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Passive acoustic technology (PAT) is an important tool to acquire the passive acoustic 

signals from marine organisms. In this paper, PAT fish detection is introduced at great 

length, including the relevant instruments, signal processing methods, and workflow. 

Focusing on the key tasks of PAT fish detection, the authors proposed a sparse 

decomposition algorithm that extracts coherent ratio of passive fish acoustic signal, and 

designed a feature extraction method for that signal based on speech imitation 

technology. Experimental results demonstrate that the proposed sparse decomposition 

algorithm can detect fish acoustic signal accurately at low signal-to-noise ratios (SNRs), 

and the proposed feature extraction method can effectively extract fish acoustic signals 

from the marine background. The research results shed important new light on the 

protection and management of fishery resources in the seas and oceans. 
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1. PASSIVE ACOUSTIC TECHNOLOGY

The regular surveys on fishery resources are critical to the 

sustainable development of fishery industry. Acoustic 

detection methods, both active and passive, provide important 

tools for such surveys, because fish can squeeze and rub their 

bladders to produce sound [1]. Active acoustic technology has 

been successfully adopted to survey the codfish resources in 

the Yellow Sea, the East China Sea, and the northern Pacific 

[2].  

Passive acoustic technology (PAT) is a non-invasive and 

non-destructive observation tool that applies the radiation of 

underwater objects to detection, recognition, and tracking [3]. 

It can detect and monitor pollutants and organisms in marine 

environment, which are influenced by human activities. 

However, PAT has not been widely applied to the survey on 

fishery resources, due to the following reasons: the sound 

mechanism of fish is uncertain, the marine environment has 

complex noises, and few marine biologists are familiar with 

this technology. 

Around the world, over 800 fish species in 109 families are 

known to be soniferous [4]. Some of them are the most 

abundant and important commercial fish species, including 

Gadus morhua, Pseudosciaena polyactis, Oncorhynchus keta, 

Epinephelus, and Silurus asotus. The earliest application of 

PAT in fish biology and fishery survey can be dated back to 

60 years ago [5]. This technology has been used to determine 

habitat [6], identify spawning areas [7, 8], and study fish 

behaviors [9].  

Marine ecologists and fishery biologists can listen to the 

sounds of fish using hydrophones, and process the acoustic 

signals with digital signal processing algorithms, thereby 

identifying the fish species [10]. 

1.1 Passive acoustic source 

PAT detects and identifies marine objects by receiving and 

processing the radiation noise [11]. Captive fish recording and 

in-situ (natural) recording are two necessary steps of this 

technology. In captive fish recording, many problems arise 

from the acoustic complications in a tank or aquarium, 

combined with the unnatural behavior and sound production. 

But these problems are not difficult to be overcome. 

In a particular region, the fish sounds can be catalogued in 

two ways. The first way is to audition the fish in the field, 

aquaculture facilities, and public aquaria systematically. The 

second way is to conduct field surveys to identify the 

spatiotemporal patterns of sound. Figure 1 illustrates a PAT-

based online fish detection system. 
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Figure 1. The PAT-based online fish detection system 

1.2 Collection and recording instruments 

Table 1 lists the PAT instruments commonly used to capture 

the passive acoustic signals from fish. The main detection 

instruments are hydrophone, hydrophone array, and sonobuoy. 
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The common recording instruments include data recorder, 

remote sensor, remote control car, and underwater monitoring 

station. In most recording instruments, high-quality analysis 

software (e.g. CoolEdit) are embedded to analyze the recorded 

signals. These instruments have greatly promoted the 

application of PAT in fishery [5]. 

 

1.3 PAT fish detection 

 

The early attempts of fish detection mainly target Sciaenids 

and Codfishes, which have obvious acoustic features. In the 

past century, biologists mainly analyzed the reasons, 

mechanisms, time, and location of fish movements. For 

instance, Abileah and Lewis [12] introduced the sound 

surveillance system (SOSUS) of the United States Navy to 

characterize the salmon spectrum in northern Pacific, and 

located sound sources with multi-beam and signal processing 

technologies. Through spectral analysis, Luczkovich et al. [8] 

identified the sound of Sciaenids through captive fish and 

natural experiments, and successfully protected the spawning 

area of the fish. With the aid of hybrid neural network, Howell 

and Wood [13] differentiated the sound produced by marine 

organisms from that produced by human activities, and thus 

identified fish species like Sciaenids and Codfishes. Stolkin et 

al. [14] detected Codfishes through band-pass filtering and 

Fourier transform. The above studies show that conventional 

digital processing technologies are suitable for feature 

extraction, recognition, and classification of Sciaenids and 

Codfishes, namely, time-domain filtering, frequency-domain 

filtering, and neural networks. 

As shown in Figure 2, the PAT fish detection involves data 

collection, data filtering, endpoint detection, feature extraction, 

and recognition. Firstly, the passive acoustic signals from the 

marine environment are collected in captive environment and 

natural environment. Next, features are extracted from 

different acoustic signals, forming a feature library. After that, 

the unknown fish acoustic signals were selected randomly, and 

compared with the feature library, to identify the fish species.  

PAT fish detection needs to deal with five key tasks: (1) 

build a feature library; (2) disclose the passive acoustic 

radiation mechanism of marine organisms; (3) identify the 

feature parameters through digital signal processing; (4) 

clarify the relationship between sound production and 

behavior; (5) study the PAT for different species. 

 

 

2. ENDPOINT DETECTION BASED ON SPARSE 

DECOMPOSITION 

 

Extended from voice activity detection, endpoint detection 

distinguishes fish sound from noise based on the different 

features of the same parameters. The distinction relies on the 

decision criterion called end-point judgement. Through 

endpoint detection, the denoising effect can be improved by 

optimizing the feature parameters [15]. 

One of the most popular sound-noise differentiation 

algorithms is sparse decomposition, which has been 

extensively adopted in image processing, video processing, 

and medical signal processing. Sparse decomposition can 

decompose the original signal with proper basis functions, 

without requiring the statistical features of noise. It can also 

derive the natural features of the original signal from the 

redundant features in the library. In sparse decomposition 

algorithm, the coherent ratio reflects the reduction degree of 

the residual signal compared to the original signal through 

reconstruction and denoising. 

In PAT fish detection, the coherent ratios of fish acoustic 

signal and noise after sparse decomposition at different signal-

to-noise ratios (SNRs) could be extracted to train the detection 

algorithm. Then, the features of noisy signals can be classified 

through test. Finally, threshold decision can be adapted to 

endpoint detection. 

 

2.1 Sparse decomposition 

 

Matching pursuit (MP) algorithm is an adaptive signal 

decomposition algorithm, which iteratively approximates the 

local time-frequency structure in a highly redundant complete 

dictionary with the best matching atom. In PAT fish detection, 

the low-frequency components of fish acoustic signal are 

sparse, and similar to the MP atom in structure. But the high-

frequency components are stochastic and uncorrelated. The 

meaningful atoms extracted from fish acoustic signal can 

demonstrate the distribution of that signal. 

 

JudgementFish 

acoustic 

signals

Feature 

extraction
Recognition

Offline fish 

acoustic signals
Pretreatment

Feature 

extraction

Feature 

library 

construction

Collection
Endpoint 

detection
Pretreatment

 
 

Figure 2. The workflow of PAT fish detection 

 

Table 1. The common PAT instruments 

 
Name Function Strength Defect Application 

Hydrophone 

Convert sound pressure into electrical 

signals. Frequency range: 20Hz-4kHz. 

Sensitivity: 160-170 dBV/μPa 

Simple to use 
Unable to locate fish 

distribution 

Widely 

used 

Hydrophone 

array 

Record data with an array of multiple 

hydrophones 
Able to locate fish distribution 

In need of complex 

algorithms 
Partly used 

Sonobuoy 
Detect underwater acoustic signals 

remotely 

Able to detect long-term seasonal 

fish distribution in a fixed location 

Affected by marine 

condition; short battery 

life 

Partly used 
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During the iterative sparse decomposition of the signal, the 

atoms with the biggest inner product between original and 

residual signals are selected. Through the iterative process, the 

atomic vectors that best fit the original and residual signals are 

tracked and extracted constantly, reflecting the distribution of 

the fish acoustic signal. The coherent ratio serves as the 

termination condition of the iteration. The Gabor atom in the 

dictionary can be defined as [16]: 

 

1
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where, 𝑔(𝑡) = 𝑒−𝜋𝑡
2

is the Gaussian window function; 

γ=(s,u,v,w) is a set of time-frequency parameters which 

regulate the expansion, displacement, frequency, and phase 

position of the atom, respectively. 
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Figure 3. The workflow of the MP sparse decomposition 

 

As shown in Figure 3, the MP sparse decomposition can be 

implemented in the following steps: 

Step 1. Define the over-complete dictionary 𝐷 =

{𝑔𝑟𝑚}(𝑚 = 0,1,⋯ ,𝑀 − 1) in Hilbert space, where ‖𝑔𝑟𝑚‖ =

1. 

Step 2. Let x(n), n=1,2,…N be the clean acoustic fish signal, 

where, N is the signal length; x(n)=R0x, n=1,2,…N be the 

initial residual signal. 

Step 3. Select the optimal atom 𝑔𝑟𝑜 ∈ 𝐷 for the MP, and 

maximize |⟨𝑅0𝑥, 𝑔𝑟0⟩|, producing the residual 𝑅1𝑥 = 𝑅0𝑥 −

⟨𝑅0𝑥, 𝑔𝑟0⟩𝑔𝑟0. 

Step 4. Select the optimal 𝑔𝑟1 ∈ 𝐷  for the MP, and 

maximize |⟨𝑅1𝑥, 𝑔𝑟1⟩|, producing the residual 𝑅2𝑥 = 𝑅1𝑥 −

⟨𝑅1𝑥, 𝑔𝑟1⟩𝑔𝑟!,…, 𝑅𝑚𝑥 = 𝑅𝑚−1𝑥 − ⟨𝑅𝑚−1𝑥, 𝑔𝑟𝑚−1
⟩𝑔𝑟𝑚−1

. 

Step 5. Repeat the above steps until the coherent ratio 

𝜆(𝑅𝑚𝑥) = 𝑠𝑢𝑝
𝑔𝑟𝑚∈𝐷

|⟨𝑅𝑚𝑥,𝑔𝑟𝑚⟩|

‖𝑅𝑚𝑥‖
 reaches the maximum number M 

of iterations. 

Step 6. Obtain the M+1-st residual 𝑅𝑀+1𝑥 = 𝑅𝑀𝑥 −

⟨𝑅𝑀𝑥, 𝑔𝑟𝑀⟩𝑔𝑟𝑀 , and derive 𝑦(𝑛) = ∑ ⟨𝑅𝑚𝑥, 𝑔𝑟𝑚
𝑙 ⟩𝑔𝑟𝑚

𝑙 +𝑀
𝑚=0

𝑅𝑀+1𝑥 , n=1,2,…N. 

Step 7. Select the coherent ratio for the parameters of fish 

acoustic signal. 

Figure 4 presents the sparse decomposition of passive 

acoustic signal emitted by Campylomormyrus elephas. It can 

be seen that the original acoustic signal covered the periodic 

high amplitude pulse and trailing signal. 

 

 
 

Figure 4. The sparse decomposition of passive acoustic 

signal of Campylomormyrus elephas 

 

2.2 Result analysis 

 

Three groups of clean passive acoustic signals of 

Campylomormyrus elephas and three groups of wave passive 

acoustic signals were sampled at a frequency of 44.1kHz, and 

subject to detection by sparse decomposition, power amplitude 

and power spectrum methods (in the order of 26). Each clean 

fish acoustic signal was added strong wave noises at different 

SNRs. Figure 5 show the coherent ratio, power, and power 

spectrum distributions at different SNRs. 

As shown in Figure 6(a), the fish acoustic signals were 

similar in amplitude and trend, with obvious difference from 

the wave signals. The passive acoustic signals of the fish 

exhibited strong nonstationary, and marked low-frequency 

features. By contrast, the wave noises exhibited good stability, 

and unobvious low-frequency features. 

During sparse decomposition, the atomic signal was 

initially easy to match with the low-frequency signal of fish 

acoustic signal, but difficult to match the wave noise of high 

frequency. Hence, the residual signal of fish acoustic signal 

was lower than wave signal. In addition, the nonstationary fish 

acoustic signal made wave signal more volatile. 

As shown in Figure 6(b), fish acoustic signal and wave 

signal had some individual differences in the low-frequency 

band. Apart from these, the two signals almost coincided with 

each other in most frequencies. There were less significant 

differences compared to the eigenvalue of coherent ratio. 

Compared to Figure 6(a), Figure 6(b) presents obvious 

difference in individual distribution. But the fish acoustic 

signal and wave signal did not have significant differences. 
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(a) Coherent ratio 

 
(b) Power 

 
(c) Power spectrum 

 

Figure 5. The coherent ratio, power, and power spectrum 

distributions at different SNRs 

 

It can be further inferred from Figure 6(a) that the 

distribution of the coherent ratio was close to the fish acoustic 

signal, when the SNR was greater than 0dB. The distribution 

was still close to that signal, when SNR dropped to -10dB. As 

the SNR gradually fell to -20dB, the distribution slowly 

approximated the wave signal. The approximation to the wave 

signal was not obvious. To sum up, the gradual decrease of 

SNR makes the distribution of the coherent ratio approach the 

strong wave noise. 

In conclusion, even if fish acoustic signal is hidden in wave 

signal, it can be discriminated accurately when the SNR is 

within -10dB. Hence, the coherent ratio can be used to 

characterize different acoustic signals. The difference in 

coherent ratio facilitates the endpoint detection of passive fish 

acoustic signal. 

Figure 7 displays the time-domain waveforms and endpoint 

detections results of passive acoustic signal of Gnathonemus 

petersii at different low SNRs. 

 

 
(a) Coherent ratio 

 
(b) Power spectrum 

 

Figure 6. The fish acoustic signals at different SNRs 

 

 
(a) Clean acoustic signal and detection results based on 

power spectrum at SNRs of 10, 20, and 30dB (frameshift: 

400 points) 

 
(b) Time-domain waveform and endpoint detection result at 

SNR of 0dB 
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(c) Time-domain waveform and endpoint detection result at 

SNR of -10dB 

 

Figure 7. The time-domain waveforms and endpoint 

detections result of passive acoustic signal of Gnathonemus 

petersii at different low SNRs 

 
(a) 0dB 

 
(b) -10dB 

 

Figure 8. The different endpoints of sparse decomposition of 

the passive acoustic signal of Gnathonemus petersii 

 

As shown in Figure 7, the accuracy of endpoint detection 

improved, as the SNR increased from 10dB to 30dB based on 

the features of the power spectrum. When the SNR was below 

20dB, it was impossible to detect fish acoustic signal 

effectively. As the frameshift reached 400 and 200 samples, 

the signal could be distinguished from noise by coherent ratio. 

Overall, the sparse decomposition algorithm could 

differentiate the endpoints of acoustic signal from those of 

wave noise accurately, when the SNR reached -10dB; the 

accuracy of 200 frames was better than that of 400 frames. 

In fact, fish acoustic signal and wave noise have tiny 

difference in power spectrum (Figures 5(a) and 6(b)). When 

the SNR was below 0dB, the signal spectrum was close to the 

wave noise spectrum. As can be seen in Figure 7, the fish 

acoustic signal could not be detected by power spectrum 

method. Under the SNR of 0dB and -10dB, better degree of 

discrimination ensures a relatively high accuracy of detection. 

As shown in Figure 8(a), the signal tail and noise were 

similar in time-domain amplitude, when the SNR was 0dB. 

But the frequency of the tail part was lower than that of noise. 

In this case, the sparse decomposition algorithm will judge the 

tail signal as fish acoustic signal. 

When the SNR was -10dB, the fish acoustic signal was not 

detectable, for the tail was submerged in the noise at a low 

SNR. However, the detection accuracy increased with the 

reduction of frameshift: the detection accuracy was higher at 

the frameshift of 200 than at that of 400. 

It can also be seen from Figure 8 that the detection effect 

improved in the presence of six features at SNR=0dB, and in 

the presence of seven features at SNR=-10dB. Hence, the 

detection efficiency can be improved by reducing the features. 

In summary, this section extracts the coherent ratio through 

sparse decomposition. First, the sparse decomposition 

algorithm mines the eigenvalues of clean passive fish acoustic 

signal and wave noise at different SNRs through training, and 

treat them as the target features in acoustic test. Then, moving 

noise segment and the target features were extracted for 

classification in the detection stage. Finally, threshold decision 

was adapted to detect the endpoints. The experimental results 

show that sparse decomposition algorithm can detect the fish 

acoustic signal more accurately than power spectrum method 

at low SNRs. 

 

 

3. FEATURE EXTRACTION BASED ON SPEECH 

IMITATION TECHNOLOGY 
 

The feature extraction technologies mainly focus on time- 

and frequency-domain analyses. Lobel and Mann [17] 

obtained weak acoustic signal form damselfish through signal 

processing. Sprague et al. [18] identified drum fish in captive 

and natural environments by spectral analysis. To recognize 

fish species, Wood et al. [19] collected radiated fish signal 

with hydrophone, and conducted signal processing and 

spectrum analysis. Using hybrid neural network, Howell and 

Wood [20] differentiated between marine animal sound, the 

sound produced by human activities, and the sound of 

geological source. Stolkin et al. [21] obtained features of 

codfish through band-pass filtering and fast Fourier transform 

(FFT). Ren et al. [22] and Liu et al. [23] summarized the 

sounding principle and signal features of large yellow croaker. 

Overall, few scholars have adapted them to the noisy 

environment in seas and oceans. With the help of speech 

imitation technology, this section extracts effective features 

from the passive fish acoustic signal. 
 

3.1 Feature parameters 
 

The passive fish acoustic signal has several feature 

parameters: time-domain feature parameters, and spectral 

feature parameters. The former parameters are simple, real-

time, and easy to classify, but susceptible to noise pollution; 

the latter are important features in the frequency domain. The 
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frequency-domain features contribute more to denoising than 

time-domain features. Inspired by speech imitation technology, 

speech feature parameters [24] were adopted for feature 

extraction from the passive fish acoustic signal. 

(1) Linear prediction coefficient (LPC) and derivative 

parameters (e.g. LPC cepstrum, and transfer LPC cepstrum) 

The time-domain acoustic targets can be described by an 

autoregressive (AR) model: 

 

1

( ) ( ) ( )
p

i

i

x n n a x n i
=

= − −
 

(2) 

 

where, ai is the LPC; p is the order of the AR model; ξ(n) is 

input excitation. 

In essence, the LPC analysis searches for the optimal fit to 

the envelope of the acoustic spectrum from a given sequence 

of target signals. The AR acoustic spectrum can be estimated 

by: 

 

2

1

( ) 1 exp( 2 )
p

i

i

R t t a j fi t 
=

=  + − 
 

(3) 

 

where, t is the sampling interval; 𝜎𝜉
2  is the variance of 

excitation. The AR spectrum is a high-resolution method for 

power spectrum estimation. The power spectrum reflects the 

energy of acoustic signal along with frequency distribution. 

Formula (3) shows that AR spectrum is closely correlated with 

the LPC, suggesting that the LPC can reasonably extract 

features from acoustic signals. 

(2) Speech spectrum parameters 

Mel frequency cepstral coefficient (MFCC) simulates the 

auditory process of speech. It is affected by the performance 

of the human auditory system. This parameter boasts a strong 

recognition effect, because the ears can accurately capture the 

sound amplitude with its ability to detect nonlinear 

psychological frequency. Figure 9 shows the workflow of 

MFCC feature extraction. 

 

 
 

Figure 9. The workflow of MFCC feature extraction 

 

Fish acoustic signal and speech signal, both originate in 

medium vibration, carry similar acoustic features. The fish 

makes sound with bladder, while the speech is produced by the 

vibration of the vocal cord. The amplitude of speech signal is 

the mean sound intensity in a short time. It is generally below 

90dB. The signal of each word occupies several short time 

segments. Thus, the mean amplitude of multiple word signals 

equals the amplitude of the speech signal. The relationship 

between mean amplitude of passive fish acoustic signal and 

the amplitude of fish sound is similar. 

The short-time zero crossing rate of speech signal refers to 

the number of zero crossing axes in a given time. This rate of 

fish sound reflects the frequency of the acoustic target. By 

likening the fish sound to speech, it is possible to extract the 

features of passive fish acoustic signal by speech imitation 

technology. 

 

3.2 Result analysis 

 

The passive acoustic signals of different fish species were 

selected from a database. Figure 10 presents the acoustic 

features of Longnosed Elephant fish, Gnathonemus petersii, 

Marcusenius cyprinoids, and Brienomyrus brachyistius. 
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(d) MFCC coefficient 

 

Figure 10. The acoustic features of Longnosed Elephant fish, 

Gnathonemus petersii, Marcusenius cyprinoids, and 

Brienomyrus brachyistius 

 

As shown in Figure 10, the four acoustic signals all had 

pulse waveforms; the frequencies of the four signals fell 

between 100 and 5,000Hz, and peaked at 258, 172, 30, and 

87Hz, respectively; only a dozen of LPC dimensions could 

describe the signal features of acoustic target satisfactorily; the 

LPC coefficient had a poor performance in feature description, 

despite its low complexity and limited computing load; the 

MFCC coefficient had a better performance than the LPC 

coefficient. 

 

 
(a) 3D of LPC (20th order) 

 
(b) LPCC (1st, 2nd, 3rd, 5th, 10th, and 20th order) 

 

Figure 11. The acoustic signal and LPC parameters 

 

Figure 11 is a three-dimensional (3D) figure of LPC 

parameters extracted from the acoustic signals of Longnosed 

Elephant fish in natural environment at the frameshift of 20ms. 

Specifically, the 20-th order LPC parameters are presented in 

Figure 11(a), and the 1st, 2nd, 3rd, 5th, 10th, and 20th order LPC 

parameters are given in Figure 11(b). It can be seen that the 

first-order component reflected the energy of the acoustic 

signal higher than other components. With the growing order, 

the LPC parameter of each component of the amplitude 

decreased. When the order reached a dozen, the mean 

amplitude was about 1/10 of the first and second components. 

Because of small value, its contribution to the feature 

extraction effect is relatively small.  

Figure 12 is a 3D figure of MFCC parameters extracted 

from the acoustic signals of Longnosed Elephant fish in natural 

environment at the frameshift of 20ms. Specifically, the 20-th 

order MFCC parameters are presented in Figure 12(a), and the 

1st, 2nd, 3rd, 5th, 10th, and 20th order MFCC parameters are given 

in Figure 12(b). Comparing Figures 11 and 12, MFCC 

parameters were more efficient than LPC parameters, in spite 

of their higher computing load. 

As shown in Figure 13, the acoustic signals of Longnosed 

Elephant fish, Mosquito fish, Abudefduf saxatilis, and Piranha 

in natural environment were composed of pulse and non-

stationary signals. These acoustic signals fell in the frequency 

range of 100-5,000Hz, and peaked at 258, 861, 1,723, and 

344Hz, respectively.  

The LPC difference among different fish species was 

greater than that of the same fish specie in Figure 10. In 

addition, the MFCC difference was more discriminative than 

the LPC difference, and more robust than the MFCC 

difference of the same fish specie in Figure 10. 

In summary, this section proposes a feature extraction 

method for passive fish acoustic signal based on speech 

imitation technology. Based on the similarity between passive 

fish acoustic signal and speech mechanism, this feature 

extraction method can effectively extract fish acoustic signals 

from the marine background. Experimental results confirm 

that the parameters of this method have few feature 

dimensions, boast strong robustness, and require small 

calculation. The proposed method shed new light on the 

protection of fishery resources. 

 

 
(a) MFCC (20th order) 

 
(b) MFCC (1st, 2nd, 3rd, 5th, 10th, and 20th order) 

 

Figure 12. The acoustic signal and MFCC parameters 
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(a) Time domain  

 
(b) Frequency domain 

 
(c) LPC coefficient 

 
(d) MFCC coefficient 

 

Figure 13. The different features of the Longnosed Elephant 

fish, Mosquito fish, Abudefduf saxatilis, and Piranha 

4. CONCLUSIONS 

 

As a novel marine engineering technology, the PAT attracts 

much attention from scholars at home and abroad. After a 

detailed introduction to the PAT, this paper designs a sparse 

decomposition algorithm and a feature extraction method for 

fish acoustic signal in marine environment, and verifies the 

effectiveness of the proposed methods through experiments. 

The proposed methods solve the key tasks in the PAT fish 

detection, and help to detect the habitat and living habits of 

fish and other marine organisms. With the development of the 

PAT, the proposed methods have great prospects in marine 

fishery. 
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