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Alcoholism is one of the major health problems in the world. The organ most affected by 

alcohol is the brain. It has been shown that alcohol causes neuronal loss in the brain and 

reduces brain blood flow and oxygen use. Electroencephalography is a method that measures 

the instantaneous electrical activity of the brain. It is known that valuable information can 

be obtained by observing the biological effects of alcohol through EEG. As their methods 

of signal processing and analysis have evolved, Electroencephalography signals have 

attracted the attention of researchers in this field. In this study, methods of the time-

frequency analysis were applied to Electroencephalography signals obtained from normal 

and alcoholic subjects. For this purpose, the Cohen’s class distribution was examined. 

Ambiguity function analysis, which was in the structure of the distribution, was applied to 

the signals. Then, from the kernel structure inside the distribution, the Wigner-Ville 

distribution, which was very common, was reached and this distribution was examined. The 

inadequacy of the distribution resolution was seen and analysis of the new time-frequency 

distributions, which were obtained by making convolution with 4 types of kernel functions 

(nonseparable, separable, Doppler independent, lag independent), was performed. As a 

result, it was shown that the resolution of time-frequency distributions could be improved 

with proper kernel functions. Thus, at the end of these analyses, changes that alcohol caused 

in brain functions were revealed. 
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1. INTRODUCTION

One of the most common abnormalities seen in alcoholics 

is the shrinkage of the brain. Drinking alcohol causes a 

significant reduction in brain weight. In cortical neuron counts, 

neuron loss has been shown to be significant, especially in the 

frontal cortex [1, 2]. 

Studies conducted on chronic alcoholics have shown that 

the frontal cortex is one of the regions where blood flow and 

oxygen use decrease and the regional decrease in brain blood 

flow is the greatest [1, 3]. 

In alcoholics, when the amount of thiamine in the brain 

decreases, the transketolase enzyme cannot complete its task 

and the glucose citric acid cycle is broken down into lactic acid. 

Therefore, enough energy cannot be obtained from glucose, 

which is the most important energy source of the brain. 

GABA (Gamma-Aminobutyric acid) is the most important 

inhibitory neurotransmitter of the central nervous system and 

performs hyperpolarization by increasing the passage of 

chlorine into neurons. Alcohol depresses neurons by 

stimulating GABA, forming a complex with the GABA 

receptor, and inhibiting the release of noradrenaline from the 

locus coeruleus. This event can explain the depressing effect 

of alcohol by GABA mechanism [1, 4, 5]. 

Electroencephalography (EEG) is considered valuable as a 

non-invasive electrophysiological method in the investigation 

of the biological aspect of alcoholism [6]. EEG is an 

examination method in which spontaneous electrical activity 

of the brain is recorded through electrodes. This review 

reflects the functional state of the brain at the time rather than 

its structural features. Therefore, despite improvements in 

structural imaging methods (CT, MRI), it still maintains its 

importance. In particular, in clinical tables where there is no 

pathological evidence reflected in structural examination 

methods, the importance of the EEG increases even more [7]. 

The postsynaptic potentials that constitute the source of the 

EEG are collected in the cortex, spread through the structures 

surrounding the brain to the scalp with hair and recorded from 

the scalp via metal electrodes. The location of each electrode 

covered with a conductive material is determined by standard 

measurements performed on nasion, inion, right and left 

preauricular points and they are placed according to the 

international 10-20 system (Figure 1) [7-9]. 

Figure 1. Layout of electrodes in EEG 
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The EEG enables the examination of changes in cognitive 

activity in millisecond-level. While neurons are processing 

information and integrating their communication between 

each other, they generate electrical discharges at a time-

resolution of milliseconds. When considered in terms of the 

oscillative approach, these electrical discharges that recur over 

time are called EEG frequencies. Traditionally, between 0.5-

3.5 Hz is called as delta (δ), between 3.5-7 Hz as theta (θ), 

between 8-14 Hz as Alpha, between 15-30 Hz as beta (β), and 

between 30-48 Hz as gamma (γ). The traditional approach 

states that delta occurs during sleep, theta occurs during 

superficial sleep, alpha occurs when eyes are closed but not 

sleeping, a beta occurs when eyes are open, awake, and during 

a cognitive task or muscle activity. The oscillative approach 

also examines these frequencies according to the lower 

frequencies. According to the oscillative approach, various 

sensory and cognitive functions are associated with these 

frequencies. For example, the delta is associated with memory, 

theta is associated with attention, alpha is associated with 

memory and attention, beta is associated with cortical arousal, 

and gamma is associated with the processing of sensory and 

cognitive information [10, 11]. 

The most common findings obtained from alcoholics are the 

increase in theta and beta activity in EEG. The findings on 

alpha activity are not consistent. Changes in beta activity 

amplitude have also been observed frequently in the intimates 

of alcoholics. These pieces of information indicate that some 

biological factors play a role in the development of alcoholism 

[6]. The conducted studies mention a relationship between 

alcohol dependence and low-voltage EEG. In another study, in 

alcohol addicts, delta and theta decelerations, which were not 

observed in normal EEG individuals and were or were not 

accompanied by Alpha deceleration, were identified. It was 

said that delta and theta decelerations might be a specific 

indicator of a disorder in brain function. It is still not clear 

whether the decreased alpha activity seen in alcohol addicts 

develops as a result of the alcohol addiction, or whether it is a 

risk factor in the development of alcohol addiction [12-14]. 

As the techniques in the signal analysis have developed, 

EEG signals have attracted the attention of experts in this field 

and begun to be the subject of a variety of research. In order to 

infer detailed information from signals whose frequency 

changes over time, it is necessary to examine these signals at 

the same time in both regions, not just in the time or frequency 

region. Criteria such as how the frequency of signals changes 

over time, speed of change and time-frequency bandwidths 

give us detailed information about the characteristic of the 

signal. Examining both regions at the same time (that is, time-

frequency signal processing), which allows us to learn more 

about the signal, is a fundamental research topic for all these 

application areas [15, 16]. In such analyses, the Short-Time 

Fourier Transform (STFT) and Wigner-Ville Distribution 

(WVD) are generally used. STFT is a linear and relatively easy 

transformation. However, in STFT, a good resolution requires 

an appropriate window selection, and high resolution cannot 

be achieved on both the time and frequency axis at the same 

time. On the other hand, WVD is a distribution that provides 

fairly high resolution in addition to its many other good 

features. However, due to its quadratic structure, it contains 

cross-terms alongside the main signal components that we 

want to identify [17, 18]. These cross-terms disrupt the 

identifiability of the signal. For this reason, the distribution, 

which is called the Cohen class and is a generalization of 

WVD, is used. The goal in such distributions is to destroy 

cross-terms by designing the kernel of the Cohen class 

distribution and to obtain a time-frequency distribution whose 

resolution is high [17, 19]. Cohen class distributions, such as 

Wigner Ville and Choi Williams, are defined in the weighted 

integral form. Cohen class distributions, such as Wigner Ville 

and Choi Williams, are defined in the weighted integral form 

and these weighting functions are called kernel [20]. In this 

study, using WVD, the effect of 4 types of kernels 

(nonseparable, separable, Doppler independent, lag 

independent) on cross-terms was observed. 

 

 

2. MATHEMATICAL BASIS AND APPLICATION 

 

The data used in the study was taken from the UCI KDD 

Archive. 1-second recordings at 256 Hz sampling frequency 

were obtained from 64 electrodes placed on the scalp of 

healthy and sick individuals. The control and alcoholic 

subjects were subjected to a stimulus (showing themselves a 

picture) and recordings were taken [21]. In the study, the 

signals obtained from the C4 electrode (Figure 1) were 

analyzed. 

In Figure 2, the basic approach used in the study is given as 

a block diagram. The signs taken from the subjects via EEG 

are transferred to the computer environment. Later, with the 

MATLAB program, the distributions of NSK (Nonseparable 

Kernel), SK (Separable Kernel), DI (Doppler-independent 

kernel) and LI (Lag-independent kernel) were obtained and 

these distribution gaps were analyzed. 

 

 
 

Figure 2. Block diagram of the study 

 

2.1 EEG signal with running minimum and maximum  

 

 
(a) Control subject 

 
(b) Alcoholic subject 

 

Figure 3. EEG graphs with running Min and Max 
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The EEG graph for the control subject oscillates in the range 

of minimum and maximum (18, -22). Compare to the control 

subject, the EEG graph of the alcoholic subject shows 

oscillations that have a higher amplitude and in the range of 30 

and -20. The most noticeable distinguishing issue compared to 

the normal is the excess increase in the number of peaks. In 

other words, it is observed that the period of alcoholic subjects 

gets smaller (Figure 3). 

 

2.2 Spectral amplitudes of the EEG signal 

 

In the EEG amplitude spectrum of the control subject, two 

main components at origin and 25 Hz take place with their 

high amplitudes (approximately 1180 and 650 units). The 

components terminate at around 55 Hz. The most notable 

feature in the EEG amplitude spectrum of the alcoholic subject 

is the spreading of the components to the entire frequency 

plane in large numbers. In addition, the amplitudes of the 

components are much lower than that of normal (maximum 

280 units). Briefly, the normal sign is a regular sign with a 

bandwidth of about 50 Hz, while the alcoholic sign is a 

complex spectrum that spreads to the whole plane (Figure 4). 

 

 
(a) Control subject 

 
(b) Alcoholic subject 

 

Figure 4. EEG amplitude spectrums 

 

2.3 Cohen distribution, ambiguity function and WVD 

 

The most useful time-frequency distributions (TFD) are 

TFDs called as quadratic or bilinear (QTFD). The main 

member of this class is WVD, and all other TFDs (such as 

Choi-Williams, Zhao-Atlas-Marks, Born-Jordan) are 

smoothed versions of WVD. Again, all these TFDs are 

members of Cohen's bilinear class. A Cohen-class distribution 

is a two-dimensional Fourier transform (Eq. (1)) of the 

weighted version of the symmetric ambiguity function (AF) of 

the signal to be analyzed. 

 

𝐶(𝑡, 𝑓) = ∬ 𝐴(𝑣, 𝜏)Φ(𝑣, 𝜏)𝑒−𝑗2𝜋𝜃𝑡−𝑗2𝜋𝑓𝑡

∞

−∞

𝑑𝑣𝑑𝜏 (1) 

 

The AF is identified as follows. 

 

𝐴(𝑣, 𝜏) = ∫ 𝑥(𝑢 +
𝜏

2

∞

−∞

)𝑥∗(𝑢 −
𝜏

2
)𝑒𝑗𝑣𝑢𝑑𝑢 (2) 

 

In Eq. (1) and (2), t is time, f is frequency, τ is time lag, v is 

frequency lag, and u is the additional integral time variable. 

The weight function Φ(v,τ) is called the kernel of the 

distribution. 

 

 
(a) Control subject 

 
(b) Alcoholic subject 

 

Figure 5. Ambiguity functions of the EEG signals 

 

In AF of the control subject, there are 3 Bar formations 

extending along the time axis in the range of 100-160 Hz. The 

AF of the alcoholic subject, on the other hand, draws attention 

by small multi-part formations. Here, normal subject AF 

shows the uniform distribution, while alcoholic AF is 

spreading as distorted distribution (Figure 5.a, b). AFs are 

symmetric functions. 

The properties of a bilinear TFD are determined by its 

kernel function. Because AF is a bilinear function of the signal, 

unintended cross-terms occur. This causes the resolution of the 

TFD to decrease and the interpretation of it to become difficult. 

To prevent this and suppress unwanted signals, a kernel is 

selected for weighting AF. 

The kernel of WVD, which is the simplest and most 

important of the Cohen class bilinear TFDs, is Φ(v,τ)=1 and is 

expressed as in Eq. (3) [22-24]. 

 

𝑊𝑉𝐷(𝑡, 𝑓) = ∫ 𝑥(𝑡 +
𝜏

2

∞

−∞

)𝑥∗(𝑡 −
𝜏

2
)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 (3) 
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WVD does not form a cross-term when the sign x(t) in Eq. 

(3) is single-component, whereas when there is a multi-

component sign like x(t)=s1(t)+s2(t), the expression WVD 

becomes as follows due to its quadratic structure. 

 

𝑊𝑉𝐷𝑥(𝑡, 𝑓) = 𝑊𝑉𝐷𝑠1
(𝑡, 𝑓) + 𝑊𝑉𝐷𝑠2

(𝑡, 𝑓) + 

2𝑅𝑒{𝑊𝑉𝐷𝑠1,𝑠2
(𝑡, 𝑓)} 

(4) 

 

The 2𝑅𝑒{𝑊𝑉𝐷𝑠1,𝑠2
(𝑡, 𝑓)} component in Eq. (4) distorts the 

intelligibility of the distribution by producing cross-term [15, 

25, 26]. 

 

 
(a) Control subject 

 
(b) Alcoholic subject 

 

Figure 6. WVD of the EEG signals 
 

In the WVD of the control subject, 3 illuminated regions are 

extending along the time axis in the region of 0.10 and 22 Hz. 

In the WVD of the alcoholic subject, on the other hand, there 

are multi-part illuminated regions that spread to the entire 

plane. It appears that the cross-terms mentioned above distort 

the resolution of the WVD and mask the main components. 

Although it shows itself in the distribution in AF, which is in 

the structure of WVD, the resolution of the main components 

is bad (Figure 6). 

 

2.4 TFDs with kernel structure 

 

To suppress cross-terms, a new time-frequency distribution 

is created by convoluting WVD with a kernel function (Eq. 

(5)). 

 

𝜌𝑥(𝑡, 𝑓) = 𝑊𝑉𝐷𝑥(𝑡, 𝑓) ∗∗ 𝛾(𝑡, 𝑓) (5) 

 

In Eq. (5), γ(t,f) is the kernel function of WVD and ** is 

convolution [27-29]. In addition, Equation 5 can be expressed 

by one of three dimensions (time-lag (t, τ), Doppler-frequency 

(v, f), and Doppler-lag (v, τ) (Figure 7)) [30]. 

The kernel structures used in quadratic TFDs are shown in 

Figure 8 [30]. 

𝑔(𝑡, 𝜏) are nonseparable kernels known as the most general 

state of kernel structures. They are filter structures showing 

exponential distribution (Eq. (6)) [31]. In this study, the 

function of  
√𝜋𝜎

|𝜏|
𝑒−𝜋2𝜎𝑡2/𝜏2

 was used as a nonseparable kernel. 

 

 
 

Figure 7. The transition of time-frequency presentation with 

other dimensions 
 

 
 

Figure 8. Kernel types used in QTFDs 

 

 
(a) Control subject 

 
(b) Alcoholic subject 

 

Figure 9. EEG signals’ TFD with nonseparable kernel 

 

In the control subject TFD with the nonseparable kernel, 3 

main components, masked in the WVD (Figure 6(a)), have 
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become observable. In the alcoholic subject's TFD, some high-

frequency components masked completely in WVD have 

become perceivable although they are very inadequate (Figure 

9). 

A simple way to design kernel filters for QTFDs is to 

consider the special state of a separable kernel (Eqns. (6)-(9)) 

[30]. In practice, in a separable kernel design, its positivity 

property is neglected for higher resolution and for the fact that 

TFD can be interpreted as a (t, f) gradient of energy. A 

nonconstant separable kernel can be designed as a LI and DI 

kernel (a TFD without WVD; and with or without amplitude 

scaling), whereas a separable kernel can be designed as neither 

a LI nor a DI [32]. 

In this study, the function of |𝜏|𝛽𝑐𝑜𝑠ℎ−2𝛽𝑡 was used as a 

separable kernel. 

 

𝑔(𝑣, 𝜏) = 𝐺1(𝑣)𝑔2(𝜏) (6) 

 

𝐺1(𝑣) = ℱ{𝑔1(𝑡)} (7) 

 

𝐺2(𝑓) = ℱ{𝑔2(𝜏)} (8) 

 

𝜌𝑥(𝑡, 𝑓) = 𝑔1(𝑡) ∗ 𝑊𝑉𝐷𝑥(𝑡, 𝑓) ∗ 𝐺2(𝑓) (9) 

 

 
(a) Control subject 

 
(b) Alcoholic subject 

 

Figure 10. EEG signals’ TFD with separable kernel 

 

The three main components at low frequencies were 

observed very clearly in the control subject’s TFD with the 

separable kernel. The main components that spread across the 

entire plane in the TFD of the alcoholic subject and emerged 

especially at high frequencies were able to be monitored with 

high resolution (Figure 10). 

The Doppler-independent kernel (DI) is a special state of 

the separable kernel obtained using the constant 𝐺1(𝑣) (Eqns. 

(10)-(13)) [30]. A TFD with DI kernels provides realness, time 

marginal, time support and IF features. However, the DI kernel 

does not display frequency marginal, frequency support, or 

spectral delay characteristics despite a smoothing along the 

frequency axis [32]. 

In this study, the function of 𝛿(𝑡)𝑤(𝜏) was used as the DI 

kernel. 𝑤(𝜏) is a window function that is real and dual. 

 

𝐺1(𝑣) = 1 (10) 

 

𝑔(𝑣, 𝜏) = 𝑔2(𝜏) (11) 

 

𝑔1(𝑡) = 𝛿(𝑡) (12) 

 

𝜌𝑥(𝑡, 𝑓) = 𝐺2(𝑓) ∗ 𝑊𝑉𝐷𝑥(𝑡, 𝑓) (13) 

 

 
(a) Control subject 

 
(b) Alcoholic subject 

 

Figure 11. EEG signals’ TFD with Doppler-independent 

kernel 

 

In the control subject's TFD with DI kernels, the main 

components at low frequencies are seen at a lower resolution 

compared to the TFD with separable kernels. The same 

situation, with a lower resolution, is true also for the TFD of 

the alcoholic subject (Figure 11). 

The Lag-independent kernel (LI) is another special state of 

the separable kernel obtained using the constant 𝑔2(𝜏) (Eqns. 

(14)-(17)) [30]. A TFD with LI kernel can fulfil the realness, 

frequency marginal, frequency support and spectral delay 

features. However, LI kernel is not suitable for the IF features 

despite smoothing performed along the time marginal, time 

support, or time axis [32]. 

In this study, the function 
𝑐𝑜𝑠ℎ−2𝛽𝑡

∫ 𝑐𝑜𝑠ℎ−2𝛽𝜉𝑑𝜉
∞

−∞

 was used as the LI 

kernel. 

 

𝑔2(𝜏) = 1 (14) 

 

𝑔(𝑣, 𝜏) = 𝐺1(𝑣) (15) 

 

𝑔(𝑣, 𝜏) = 𝐺1(𝑣) (16) 

 

𝜌𝑥(𝑡, 𝑓) = 𝑔1(𝑡) ∗ 𝑊𝑉𝐷𝑥(𝑡, 𝑓) (17) 

 

While in the control subject TFD with LI kernels, the 

resolution of 3 main components with low frequency is 
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slightly better compared to the DI kernel structure, it is much 

poor compared to the separable kernel structure. The same 

issue is also true for the TFD of the alcoholic subject (Figure 

12). 

In Table 1, the TFDs used in the study are presented 

together with kernel functions and their performance. 

The success of the methods used in this study was evaluated 

according to the solubility performance of the main 

components in the distributions. Accordingly, the most 

successful resolution was observed in the separable kernel 

distribution. Three main components centred (0, 225), (0.08, 

50) and (0.09, 195) in a normal subject, and more than 10 

major components distributed over the whole plane in the 

alcoholic subject (e.g. (0.2, 172), (0.35, 73) … Components 

with central coordinates) can be detected with good resolution 

compared to other kernel distributions (Figure 10). 

 

 
(a) Control subject 

 
(b) Alcoholic subject 

 

Figure 12. EEG signals’ TFD with lag-independent 

kernel 

 

Table 1. TFDs used in the study 

 
TFD Kernel Function Resolution Performance 

WVD 1 Very Poor 

Nonseparable 

Kernel 
√𝜋𝜎

|𝜏|
𝑒−𝜋2𝜎𝑡2/𝜏2

 Poor 

Separable Kernel |𝜏|𝛽𝑐𝑜𝑠ℎ−2𝛽𝑡 Good 

DI Kernel 𝛿(𝑡)𝑤(𝜏) Poor 

LI Kernel 
𝑐𝑜𝑠ℎ−2𝛽𝑡

∫ 𝑐𝑜𝑠ℎ−2𝛽𝜉𝑑𝜉
∞

−∞

 Poor 

 

 

3. CONCLUSIONS 

 

Alcoholism is one of the most common health problems. 

One of the organs that it causes the greatest damage is the brain. 

It is possible to detect these biological changes by using EEG. 

In this study, EEG signals were obtained from normal and 

alcoholic subjects, time-frequency analyses were applied to 

these signals and differences were determined with the best 

resolution. 

First, EEG Signal with Running Minimum and Maximum 

were examined. It was determined that the extensions of 

signals of the alcoholic were higher and that their period was 

much lower than normal. In contrast to the normal signal, 

whose spectral amplitude consists of two main components, 

the alcoholic subject has numerous spectral components that 

spread over the entire plane. 

The Cohen class TFD structure was used in this study. This 

structure consists of AF and kernel function. When the 

ambiguity functions of the signals were examined, although 

there was a smooth bar structure in the normal signal, the 

alcohol showed its effect with its multipart structure.  

Kernel functions are filter structures that affect the 

resolution of TFD. The structure in which the kernel function 

in the Cohen relation is 1 is WVD, which is widely used and 

has many versions. In WVD analysis of signals, the main 

components at low frequencies in the control subject and the 

components spreading to the entire plane in the alcoholic 

subject are barely noticeable with a very poor resolution.  

To solve the resolution problem, four different kernels 

(nonseparable, separable, DI, LI) were tested for the WVD 

structure. In the nonseparable TFD analysis, the main 

components (3 main components at low frequencies) for the 

control subject became more noticeable. For the alcoholic 

subject, on the other hand, the resolution was worse than 

normal. In the separable TFD analysis, cross-terms were better 

suppressed, and the main components for the normal and 

alcoholic subjects were clearly revealed. The TFD of the 

control subject's EEG had 3 main components at low 

frequencies and the TFD of the alcoholic subject's EEG had 

many major components, especially at high frequencies, that 

spread across the entire plane. The effect of alcohol was seen 

with these components that spread all over the plane. In this 

study, it was also figured out that in the DI and LI TFD 

structures, the resolution was poor compared to the separable 

TFD structure. Consequently, it can be said that in TFD 

analysis of normal and alcoholic subjects' EEGs, the optimal 

structure is TFDs that have separable kernel structure.  
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