FPR MCC 

1 233 22670 223 479 22191 10 0.95708 0.97887 0.0211 0.5448 

2 235 22700 226 491 22209 9 0.96170 0.97837 0.0216 0.5439 

3 240 23001 232 511 22490 8 0.96666 0.97777 0.0222 0.5427 

4 235 22810 227 523 22287 8 0.96595 0.97707 0.0229 0.5339 

5 241 22849 234 532 22317 7 0.97095 0.97671 0.0232 0.5377 

6 238 23004 230 554 22450 8 0.96638 0.97591 0.0240 0.5254 

7 237 22760 231 568 22192 6 0.97468 0.97504 0.0249 0.5237 

8 236 22850 231 590 22260 5 0.97881 0.97417 0.0258 0.5176 

9 238 23576 233 613 22963 5 0.97899 0.97399 0.0260 0.5121 

10 235 22891 231 674 22217 4 0.98297 0.97055 0.0294 0.4931 

11 238 22779 234 690 22089 4 0.98319 0.9697 0.0303 0.4910 

12 237 22548 233 721 21827 4 0.98312 0.96802 0.0319 0.4817 

 Average Value 0.9725 0.9746 0.0253 0.5206 

 

Table 3. Performance of acceptor SpliceCombo with polynomial kernel degree 2 for identifying acceptor (3’ splice) sites 

 

S. No. 
 No of True 

Acceptor 

No of Pseudo 

Acceptor 
TP FP TN FN 

Sensitivity 

(Sn) 

Specificity 

(Sp) 
FPR MCC 

1  240 27500 228 1006 26496 12 0.95 0.96349 0.03650 0.4103 

2  246 27820 233 1258 26562 11 0.94715 0.95478 0.04521 0.3765 

3  240 27450 229 1307 26143 11 0.95416 0.95238 0.04761 0.3671 

4  250 28000 241 1393 26607 9 0.964 0.95025 0.04975 0.3667 

5  239 27780 230 1398 26382 9 0.96234 0.94967 0.05032 0.3585 

6  256 28300 248 1486 26814 8 0.96875 0.94749 0.05250 0.3616 

7  248 28670 240 1697 26973 8 0.96774 0.94080 0.05919 0.3351 

8  253 27600 245 1728 25872 8 0.96837 0.93739 0.06260 0.3349 

9  244 27676 237 1745 25931 7 0.97131 0.93694 0.06305 0.3291 

10  254 27855 247 1760 26095 7 0.97244 0.93681 0.06318 0.3341 

11  249 27650 243 1788 25862 6 0.97590 0.93533 0.06466 0.3298 

12  241 27554 236 1864 25690 5 0.97925 0.93235 0.06764 0.3197 

  Average Value 0.96512 0.94481 0.05519 0.3519 

 
2.6 Cross validation 

 

Cross Validation technique is applied to enhance the 

performance of the predictive model. In the case of x-fold 

cross-validation, the authentic sample is partitioned into equal 

size subsamples along x. For testing the model, on each 

occasion one of the x subsamples is used for test data set. 

While the other x–1 subsamples are combined to form training 

data. To identify the prediction accuracy and compare the 

performance of SpliceCombo system with the other available 

methods, we considered twelvefold cross-validation (CV) 

technique [38, 39]. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Selection of the best preprocessing method 

 

Methods like MM0 with SVM classifier have been used for 

preprocessing method selection. SpliceCombo tool has been 

used for splice site prediction. For accuracy comparison of 

MM0-SVM and SpliceCombo methods, HS3D donor and 

acceptor dataset have been used. Figures 6 and 7 present the 

ROC analysis for the models MM0-SVM and SpliceCombo 

respectively. This model is mainly used for splice site 

identification. 

 

3.2 Comparison in the predictive performance 

 

The proposed model yields 12-fold cross validation results 

based on, sensitivity (Sn), specificity (Sp), FPR and MCC for 

donor SpliceCombo. The acceptor SpliceCombo using HS3D 

are reported in Tables 2 and Table 3, respectively. 

The comparison of performance between the SpliceCombo, 

NNSplice is done from the available dataset 

(http://www.frutfly.org/seq_tools/splice.html) and NetGene2 

is trained through the available dataset 

(http://genome.cbs.dtu.dk/services/NetGene2/) and HS3D. 

For comparison, the standard TPR (Sn) and FPR(1- Sp) are 

used and monitored. The SpliceCombo exhibits superiority for 

acceptor and donor splice site identification. Whereas second 

best performance been observed through NetGene2, as 

presented in Figure 8, and Figure 9. The maximum Sn and Sp 

values for SpliceCombo are 97.25 % and 97.46 % respectively 

for the donor splice site and 96.51 % and 94.48 % for acceptor 

splice site prediction. MDD method and DG Splicer dataset is 

used for comparison and validation for the performance of the 

proposed method. Here, SpliceCombo showed superior 

performance as exhibited in Figure 10, Figure 11. 

Further, we have used Drosophilla dataset for splice site 

detection accuracy comparison for the SpliceCombo method. 

Their performance measured with geneid and genie tool, are 

observed that SpliceCombo gives superior performance, as 

shown in Figure 12 and Figure 13. 

 

 

4. CONCLUSION 

 

In this work, we have analyzed a hybrid SpliceCombo 

system which identifies the features to predict a splice site 

junction. We have 12-fold cross-validation experiment for the 

verification of the results. This model correctly identifies a 
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maximum of up to 97.25 % of the true donor, 97.46 % 

regarding the false donor and96.51 % of the true acceptor, 

94.48 % of the false acceptor splice sites. Furthermore, this 

method is simpler, more effective and usable to predict splice 

site junction on the enormous scale. In future this model can 

be utilized to predict various heart disease, after modification 

in the technique along with the changing of patient dataset. 
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