

Recombinant Sort: N-Dimensional Cartesian Spaced Algorithm Designed from Synergetic

Combination of Hashing, Bucket, Counting and Radix Sort

Peeyush Kumar, Ayushe Gangal, Sunita Kumari*, Sunita Tiwari

Computer Science and Engineering, G. B. Pant Government Engineering College, Delhi 110020, India

Corresponding Author Email: sunitakumari@gbpec.edu.in

https://doi.org/10.18280/isi.250513

ABSTRACT

Received: 1 July 2020

Accepted: 14 September 2020

 Sorting is an essential operation which is widely used and is fundamental to some very basic

day to day utilities like searches, databases, social networks and much more. Optimizing

this basic operation in terms of complexity as well as efficiency is cardinal. Optimization is

achieved with respect to space and time complexities of the algorithm. In this paper, a novel

left-field N-dimensional cartesian spaced sorting method is proposed by combining the best

characteristics of bucket sort, counting sort and radix sort, in addition to employing hashing

and dynamic programming for making the method more efficient. Comparison between the

proposed sorting method and various existing sorting methods like bubble sort, insertion

sort, selection sort, merge sort, heap sort, counting sort, bucket sort, etc., has also been

performed. The time complexity of the proposed model is estimated to be linear i.e. 𝑂(𝑛)

for the best, average and worst cases, which is better than every sorting algorithm introduced

till date.

Keywords:

recombinant sort, bucket sort, counting sort,

radix sort, hashing, sorting algorithm

1. INTRODUCTION

Sorting is a process of arranging the given data into an

ascending or a declining fashion on the basis of a linear

relationship among the data elements [1]. Sorting may be

performed on numbers, strings or records containing both

numbers and strings like names, IDs, departments, etc., in

alphabetical order, or in increasing or decreasing manner [2].

The exponential rise in the quantity of data available for use

and being used, calls for more efficient and less time

consuming sorting methods. Sorting algorithms are of two

major types, namely, comparison and non-comparison sorting.

Comparison sort involves sorting the data elements by doing

repetitive comparisons and deciding which data element

should come before or after which data element in the sorted

array [3]. Comparison sort based sorting methods are bubble

sort, insertion sort, quick sort, merge sort, shell sort, etc. Non-

comparison sort does not compare the data elements for

sorting them into an order. The non-comparison based sorting

methods involve counting sort, bucket sort, radix sort, etc.

Sorting algorithms can also be stable and unstable, in-place

and out of place. In-place sorting algorithms are those which

sort the given data without employing an additional data

structure [4]. Out-of-place sorting algorithms require an

additional or auxiliary data structure for sorting the given data

elements [5]. Stable sort refers to the sorting technique in

which two elements having equal values appear in the same

order in the sorted array as they were, before the sorting was

applied [6]. In the case of unstable sort, this order is not

necessarily retained. Bubble sort, merge sort, counting sort and

insertion sort are examples of stable sorting algorithms. While,

quick sort, heap sort and selection sort are based on unstable

sorting technique.

Each of these sorting algorithms have unique properties that

add value to the specific function they are used to perform.

Sorting algorithms are majorly distinguished on the basis of

four properties, which are adaptability, stability, in-place/ not

in-place, and online/ not-online, in addition to their basic

methodology. An algorithm is adaptable in nature if its time

complexity becomes almost O(n) if the array is nearly sorted.

An algorithm is said to display online property if it can process

the input element by element, and doesn’t require the whole

array as input at the beginning. Bubble sort works by

exchanging method and is an in-place, stable sorting algorithm,

which makes O(n2) comparisons and swaps. It is not online

and is adaptive in nature. Insertion sort works by insertion

method and is also a stable, in-place sorting algorithm, which

requires O(n2) comparisons and swaps. It is adaptive and

online, in addition to having little over-head. Heap sort works

by selection methodology and makes use of heap data structure.

Both heap sort and quick sort are unstable in nature, and takes

O(n logn) for comparisons and swaps. Heap sort is not-online,

not-adaptive and is an in-place sorting algorithm, while quick

sort is not-online, adaptive and an in-place sorting algorithm.

Quick sort also has less over-head and works by partitioning.

Bucket sort is a type of non-comparison distribution sort,

which is not-online, out-of-place, non-adaptive and stable in

nature. It has overheads of the buckets. Radix sort is a non-

comparison integer sort, which is stable, not-online, adaptive

and in-place in nature. In this paper, a novel sorting method is

proposed by combining all the best characteristics of a few

existing sorting algorithms. This novel method, called

Recombinant Sort, combines the counting sort, bucket sort and

radix sort, along with hashing and dynamic programming to

elevate efficiency. This selective combination precedes the

sum of the qualities of its parent algorithms, which brings out

the essence of the idea behind this synergy. The proposed

method has many unique and striking properties. It can work

on numbers as well as strings, and can sort numbers containing

decimals as well as non-decimal numbers together or apart.

Ingénierie des Systèmes d’Information
Vol. 25, No. 5, October, 2020, pp. 655-668

Journal homepage: http://iieta.org/journals/isi

655

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250513&domain=pdf

Due to the application of hashing and dynamic programming,

the traversal for fetching values is decreased tremendously and

thus, the time complexity is also reduced. Comparison of

various existing sorting algorithms is also conducted, on the

basis of best, average and worst cases of time complexity, the

ability to process decimals and strings, stability and on in-

place or out-of-place technique.

This paper is divided into seven sections. Section 2

elaborates all the concepts used as pre-requisites for the

proposed method. Section 3 delineates the concept, algorithm

and the working of the proposed methodology of the

recombinant sort. Proper description of algorithms, along with

labelled diagrams are used to enhance the readers’

understanding, and highlight the proposed novel approach in a

lucid manner. Section 4 provides the proof of correctness of

the proposed algorithm using loop invariant method. Section

5 contains the complexity analysis of the proposed algorithm

and section 6 discusses the results obtained in a graphical and

neatly tabulated manner. Section 7 discusses the conclusions

and the future prospects of this algorithm and the domain.

2. CONCEPTS USED

2.1 Hashing

Hashing is a faster and more efficient method of insertion

and retrieval of data. It works by employing a function called

the hash function, which is used for generating new indices for

the data elements. The hash function applies a uniform

mathematical operation to all the data elements to allot them a

place in the hash table. A hash table is a data structure that

stores the values mapped by the hash function [7]. With

hashing, the speed of retrieval or insertion can’t be known but

space-time trade off comes to picture. The speed can be

checked by using a known amount of space for hashing, or the

space used can be checked using a known speed for the process.

Though usually, the speed of searching, insertion and deletion

in hash tables is fast if collision of data does not occur, but it

still heavily depends on the selection of the hash function. As

hashing works by inducing randomness in the hash table and

not order, it can’t be considered to perform an admirable job

for sorting the data alone. Hashing becomes extremely

inefficient as the number of collisions increases, which causes

the number of tuples in a bucket to increase, and ultimately

leads the time complexity to become more linear O(n).

Hashing is used for a variety of applications, like, password

verification, Rabin-Karp algorithm, compiler applications,

message digest and in linking file name to path.

2.2 Bucket sort

Bucket sort works by distributing the data elements to be

sorted in different buckets, which are then individually sorted

using any other sorting technique or by recursive application

of the bucket sort technique itself. The complexity of bucket

sort depends on the number of buckets used, algorithm used

for sorting each bucket and the uniformity in distribution of

the data elements [8]. Once the elements are sorted into

different buckets, the sorting of elements of the bucket

becomes an independent task, and thus can also be carried out

in parallel with other buckets to enhance performance. It can’t

be applied for string data type and requires a high degree of

parallelism for achieving good performance [9]. Also, a bad

distribution of elements in the buckets may very easily lead to

extra work and degraded performance. Time complexity of

bucket sort is O(n+k) for best and average cases and O(n2) for

the worst case. Bucket sort works best when the input data is

of floating point type and is distributed uniformly over a range.

2.3 Counting sort

Counting sort is a small integer sorting technique, which

works by counting data elements with distinct key values.

Arithmetic is applied on these counts to determine the

positions of the elements in the output. It is only suitable for

data items in which the variation in the values of the elements

do not precede the total number of elements to be sorted, as it

has linear running time in total number of elements and

difference between the maximum key and the minimum key

values [10]. It is a stable sort and does not work by doing

comparisons, thus is a non-comparison sort. Counting sort’s

time complexity is O(n+k), where n is the size of the sorted

array and k is the size of the helper array, which is needed

when sorting non-primitive elements. Counting sort uses the

values of the keys as indices, thus is only suitable for sorting

small integers and can’t be used to sort large datasets. As it

only works for discrete values, it can’t be used to sort strings

and decimal values as array frequencies cannot be constructed.

Counting sort has linear time complexity of O(n+k) for the

elements within the range of 1 to k, but turns to O(n2) for

elements within the range of 1 to n2 [11]. Counting sort is used

when linear time complexity is needed and there are multiple

entries of smaller magnitude integers.

2.4 Radix sort

Radix sort is a non-comparison sorting algorithm that works

by considering the radix of the elements for distributing them

into different buckets. The process of bucketing is repeated for

each digit, with the previous ordering being preserved, again

if the elements contain more than one significant digit [12].

Therefore, it is fast when the keys are small and the range of

the array is less. Radix sort is known to be a close cousin of

the counting sort. Though radix sort can work for integers,

words, or any other dataset which can be lexicographically

sorted, its flexibility is curbed as it depends on digits or letters

to perform sorting. Separate codes need to be written for

integers, floating type values and for strings. It is slower in

comparison to merge sort and quicksort when the operations

like insertion and deletion are not efficient enough and also

has high space complexity [13]. The radix sort’s constant k in

O(kn) is greater in comparison to any other sorting algorithm,

and radix sort also consumes much greater space than quick

sort, which is an in-place sorting algorithm. Radix sort is

mostly used for sorting strings like stably sorting fixed-length

words over fixed alphabets.

3. PROPOSED RECOMBINANT SORT ALGORITHM

The Recombination Sort is formulated from recombination

of cardinal concepts of various sorting algorithms. The

capability of radix sort to deal with each digit of the number

separately, the concept of counting the number of occurrences

of the elements in counting sort, the concept of bucketting

from bucket sort and the concept of hashing a number to a

multidimensional space are combined together to form a single

656

sorting algorithm which outperforms its parent algorithms. As

Radix sort is one of the parent algorithms, the recombinant sort

needs to be rewritten for every different type of data. The

Recombinant Sort consists of two parts, namely, the Hashing

cycle and the Extraction cycle. For the purpose of simplicity,

an array consisting of numbers between the of range 1 to 10,

consisting of only one digit after decimal, is considered.

3.1 Hashing cycle

3.1.1 Mathematical rendition of hashing used in hashing cycle

For an n-digit decimal number 𝛩 =

𝑛1𝑛2𝑛3 … . 𝑛𝜆−1𝑛𝜆 . 𝑛𝜆+1𝑛𝜆+2𝑛𝜆+3. . . 𝑛𝑛−1𝑛𝑛 , ∀ 𝜆 ∈ 𝑍 , the

hash function 𝐻(𝛬𝛩), where 𝛬𝛩= set containing all digits of

decimal number 𝛩 in a systematic order from left to

right : (𝑛1, 𝑛2, 𝑛3, … . , 𝑛𝜆−1, 𝑛𝜆, 𝑛𝜆+1, 𝑛𝜆+2, 𝑛𝜆+3, . . . , 𝑛𝑛−1, 𝑛𝑛) ,

can be defined as:

𝐻(𝛬𝛩) =

{𝑆[𝑛1][𝑛2][𝑛3]. . . [𝑛𝜆−1][𝑛𝜆][𝑛𝜆+1][𝑛𝜆+2][𝑛𝜆+3]. . . [𝑛𝑛−1][𝑛𝑛] +
+}

(1)

where, S is an n-dimensional cartesian space initialized by the

hash function in the form of a hypercube to map an n digit

number 𝛩 . The ‘++’ sign donates an increment by 1. This

increment by 1 is used in the hash function to tackle the

problem of collision in hashing, thus the need for chaining list

data structure is eliminated. Each axis of each dimension of S

lies from [0, 9] and for an n-digit number 𝛩, the shape of the

space S initialized in the computer’s memory is in the form of

a hypercube (n-dimensional array) with each axis consisting

of only 10 memory blocks, and can be expressed as:

𝑠ℎ𝑎𝑝𝑒(𝑆) ≡ 𝑆[10][10][10]. . . [10][10][10]. . . [10][10] (2)

The hash function defined in Eq. (1) maps a number 𝛩to an

n-dimensional array S, defined in Eq. (2). The main goal in

hashing is to minimize the time complexity [14] of the whole

hashing operation. From Eq. 1, it can be stated that the hash

function updates/increment (or maps the number 𝛩 at) the

index 𝛬𝛩 of hypercube/array S. As the updation or deletion or

fetching in an array has the time complexity of O(1) for each

element [14], therefore the time complexity of hash function

𝐻(𝛬𝛩) for each element is also O(1). Thus, the hash function

maintains the minimum time complexity that can be

maintained by a hash function and along with it, due the use

of a hypercube/array data structure as hash table, the traversing

through the table is also fast as well as continuous, and unlike

counting sort, the large numbers can be sorted using space S.

3.1.2 Assumed pre-conditions

Only a single main precondition is required to instantiate the

hashing cycle for the entire data consisting of N elements,

which is, that each element should have the same number of

digits, i.e, if elements does not have same number of digits

then additional zeros are added to make up for the few digits

in a way that it doesn't effect or change the quantity of the

number. For example, if we have three numbers: [1.01, 2.1, 1],

so in order to make these numbers have an equal number of

digits, we add zeroes: [1.01, 2.10, 1.00]. This step is extremely

easy and does not affect the efficiency of the algorithm in any

magnitude. This step is also cardinal to keep track of the

decimal's position. After this step, the unsorted array are given

in Figure 1, defined as:

arr = [4.5, 0.3, 2.3, 8.8, 7, 9.2, 4.5, 4.3, 8, 3.2] can be

written (after doing the preprocessing) as:

arr = [4.5, 0.3, 2.3, 8.8, 7.0, 9.2, 4.5, 4.3, 8.0, 3.2]

3.1.3 Dynamic programming used in 𝐻(𝛬𝛩)

As for an n digit decimal number, an initialized n-

dimensional cartesian space will have a lot of unused space

left after all the numbers have been mapped. But to increase

the efficiency of the algorithm in order to retrieve the filled

spaces (as in computer, in order to travel to or find the filled

memory spaces in an array, one has to travel in a systematic

pattern), a trick by maintaining two separate maps has been

also performed. A more understood definition of two such

maps has been given in the Hashing Cycle section.

Figure 1. Hashing cycle

657

The steps of the hashing cycle are lucidly depicted in Figure

1 (the hashing function 𝐻(𝛬𝛩) defined above is used for each

element of the unsorted array arr). For sorting the type of data

considered in the example, a 2D array of dimension 10x10

called the Count array, where the values will be mapped is

considered, a traverse map H_Max of dimension 10x1 and a

traverse map H_Min of dimension 10x2 are also taken. The

two traverse maps are used to avoid unnecessary steps during

the extraction period. The algorithm for hashing cycle

designed for the example considered is as follows:

HASHING CYCLE ALGORITHM: The algorithm

presented below uses two function: First, the numeric to string

converter function, defined as: 𝐹𝑠𝑡𝑟𝑖𝑛𝑔()and second, the string

to numeric converter, defined as: 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐().

Recombinant-hashing(arr, size): //the unsorted array arr

 S[10][10];

 H_Max[10];

 H_Min[10][2];

 set digit_count_after_decimal ← 1

 for i = 0 to size do

 𝑡 = 𝐹𝑠𝑡𝑟𝑖𝑛𝑔(𝑎𝑟𝑟[𝑖] × (10𝑑𝑖𝑔𝑖𝑡_𝑐𝑜𝑢𝑛𝑡_𝑎𝑓𝑡𝑒𝑟_𝑑𝑒𝑐𝑖𝑚𝑎𝑙))

 𝑆[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])] ←
 𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕 𝑏𝑦 1

 if(𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])) then

 set 𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])

 if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] == 0) then

 set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] ←
𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])

 set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] ← 1

 else if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] ≠ 0 and

 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] > 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])) then

 set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] ←
 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])

 end for(i)

end func

As depicted in Figure 1, the array arr (defined above) is fed

to the hashing cycle for sorting and the space S of 10x10 is

initialized along with a vector H_Max of shape 10 and a space

H_Min of shape 10x2. The further steps are as follows:

1. The first element of the array is ‘4.5’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 4.5×10 = 45

b. Second, the number 45 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(45) = t = ‘45’.

c. Third, we will increment the value in the memory

block at row t[0] = 4 and column t[1] = 5 (at array

index (4, 5)).

d. Fourth, in the traverse map H_Max, as H_Max

[t[0]] < t[1], then H_Max[t[0]] will be set as t[1].

e. Fifth, in traverse map H_Min, as H_Min [t[0]][0]

= = 0, then H_Min[t[0]][1] will be set as t[1] and

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[0])][0] will be set to 1.

f. Lastly, the complete process will continue for each

array element till we reach the end of the unsorted

array and the rest of the complete steps are given in

the example 1 in the supplementary section.

3.2 Extraction cycle

The end result of the hashing cycle is depicted in Figure 2.

For the extraction of sorted arrays from the count array, the

exaction cycle moves row by row, like done in raster scanning,

for example, the cycle will visit all indices of row 0 and then

all indices of row 1 and so on.

Figure 2. Extraction cycle

It is clear from Figure 2 that most of the memory spaces in

the count array are not filled and thus, traversing these unused

spaces will increase the time complexity of the algorithm. So,

in order to minimize the time complexity and prevent wasteful

traversal of these unused spaces, the traverse maps H_Min and

H_Max are used. In the Traverse map H_Min, each row stores

the lowest numeric value attained by the columns for that

particular row in the count array and in the Traverse map

H_Max, each row stores the highest numeric value attained by

the columns for that particular row in the count array, for

example, for row 4 in the count array the minimum column

reached is 3 and the maximum column reached is 5, so the

traverse map H_Min will store the value 3 and of H_Max will

store the value 5, for row 4 of the count array. The column 0

of the traverse map H_Min will store whether the map for that

particular row had been updated before or not. The algorithm

for extraction cycle is as follows:

EXTRACTION CYCLE ALGORITHM: The algorithm

presented below uses a function defined as:

Overwrite_arr(element, position, arr). This function

overwrites the element ‘element’ at position ‘position’ of array

‘arr’. The importance of pre-conditions, defined above, can be

seen in line 7. The 𝐹𝐹𝑙𝑜𝑎𝑡() function used below converts

strings to float numbers and numeric to string converter

function is also used and is defined as: 𝐹𝑠𝑡𝑟𝑖𝑛𝑔(). In line 7, the

‘+’ sign is used to represent string concatenation.

Recombinant-extraction(S, H_Min, H_Max,arr, size):

 set overwrite_pos_at ← 0

 for i = 0 to 9 do

 for j = H_Min[i][1] to H_Max[i]+1 do

 if(S[i][j]!=Empty) then

 for z = 0 to S[i][j] do

 Overwrite_arr(𝐹𝐹𝑙𝑜𝑎𝑡(𝐹𝑠𝑡𝑟𝑖𝑛𝑔(i)+'.'+

 𝐹𝑠𝑡𝑟𝑖𝑛𝑔(j)), overwrite_pos_at, arr)

 overwrite_pos_at ← increment by 1

 if(overwrite_pos_at == size) then

 return arr

 end func

658

 end for(z)

 end for(j)

 end for(i)

end func

At the end of the extraction cycle, the parts of the count

array traversed are shown in Figure 2 and the sorted array

obtained is shown below. The time complexity of the example

taken in the prior section is found to be O(n+17). Sorted array

arr returned as:

[0.3, 2.3, 3.2, 4.3, 4.5, 4.5, 7.0, 8.0, 8.8, 9.2]

Why Does Extraction Cycle Work?

As it is known that in a computer’s memory, in order to

travel through an n-dimensional space one has to travel in a

systematic pattern, performed using for loops. This systematic

pattern traversal has a unique ability, whose advantage has

been taken during the extraction cycle. A similar pattern can

be observed when traversing a Binary Search Tree in an

inorder traversal fashion. By traversing inorderly, a sorted

form of the unsorted data used to build the binary search tree

can be obtained. Due to the unique hash function 𝐻(𝛬𝛩)used

to map an n-digit number 𝛩 to an n-dimensional cartesian

space, a unique sorted outcome observed when performing

inorder traversal in a binary search can also be observed when

using Extraction Cycle (proposed above) to traverse through

an n-dimensional cartesian space.

4. PROOF OF CORRECTNESS

Loop Invariant Induction [14] method has been used to

prove the correctness of the proposed algorithm. It has been

used to prove the correctness of both the Hashing Cycle and

the Extraction Cycle. The correctness is for the recombinant

sorting algorithm for n digit decimal numbers (the pseudo code

for which is given in Supplementary Section).

Notations: The unsorted array is denoted by arr[] and S is

used to denote the initialized n-dimensional space. The two

arrays used to lower the extraction cost of the algorithm are

denoted by H_Min and H_Max. It is assumed that arr[]

contains N elements and the precondition stated above has

been satisfied, and therefore, each element of arr[] has n digits.

It is also assumed that the decimal point is placed after

𝜆𝑡ℎ,∀ 𝜆 ∈ 𝑍, digit for each element and thus, λ digits lie before

the decimal and (n-λ) digits lie after decimal for each element.

4.1 Hashing cycle

The predominant objective of this function is to use 𝐻(𝛬𝛩)

so as to map all n elements of arr[] to an n-dimensional

cartesian space, which is in the form of an array in the

computer’s memory. So, for every element in arr[], there

exists a place in the n-dimensional space. Therefore, the loop

invariant 𝐼𝐻𝑎𝑠ℎ for iteration 𝑖𝑡ℎcan be defined as,

𝐼𝐻𝑎𝑠ℎ ≡ At iteration i, the initialized n-dimensional empty

cartesian space S should have ≤ 𝑖 points mapped in it by using

𝐻(𝛬𝛩). Also, the arrays H_Min and H_Max should have ≤ 2𝑖
and ≤ 𝑖 spaces mapped in it respectively.

Or

𝐼𝐻𝑎𝑠ℎ ≡ At iteration i, the cycle should successfully map all

elements in arr[0: i] using𝐻(𝛬𝛩), to an n-dimensional space

S, initialized prior to the starting of loop.

The three steps for Loop invariant proof are as follows:

(1) Initialization: Before the first iteration of the loop or

at i=0 in the cycle, the invariant 𝐼𝐻𝑎𝑠ℎ states that the initialized

n-dimensional empty cartesian space should have ≤ 0 points

mapped in it by using 𝐻(𝛬𝛩). Also, the arrays H_Min and

H_Max should have ≤ 2 ∗ 0 and ≤ 0 spaces mapped in it,

respectively. As 0 points have been mapped in space S at i=0,

therefore the space remains vacant. Also, 0 spaces in arrays

H_Min and H_Max have been mapped, therefore they also

remain unoccupied. As the space S and arrays H_Min and

H_Max were already set to be vacant, the invariant condition

stands corrected.

(2) Maintenance: Assume that the loop invariant stands

corrected at the start of iteration i=j in the cycle. Then it must

be that the initialized n-dimensional empty cartesian space S

should have ≤ 𝑗points mapped in it by using 𝐻(𝛬𝛩). Also, the

arrays H_Min and H_Max should have≤ 2 ∗ 𝑗 and ≤ 𝑗 spaces

mapped in it respectively. In the body of the loop at iteration j,

arr[j] is mapped to cartesian space S, and if the defined

condition holds True, then the required values are mapped in

arrays H_Min and H_Max. Thus, at the start of the iteration i

= j+1, the initialized n-dimensional empty cartesian space S

will have ≤ 𝑗 + 1points mapped in it by using 𝐻(𝛬𝛩). Also,

the arrays H_Min and H_Max will have ≤ 2 ∗ (𝑗 + 1) and ≤
𝑗 + 1spaces mapped in it respectively, which needed to be

proved.

(3) Termination: When the for-loop terminates at i = N,

the initialized n-dimensional empty cartesian space S has ≤
𝑁points mapped in it by using 𝐻(𝛬𝛩). Also, the arrays H_Min

and H_Max has ≤ 2 ∗ 𝑁 and ≤ 𝑁 spaces mapped in it

respectively. As arr[] has N elements, therefore all elements

have been mapped to space S, which is also the desired output.

As all three steps of the loop invariant hold true, therefore

the algorithm for the hash cycle is correct.

4.2 Extraction cycle

It is a known fact that a human can traverse an n-

dimensional space in either a linear or a nonlinear fashion, but

computers can only traverse such spaces in a linear fashion.

This linear traversal, as also mentioned before, yields an

advantage. For instance, in order to traverse through a 2-

dimensional space of size 10×10, a for or while-loop is needed,

and upon discerning those loops closely, one would notice that

they are intrinsically counting from 0 to 100 (and undeniably

counting is sorted). Thus, the extraction cycle traverses the n-

dimensional space in a fashion that it encounters the mapped

elements in a sorted manner, due to the intrinsic nature of loop

traversal. n+1 number of for-loops are required for traversing

an n-dimensional array, as well as for extracting the numbers

mapped. In order to define n+1 for-loops, n+1 number of

iterators will be needed, and can be defined as:

(𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1). Another variable overwrite_at_pos

is defined to keep track of how many occupied spaces in S have

been detected and tells where to overwrite the original

unsorted array. The loop invariant IExtract for every ith iteration

can be defined as,

𝑰𝑬𝒙𝒕𝒓𝒂𝒄𝒕 ≡ At iteration overwrite_at_pos = j and iterators

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 𝑎𝑛𝑑 𝑖𝑛+1 having any value such that the

mentioned if-condition is satisfied, the element 𝐸𝑗+1 detected

659

at 𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1] can be represented as:

𝐸1, 𝐸2, 𝐸3, . . . , 𝐸𝑗 ≤ 𝐸𝑗+1 ≤ 𝐸𝑗+2, 𝐸𝑗+3, 𝐸𝑗+4, . . . , 𝐸𝑁 (3)

And the overwritten sub-array arr[0:j] should be sorted or

the sub-array arr[j:N] should be unsorted or unchanged.

The three steps for Loop invariant proof are as follows:

(1) Initialization: Before the first iteration of the loop or

at overwrite_at_pos=j=0 and iterators

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1 having any value such that the

mentioned if-condition is satisfied, the element 𝐸1 detected at

𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1] can be represented as:

𝐸1 ≤ 𝐸2, 𝐸3, 𝐸4, . . . , 𝐸𝑁 (4)

And the overwritten sub-array arr[0:0] should be sorted or

the sub-array arr[0:N] should be unsorted or unchanged. As

the size of the overwritten sub-array arr[0:0] is zero, or the

overwritten sub-array arr[0:0] is completely empty, therefore,

it is sorted. Also, as the sub-array arr[0:N] was already

unsorted or unchanged, the invariant condition stands

corrected.

(2) Maintenance: Assume that the loop invariant stands

corrected at the start of iteration overwrite_at_pos=j=z and

and iterators 𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1 having any value such

that the mentioned if-condition is satisfied in the cycle. Then

it must be that the element 𝐸𝑧+1 detected at

𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1]can be represented as:

𝐸1, 𝐸2, 𝐸3, . . . , 𝐸𝑧−1 ≤ 𝐸𝑧+1 ≤ 𝐸𝑧+2, 𝐸𝑧+3, 𝐸𝑧+4, . . . , 𝐸𝑁 (5)

And the overwritten sub-array arr[0:z] should be sorted or

the sub-array arr[z:N] should be unsorted or unchanged. In the

body of the loop at iteration overwrite_at_pos=j=z, the

extracted element is overwritten at index z of unsorted array

arr[], leaving sub-array arr[0:z] sorted or sub-array arr[z:N]

unsorted or unchanged. Thus, at the start of iteration

overwrite_at_pos=j=z+1 and iterators

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1 having any value such that the

mentioned if-condition is satisfied in the cycle, the element

𝐸𝑧+2 detected at 𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1]will be represented

as:

𝐸1, 𝐸2, 𝐸3, . . . , 𝐸𝑧+1 ≤ 𝐸𝑧+2 ≤ 𝐸𝑧+3, 𝐸𝑧+4, 𝐸𝑧+5, . . . , 𝐸𝑁 (6)

And the overwritten sub-array arr[0:z+1] will be sorted or

the sub-array arr[z+1:N] will be unsorted or unchanged,

which needed to be proved.

(3) Termination: When the for-loop terminates at

overwrite_at_pos=j=N and iterators

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1 having any value such that the

mentioned if-condition is satisfied in the cycle, then the

element 𝐸𝑁+1 detected at 𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1] is

represented as:

𝐸1, 𝐸2, 𝐸3, 𝐸4, . . . , 𝐸𝑁 ≤ 𝐸𝑁+1 (7)

As EN+1 does not exist, therefore, all N elements have been

detected and overwritten. Also, the overwritten sub-array

arr[0:N] will be sorted or the sub-array arr[N:N] will have

size zero or contain zero elements, which is also the desired

output.

As all three steps of the loop invariant hold true, therefore

the algorithm for the extraction cycle is correct. Also, as both

the hashing cycle and extraction cycle are correct, it renders

the proposed Recombinant Sort algorithm correct. The

correctness of the algorithm can also be verified from the

example 1 described in the supplementary section.

5. COMPLEXITY ANALYSIS

Best case: The best case takes place when the extraction

cost k (= total number of memory block traversed in hypercube

S during the whole extraction cycle process) will be of the

form, k<<<n and thus, the time complexity O(n+k) will be

O(n). The possible scenarios of best cases (where cost k is

minimum) are as follows:

i. If all elements of the unsorted array lie on the same

horizontal axis (after mapping) of the hypercube

space S.

ii. If all elements of the unsorted array lie on the same

vertical axis (after mapping) of the hypercube space

S.

iii. If all elements of the unsorted array lie inside the

same memory block (after mapping) of the hypercube

space S.

Average case: The Average case takes place when the

extraction cost 𝑘 will be of the form, k< =n. The possible cases

for the average time complexity will be as follows:

i. If k<n, then the time complexity O(n+k) will be ≡
𝑂(𝑛)after taking the upper bound n.

ii. If k = n, then the time complexity O(n+k) will be

𝑂(2𝑛) ≡ 𝑂(𝑛).

Thus the average time complexity in both possible cases is

O(n).

Worst case: The Worst case takes place when one of the

two possible cases defined below happens:

i. First: When during the extraction cycle, the whole

count array needs to be traversed. Thus, making the

extraction cost k=10b, where b = the maximum

number of digits an element has in our dataset. But

for reaching worst case the count array has to be filled

completely, thus, at least 10b(n=10b) elements have to

be there in the dataset. Therefore, the time

complexity O(n+k) will be:

O(n+10b) (8)

But n=10b, so

O(n+n)=O(2n)=O(n) (9)

ii. Second: When the start and end memory block of

each axis of hypercube space S is occupied and the

rest of the memory block in between them are empty.

Thus, in this case the whole space S needs to be

traversed, which makes the extraction cost k=10d,

where d = dimensions of hypercube space S or the

maximum number of digits an element has in our

dataset. And the time complexity will be:

O(n+10d) (10)

660

But for this case to be valid, the total number of elements to

be sorted should be =10d. Thus, it can be stated that n=10d and

the Eq. (10) can be written as:

𝑂(10𝑑 +10𝑑) (11)

𝑂 (10𝑑 (1 +
10(𝑑−1)

𝑑
)) (12)

As n =10d,

𝑂 (𝑛 (1 +
10(𝑑−1)

𝑑
)) (13)

Which can be further simplified as,

𝑂(𝑛𝐶) (14)

where, C =(1 +
10(𝑑−1)

𝑑
).

Figure 3. Relationship between constant C, n, 𝑛2 and d

On the basis of experiment, whose results are shown in

Figure 3, (by putting different values of d) it was observed that:

𝐶 < 𝑛2 (15)

Thus, from Eq. (15) we can state that C is a constant that

will never make the time complexity nonlinear and the

complexity given in Eq. (14) can be written as O(n).

Thus, the time complexity will always be linear.

6. RESULTS AND DISCUSSIONS

Table 1 shows the time taken by the system to execute

recombinant sort using Python on Mac OS. The sorting

method is executed in Python, C++ and Java language on Mac

OS, Windows OS and Linux OS. The system had 3.1 GHz

Intel Core i5 processor and 8 GB 2133 MHz LPDDR3 RAM.

The testing data is generated from a random generator function

available in python’s numpy library. The number of elements

taken for the execution of recombinant sort ranges from 10 to

10000, increasing in powers of 10. Time is calculated for five

major cases, namely, for data between the range of 1 to 10

having no digits after the decimal, having a single digit after

the decimal and having two digits after the decimal, and for

data between the range of 1 to 100 having no digits after the

decimal and having a single digit after the decimal. The time

taken for a specific number of elements for all the cases are of

comparable order, as can be seen from Table 1. The results

obtained by running the algorithm in different languages on

different operating systems platforms are shown in tabular

format (Tables 4-11), along with their graphical representation

(Figure 5), are given in the supplementary section. These

languages (Python, C++ and Java) and operating systems

(Window, Mac and Linux) have been chosen specifically as

they are very widely used.

Figure 4 depicts the results obtained in Table 1 in a

graphical manner. The graph shows the time taken to execute

recombinant sort (in milliseconds) for all the five enlisted

cases. The graph depicts linear characteristics of the proposed

sorting algorithm and it can also be concluded from the graph

that the count_after_decimal variable hardly affects the time

complexity. These same observations can also be made while

observing the graphs (for Python, C++ and Java languages and

Mac OS, Windows OS and Linux OS) given in the

supplementary section.

Table 2 gives a complete comparison between various

existing and known sorting algorithms and the proposed

Recombinant sort technique on the basis of various cardinal

factors like best case time complexity, average case time

complexity, worst case time complexity, stability, in-place or

out-of-place sorting and the ability to process strings and

floating point numbers.

Figure 4. Relationship between the number of elements and

the time taken by Recombinant Sort to sort elements using

Python on Mac OS

Table 1. The time taken (in sec) by the system to execute recombinant sort using python on Mac OS

No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1)

10 0.00066 0.00078 0.00091 0.00079 0.00091

100 0.00581 0.00649 0.00792 0.00641 0.007.91

1000 0.5790 0.06124 0.06889 0.06112 0.06821

10000 0.57410 0.60279 0.61084 0.59412 0.61038
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c respectively.

661

Table 2. Comparison with other sorting algorithms

Sorting algorithm Best TC Average TC Worst TC stable sort PD PS IP

Bubble sort [15]
O(n)

(waas)
O(n2) O(n2) Yes Yes No Yes

Selection Sort [16] O(n2) O(n2) O(n2) No Yes No Yes

Insertion Sort [17] O(n2) (waas) O(n2) O(n2) Yes Yes No Yes

Merge Sort [18] O(nlogn) O(nlogn) O(nlogn) Yes Yes No No

Quick Sort [19] O(nlogn) O(nlogn) O(n2) No Yes No Yes

Bucket Sort [9] O(n+c) O(n+c) O(n2) Yes Yes No No

Radix Sort [12]
O(kn)

(k∈Z)
O(kn) (k∈Z) O(kn) (k∈Z) Yes No Yes No

Heap Sort [20] O(nlogn) O(nlogn) O(nlogn) No Yes No Yes

Tim Sort [21]
O(n)

(waas)
O(nlogn) O(nlogn) Yes Yes No No

Shell Sort [22]
O(n)

(waas)
O(n2) O(n2) No Yes No Yes

Counting Sort [11] O(n) O(n+c) O(n2) Yes No No No

Recombinant Sort O(n) O(n) O(n) No Yes Yes No
Note: waas stands for: When array is already sorted; TC stands for Time Complexity; PD: Can Sort or Process Decimals; PS: Can Sort or Process Strings; IP:

Inplace Sort; Z: integer.

Table 3. Dimensions of elements required for sorting different types of data

S.

No.

Type of

Data

Dimensions of

Count Array

Dimensions of

Traverse Map H_Min

Dimensions of

Traverse Map H_Max

1. D(1,10) & cd = 0 10 2 1

2. D(1,10) & cd = 1 10x10 10x2 10x1

3. D(1,10) & cd = 2 10x10x10 10x22 10x11

4. D(1,100) & cd = 0 10x10 10x2 10x1

5. D(1,100) & cd = 1 10x10x10 10x22 10x11
Note: The expression D(a,b) & cd = c stands for: Data ranging between a to b, and count after decimal = c respectively.

From Table 2, it is observed that merge sort and heap sort

have the consistent time complexity of O(nlogn) for the best,

average and worst case scenarios, but none of these sorting

methods can be used to sort elements of string data type.

Quicksort also has O(nlogn) time complexity for the best and

average cases, but resorts to being O(n2) for the worst case, i.e.

when the array is already sorted in any order or when the array

contains all identical elements. Tim sort has the time

complexity O(nlogn) for the worst and average cases and O(n)

for the best case (given that the array is already sorted). Unlike

the sorting algorithms listed above, the proposed recombinant

sort has consistent performance of O(n) for the best case,

average case and worst case scenarios. In addition to this,

recombinant sort can also be used to sort elements of string

data type and floating type. Therefore, it can be observed that

the proposed recombinant sort performs best among all the

listed sorting algorithms.

Table 3 specifies the dimensions of the elements

constituting the recombinant sort, that is, the count array, and

the H_Min and H_Max traverse maps, for sorting data

elements that belong to the data specified in the five cases

enlisted previously.

This table depicts a pattern that can be followed to deal with

different types of data (not mentioned in the table) using

Recombinant Sort.

7. CONCLUSION AND FUTURE WORK

The proposed Recombinant Sort is a dynamic sorting

technique which can be modified as per the needs of the user

and is designed to achieve utmost efficiency for sorting data

of varied types and ranges. The time complexity of the

proposed Recombinant Sort is estimated to be O(n+k) for best,

average and worst cases. The k in O(n+k) will become n in the

worse case scenario, but in no circumstance will n’s order

approaches two, i.e, k will never approach n2, thus, the

complexity will never be O(n2). The extraction cost 𝑘, will

always be very less than or equal to 𝑛, thus, the final time

complexity will always be O(n). Also, the extraction cost 𝑘 of

the proposed Recombinant Sort came out to be much smaller

than the extraction cost of any other linear sorting algorithms.

The graph plotted between the number of elements and the

time taken by recombinant sort to sort those elements depicts

a linear characteristic.

All major highlighted demerits of the parent algorithms of

the Recombinant Sort, i.e., counting sort, radix sort and bucket

sort, are surmounted by Recombinant Sort. Recombinant Sort

can process strings as well as numbers, and can also process

both floating point and integer type numbers together. Though,

with the increase in the number of digits in elements to be

sorted, the dimensions of the count array will increase, and the

complexity of the working of the algorithm will also increase.

But an important thing to note here is that, in the physical

world, we don’t usually deal with numbers containing more

than 10 digits, be it, marks obtained or the net salaries. By

testing the algorithm on all possible types of data, it has been

empirically proved that the proposed algorithm is correct,

complete and terminates at the end. Thus, Recombinant Sort is

a viable option from the user’s perspective. In order to accredit

fair competition, an open source library named Recombinant

Sort has been released on github.

In the future, the proposed Recombinant Sort can be

enhanced by sorting integer, string and floating type elements

without rewriting the entire program for these specific needs.

Another noteworthy addition to the current proposed

algorithm can be made post-availability of advanced literature

on N-dimensional space or hypercubes.

662

REFERENCES

[1] Sorting. Definition of Sorting. En.wikipedia.org.

https://en.wikipedia.org/wiki/Sorting, accessed on May

20, 2020.

[2] Aung, H.H. (2019). Analysis and comparative of sorting

algorithms. International Journal of Trend in Scientific

Research and Development (IJTSRD), 3(5): 1049-1053.

https://doi.org/10.31142/ijtsrd26575

[3] Comparison Sort Definition. En.wikipedia.org.

https://en.wikipedia.org/wiki/Comparison_sort,

accessed on May 20, 2020.

[4] In-place Sorting Technique. 2020. En.wikipedia.org.

https://en.wikipedia.org/wiki/In-place_algorithm,

accessed on May 20, 2020.

[5] Verma, A.K., Kumar, P. (2013). List sort: A new

approach for sorting list to reduce execution time. arXiv

preprint arXiv:1310.7890.

[6] Stable Sorts Definition. En.wikipedia.org.

https://en.wikipedia.org/wiki/Category:Stable_sorts,

accessed on May 22, 2020.

[7] Singh, M., Garg, D. (2009). Choosing best hashing

strategies and hash functions. In proceedings of 2009

IEEE International Advance Computing Conference,

Patiala, pp. 50-55.

https://doi.org/10.1109/IADCC.2009.4808979

[8] Mohammad, S., Kumar, A.R. (2019). SA sorting: A

novel sorting technique for large-scale data. Journal of

Computer Networks and Communications, 2019:

3027578. https://doi.org/10.1155/2019/3027578

[9] Bucket Sort Definition. En.wikipedia.org.

https://en.wikipedia.org/wiki/Bucket_sort, accessed on

May 22, 2020.

[10] Abdulla, P.A. (2009). Counting Sort.

[11] Counting Sort Definition. En.wikipedia.org.

https://en.wikipedia.org/wiki/Counting_sort, accessed

on May 23, 2020.

[12] Radix Sort Definition. En.wikipedia.org.

https://en.wikipedia.org/wiki/Radix_sort, accessed on

May 23, 2020.

[13] Abdulla, P.A. (2011). Radix Sort. Encyclopedia of

Parallel Computing.

[14] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.

(2009). Introduction to Algorithms. MIT press.

[15] Astrachan, O.L. (2003). Bubble sort: An archaeological

algorithmic analysis. SIGCSE, 35(1).

https://doi.org/10.1145/792548.611918

[16] Chand, S., Chaudhary, T., Parveen, R. (2011). Upgraded

selection sort. International Journal on Computer Science

and Engineering, 3(4): 1633-1637.

[17] Kowalk, W.P. (2011). Insertion Sort. In: Vöcking B. et

al. (eds) Algorithms Unplugged. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-15328-

0_2

[18] Wang, B. (2008). Merge Sort. (2008).

[19] Hennequin, P. (1989). Combinatorial analysis of

quicksort algorithm. RAIRO-Theoretical Informatics

and Applications, 23(3): 317-333.

https://doi.org/10.1051/ita/1989230303171

[20] Schaffer, R., Sedgewick, R. (1993). The analysis of

heapsort. Journal of Algorithms, 15(1): 76-100.

https://doi.org/10.1006/jagm.1993.1031

[21] Auger, N., Jugé, V., Nicaud, C., Pivoteau, C. Analysis of

TimSort Algorithm. http://igm.univ-

mlv.fr/~juge/slides/poster/ligm-2019.pdf, accessed on

Jun. 2, 2020.

[22] Sedgewick, R. (1996). Analysis of Shellsort and related

algorithms. In: Diaz J., Serna M. (eds) Algorithms - ESA

'96. ESA 1996. Lecture Notes in Computer Science, vol

1136. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/3-540-61680-2_42

SUPPLEMENTARY SECTION

__

HASHING CYCLE ALGORITHM FOR n DIGIT NUMBER: The algorithm presented below uses two function: First, the

numeric to string converter function, defined as: 𝐹𝑠𝑡𝑟𝑖𝑛𝑔()and second, the string to numeric converter, defined as: 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐().

NOTE: In day to day life we usually deal with 4-5 digit numbers.

__

Recombinant-hashing(arr , size,𝜆) // the unsorted array arr

1. S[10][10][10]..[10][10]; // n dimensional count array S is initialized

2. H_Max[10][10][10]..[10][10]; // (n-1) dimensional traverse map H_Max is

initialized

3. H_Min[10][222...222]; // traverse map H_Min is initialized. (n-1) 2’s are

there

4. set digit_count_after_decimal← 𝜆

5. for i = 0 to size do

6. 𝑡 = 𝐹𝑠𝑡𝑟𝑖𝑛𝑔(𝑎𝑟𝑟[𝑖] × (10𝑐𝑜𝑢𝑛𝑡_𝑎𝑓𝑡𝑒𝑟_𝑑𝑒𝑐𝑖𝑚𝑎𝑙)) //converts number

to string

7. 𝑆[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])]. . . [𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])] ← 𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕 𝑏𝑦 1

8. if(𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])) then // checking H_Max

9. set 𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])

10. if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] == 0) then // if H_Min traverse map had been updated before

11. set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])

12. set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] ← 1 // marking that the H_Min is updated

13. else if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] ≠ 0 and

 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] > 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])) then

14. set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])

15. .

663

https://en.wikipedia.org/wiki/Sorting
https://doi.org/10.31142/ijtsrd26575
https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Category:Stable_sorts
https://en.wikipedia.org/wiki/Bucket_sort
https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/Radix_sort

16. .

17. .

18. if(𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][222. .221] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])) then // checking H_Max

19. set 𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][10][10]. . . [10][10] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])

20. if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])][222. .220] == 0) then // if H_Min traverse map had been updated before

21. set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])][222. .221] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])

22. set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])][222. .220] ← 1 // marking that the H_Mi is updated

23. else if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])][222. .221] ≠ 0 and

 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 2])][222. . .221] > 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])) then

24. set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 2])][222. .221] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])

25. end for(j)

26. end func

__

EXTRACTION CYCLE ALGORITHM FOR n DIGIT NUMBER: The algorithm presented below uses a function defined as:

Overwrite_arr(element, position, arr). This function overwrites the element ‘element’ at position ‘position’ of array ‘arr’. The

𝐹𝐹𝑙𝑜𝑎𝑡()function used below converts strings to float numbers and numeric to string converter function is also used and is defined

as: 𝐹𝑠𝑡𝑟𝑖𝑛𝑔().

__

Recombinant-extraction(S, H_Min, H_Max,arr, size)

1. set overwrite_pos_at ← 0

2. for 𝑖1 = 0 to 9 do

3. for 𝑖2 = H_Min[𝑖1][1] to H_Max[𝑖1][0]..[0]+1 do // maps H_Min and H_Max are tallied

4. for 𝑖3 = H_Min[i][2] to H_Max[𝑖1][0]..[1]+1 do // maps H_Min and H_Max are tallied

5. .

6. .

7. .

8. for 𝑖𝑛 = H_Min[𝑖1][22..21] to H_Max[𝑖1][10]..[10]+1 do // maps H_Min and H_Max are tallied

9. if(S[i][j]!=Empty) then

10. for z = 0 to S[i][j] do // generates the hashed data

11. Overwrite_arr(extracted_element, overwrite_pos_at, arr)

12. overwrite_pos_at ← increment by 1

13. if(overwrite_pos_at == size) then

14. return arr

15. end func

16. end for(𝑖1𝑛)

17. end for(𝑖𝑛−1)

18. .

19. .

20. .

21. end for(𝑖1)

22. end func

Note: The ‘extracted_element’ defined above in line 11 can be represented as:

𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒆𝒅_𝒆𝒍𝒆𝒎𝒆𝒏𝒕 = 𝑖1𝑖2𝑖3 … . 𝑖𝜆−1𝑖𝜆 . 𝑖𝜆+1𝑖𝜆+2𝑖𝜆+3. . . 𝑖𝑛−1𝑖𝑛 (16)

RESULTS OF EXECUTION OF RECOMBINANT SORT USING DIFFERENT LANGUAGES ON DIFFERENT

OPERATING SYSTEMS SHOWN USING TABULAR AS WELL AS GRAPHICAL METHOD

Table 4. The time taken (in sec) by the system to execute recombinant sort written in Python on Windows OS

No. of elements TFD(1,10) & cd=0 TFD(1,10) & cd=1 TFD(1,10) & cd=2 TFD(1,100) & cd=0 TFD(1,100) & cd=1)

10 0.00062 0.00071 0.00091 0.00085 0.0009

100 0.0049 0.00641 0.00797 0.00644 0.00783

1000 0.0572 0.06119 0.06882 0.06123 0.07001

10000 0.5738 0.60282 0.61071 0.59415 0.61042
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c.

Table 5. The time taken (in sec) by the system to execute recombinant sort written in Python on Linux OS

No. of elements TFD(1,10) & cd=0 TFD(1,10) & cd=1 TFD(1,10) & cd=2 TFD(1,100) & cd=0 TFD(1,100) & cd=1)

10 0.00052 0.00063 0.00089 0.00083 0.00094

100 0.0041 0.00641 0.00791 0.0065 0.00777

1000 0.0569 0.06123 0.06872 0.0612 0.0702

10000 0.5681 0.60281 0.60039 0.5835 0.61061
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c.

664

Table 6. The time taken (in sec) by the system to execute recombinant sort written in Java on Windows OS

No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1)

10 0.00059 0.00069 0.00089 0.00085 0.00092

100 0.0044 0.00641 0.00791 0.00644 0.00782

1000 0.0572 0.06127 0.06822 0.06123 0.0701

10000 0.5682 0.60281 0.61066 0.57354 0.61039
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c.

Table 7. The time taken (in sec) by the system to execute recombinant sort written in Java on Mac OS

No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1)

10 0.00059 0.00071 0.00091 0.00085 0.00091

100 0.0046 0.00644 0.00792 0.00644 0.00785

1000 0.0574 0.06122 0.06885 0.06123 0.07011

10000 0.5732 0.60285 0.61069 0.59415 0.61039
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c.

Table 8. The time taken (in sec) by the system to execute recombinant sort written in Java on Linux OS

No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1)

10 0.00055 0.0007 0.00089 0.00081 0.00093

100 0.0047 0.00642 0.00791 0.00642 0.00783

1000 0.0569 0.06122 0.06123 0.06885 0.07013

10000 0.573 0.61068 0.60285 0.59339 0.6104
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c.

Table 9. The time taken (in sec) by the system to execute recombinant sort written in C++ on Windows OS

No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1)

10 0.00058 0.00071 0.00091 0.00083 0.00091

100 0.0045 0.00644 0.00792 0.00641 0.00782

1000 0.0575 0.06122 0.06885 0.06125 0.07021

10000 0.5731 0.59415 0.61069 0.60115 0.6104
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c.

Table 10. The time taken (in sec) by the system to execute recombinant sort written in C++ on Mac OS

No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1)

10 0.0005 0.00065 0.0009 0.00085 0.00094

100 0.0044 0.00641 0.00791 0.00644 0.00782

1000 0.0572 0.06127 0.06882 0.06123 0.0701

10000 0.5682 0.5682 0.61039 0.5835 0.61066
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c.

Table 11. The time taken (in sec) by the system to execute recombinant sort written in C++ on Linux OS

No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1)

10 0.00049 0.00061 0.00084 0.0008 0.00091

100 0.0036 0.0064 0.0079 0.0065 0.0077

1000 0.057 0.0612 0.0687 0.0612 0.0702

10000 0.5679 0.6028 0.6003 0.5835 0.6106
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c.

665

Figure 5. Graphs A-H represent the linear characteristics depicted by tables 4-11 respectively

EXAMPLE 1

As depicted in Figure 1, the array arr (defined above) is fed

to the hashing cycle for sorting and the space S of 10x10 is

initialized along with a vector H_Max of shape 10 and a space

H_Min of shape 10x2. The further steps are as follows:

1. The first element of the array is ‘4.5’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 4.5×10 = 45

b. Second, the number 45 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(45) = t = ‘45’.

c. Third, we will increment the value in the memory

block at row t[0] = 4 and column t[1] = 5 (at array

index (4 , 5)).

d. Fourth, in the traverse map H_Max, as H_Max

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then

H_Max[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

e. Fifth, in traverse map H_Min, as H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[0])][0] will

be set to 1.

2. The first element of the array is ‘0.3’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 0.3×10 = 03

b. Second, the number 03 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(03) = t = ‘03’.

666

c. Third, we will increment the value in the memory

block at row t[0] = 0 and column t[1] = 3 (at array

index (0 , 3)).

d. Fourth, in the traverse map H_Max, as H_Max

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then

H_Max[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

e. Fifth, in traverse map H_Min, as H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[0])][0] will

be set to 1.

3. The first element of the array is ‘2.3’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 2.3×10 = 23

b. Second, the number 23 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(23) = t = ‘23’.

c. Third, we will increment the value in the memory

block at row t[0] = 2 and column t[1] = 3 (at array

index (2, 3)).

d. Fourth, in the traverse map H_Max, as H_Max

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then

H_Max[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

e. Fifth, in traverse map H_Min, as H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[0])][0] will

be set to 1.

4. The first element of the array is ‘8.8’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 8.8×10 = 88

b. Second, the number 88 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(88) = t = ‘88’.

c. Third, we will increment the value in the memory

block at row t[0] = 8 and column t[1] = 8 (at array

index (8, 8)).

d. Fourth, in the traverse map H_Max, as H_Max

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then

H_Max[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

e. Fifth, in traverse map H_Min, as H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[0])][0] will

be set to 1.

5. The first element of the array is ‘7.0’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 7.0×10 = 70

b. Second, the number 70 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(70) = t = ‘70’.

c. Third, we will increment the value in the memory

block at row t[0] = 7 and column t[1] = 0 (at array

index (7 , 0)).

d. Fourth, in the traverse map H_Max, as H_Max

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] <= 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then

H_Max[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

e. Fifth, in traverse map H_Min, as H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[0])][0] will

be set to 1.

6. The first element of the array is ‘9.2’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 9.2×10 = 92

b. Second, the number 92 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(92) = t = ‘92’.

c. Third, we will increment the value in the memory

block at row t[0] = 9 and column t[1] = 2 (at array

index (9, 2)).

d. Fourth, in the traverse map H_Max, as H_Max

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then

H_Max[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

e. Fifth, in traverse map H_Min, as H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[0])][0] will

be set to 1.

7. The first element of the array is ‘4.5’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 4.5×10 = 45

b. Second, the number 45 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(45) = t = ‘45’.

c. Third, we will increment the value in the memory

block at row t[0] = 4 and column t[1] = 5 (at array

index (4 , 5)).

d. This step will be skipped.

e. This step will be skipped.

8. The first element of the array is ‘4.3’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 4.3×10 = 43

b. Second, the number 43 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(43) = t = ‘43’.

c. Third, we will increment the value in the memory

block at row t[0] = 4 and column t[1] = 3 (at array

index (4 , 3)).

d. This step will be skipped.

e. Fifth, in the traverse map H_Min, as H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] != 0 and H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] > 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]) then

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

9. The first element of the array is ‘8.0’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 8.0×10 = 80

b. Second, the number 80 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(80) = t = ‘80’.

c. Third, we will increment the value in the memory

block at row t[0] = 8 and column t[1] = 0 (at array

index (8, 0)).

d. This step will be skipped.

e. Fifth, in the traverse map H_Min, as H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] != 0 and H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] > 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]) then

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

667

10. The first element of the array is ‘3.2’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 3.2×10 = 32

b. Second, the number 32 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(32) = t = ‘32’.

c. Third, we will increment the value in the memory

block at row t[0] = 3 and column t[1] = 2 (at array

index (3, 2)).

d. Fourth, in the traverse map H_Max, as H_Max

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then

H_Max[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

e. Fifth, in traverse map H_Min, as H_Min

[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[0])][0] will

be set to 1.

The final result of this algorithm (Hashing Cycle) is given

in Figure 2.

668

