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Mobile crowd sensing can set up a large real-time sensing network, which is closely related 

to the society, from intelligent mobile terminals carried by ordinary users. However, the 

current crowd sensing systems face problems like high cost and variable quality of data 

provided by users. To maximize the accuracy of mobile crowd sensing system, this paper 

designs the architecture of mobile crowd sensing system in the context of big data, and 

determines the principle of data optimization, from the following two perspectives: 

selecting sampling points that benefit the recovery of the entire data, and full utilization of 

the spatial and temporal correlations between sensing data. Next, an adaptive collection 

method was developed for crowd sensing data in sparse form or in the form of three-

dimensional (3D) tensor. The proposed method was proved effective through experiments. 

The research results provide reference for applying tensor completion in other data 

collection tasks. 
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1. INTRODUCTION

With the proliferation of embedded devices, Internet of 

things (IoT), and wireless sensor network (WSN), urban and 

social sensing has become a hot topic in information research 

[1-4]. The current urban sensing systems, relying on 

professional sensing facilities (e.g. cameras and air detectors), 

face problems like limited coverage and high maintenance cost. 

To solve these problems, a novel technology called mobile 

crowd sensing has emerged. Mobile crowd sensing can set up 

a large real-time sensing network, which is closely related to 

the society, from intelligent mobile terminals (e.g. 

smartphones) carried by ordinary users, promoting the 

innovation and reform of social and urban management [5-9]. 

Compared with the various sensing methods of traditional 

networks, mobile crowd sensing boasts huge data scale, low 

cost, and high sampling speed, and has broad application 

prospects in many fields, namely, public security, intelligent 

transport, environmental monitoring, social recommendation, 

and public facility management [10-13]. Capponi et al. [14] 

developed an iOS app for monitoring the water quality of 

rivers, which allows users to upload photos on the states (e.g. 

water volume and garbage volume) of the local streams or 

rivers, and displays the health of all these rivers on an open 

website. Piao and Liu [15] designed an app to calculate and 

estimate the number of cars in the congestion zone and the 

duration of congestion, and share the real-time videos and 

photos of congestion. Xiao et al. [16] provided a sharing 

platform of the global positioning system (GPS) data on taxis 

and buses, as well as the photos around bus stops, thereby 

improving the pick-up rate of taxis and recognition of bus 

stops. 

Despite its advantages, mobile crowd sensing might not be 

able to provide high-quality follow-up services, because the 

data from mobile terminals have varied quality, and even 

contain lots of errors or redundant items. The unstable data 

quality brings a burden on the hardware of sensors, network 

measurement resources, and information transmission cost [17, 

18]. To improve the data quality in crowd sensing system, 

Capponi et al. [19] designed a truth value discovery method 

based on a fine-grained reliability model, and constructed a 

reasonable task allocation mechanism for the possible gains 

from the data quality of various sensing tasks. Lane et al. [20] 

established a compressed crowd sensing platform, capable of 

compressing data with unobvious sparse structure, and applied 

it successfully to largescale census of urban population. 

Tensor completion is widely used in typical network 

engineering tasks, such as load balancing, capacity planning, 

network provision, failure recovery, and anomaly detection. 

Existing research shows that tensor completion is more 

accurate than matrix completion in data collection and 

recovery [21, 22]. Fiandrino et al. [23] presented three tensor 

completion algorithms for optimization problems: simple low-

rank tensor completion algorithm, high-precision low-rank 

tensor completion algorithm, and fast low-rank tensor 

completion algorithm. To simplify the minimization of tensor 

kernel norm, Liu et al. [24] performed Tucker decomposition 

and weighted optimization on the tensor completion algorithm. 

Inspired by tensor-singular value decomposition (t-SVD), 

Capponi et al. [25] proposed a completion algorithm that 

solves the tensor norm minimization in the decomposition 

process. 

This paper attempts to solve the problems that severely 

affect the service quality of crowd sensing system, including 

the excessive sensing cost, and the varied quality of the data 

provided by users. Based on tensor completion, the authors 

designed a novel adaptive collection method for mobile crowd 

sensing system from two perspectives: selecting sampling 

points that benefit the recovery of the entire data, and full 

utilization of the spatial and temporal correlations between 
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sensing data.  

The remainder of this paper is organized as follows: Section 

2 introduces the architecture of mobile crowd sensing system 

in the context of big data, and explains the principle of data 

optimization; Section 3 provides a data collection strategy 

based on tensor completion and sparse sampling, and studies 

the adaptive collection of crowd sensing data in sparse form or 

in the form of three-dimensional (3D) tensors; Section 4 

verifies the proposed method through experiments; Section 5 

puts forward the conclusions. 

 

 

2. SYSTEM ARCHITECTURE AND OPTIMIZATION 

PRINCIPLE 

 

As shown in Figure 1, a complete crowd sensing system in 

the context of big data typically consists of an application layer, 

an information processing layer, a data collection and 

processing layer, and a crowd sensing layer. 

 

 
 

Figure 1. The architecture of crowd sensing system in the 

context of big data 

 

The application layer mainly includes the applications in 

environment, public facilities, and society, i.e. air quality 

monitoring, water quality monitoring, noise monitoring, social 

situation sensing, congestion monitoring, and road condition 

monitoring. 

The information processing layer adopts or combines 

methods like artificial intelligence, machine intelligence, and 

clustering optimization to correlate, mine or fuse multi-source 

heterogeneous data collected by the mobile crowd sensing 

network. 

The data collection and processing layer collects and 

transmits location data and the output information of various 

sensors. If the users actively participate in the collection 

process, the collected data tend to be accurate; if the data are 

obtained by indirect sensing of user behaviors, the data 

accuracy will depend on the application scenarios and sensing 

methods. Therefore, this layer incentivizes participatory 

sensing, and optimizes the allocation of sensing tasks. The 

common types of mobile crowd sensing networks include 

Bluetooth, Wi-Fi, and 4G/5G networks. 

The crowd sensing layer receives data from users via mobile 

sensing and mobile social networks. The data are usually 

stored and processed in the cloud. According to user needs, the 

data could also be stored, calculated, and accessed locally. 

Focusing on the data collection and transmission layer, this 

paper explores the evaluation of data quality and treatment of 

redundancy, aiming to overcome the poor quality and high 

redundancy of sensing data provided by various users.  

Figure 2 illustrates the hierarchical pyramid-tree used to 

detect the highly similar and redundant image data. The 

connected nodes represent constraints like shooting time, 

location, and angle; the terminal nodes represent data 

information; the branch structure represents the threshold of 

the corresponding tree.  

 

 
 

Figure 2. The hierarchical pyramid-tree 

 

The redundancy of multidimensional mobile crowd sensing 

data can be identified through multi-feature clustering under 

the semantic constraints. To discover the redundant or missing 

data of user nodes at the semantic level, the tree structures of 

two nodes must be exchanged at the moment of contact. The 

missing items need to be grafted, and the redundant items, 

replaced with high-quality data. 

 

 

3. DATA COLLECTION STRATEGY 

 

The core issues in the application of mobile crowd sensing 

are properly evaluating data quality and treating redundant 

items. Using an observation matrix unrelated to the 

transformation base, compressed crowd sensing maps the 

compressible or sparse high-dimensional data in the 

transformation domain to a low-dimensional space. In this way, 

the reconstruction of the original data becomes an 

optimization problem. 

To improve the quality of sensing data and reduce the 

sensing cost, this paper proposes a compressed mobile crowd 

sensing method based on tensor completion and sparse 

sampling, in view of the high spatiotemporal correlations 

between mobile terminal outputs. 

 

3.1 Construction and solution of tensor completion model 

 

The mathematical model of tensor compaction can be 

expressed as: 

 

 = AQtsQrank
Q

..  )(min  (1) 

 

where, rank(Q) is the rank of the tensor. The tensor rank can 

534



 

be defined as Tucker rank (i.e. n-rank) or 

CANDECOMP/PARAFAC (CP) rank (CANDECOMP: 

canonical decomposition; PARAFAC: parallel factors 

decomposition). Here, the Tucker rank definition is selected. 

Let qi be the mode-n expansion of tensor Q. Then, the model 

optimization problem can be expressed as: 
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Tensor completion can be solved in two paths: (1) Minimize 

the tensor trace norm, i.e., transform the low-rank tensor 

completion problem into a low-rank matrix completion 

problem by mapping high-dimensional tensor into matrices. (2) 

Optimize tensor decomposition, i.e., solve low-rank tensor 

completion by the idea of tensor algebra; The options include 

singular value decomposition (SVD), CP decomposition 

(Figure 3), and Tucker decomposition (Figure 4). 

 

 
 

Figure 3. The CP decomposition 

 

 
 

Figure 4. The Tucker decomposition  

 

For path 1, the optimization problem of tensor completion 

can be transformed with the following tensor trace norm: 
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where, ‖qi‖* is the kernel norm of each matrix after tensor 

expansion; ωi is the weighting coefficient of the kernel norm 

of each matrix. Suppose the number of kernel norms equals 

the sum of singular values. Then, the SVD with trace norm can 

be expressed as: 
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For path 2, the general mathematical model for tensor 

completion can be expressed as: 

 

( )
HQ
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2

1
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where, Z is the indicator tensor, which sets the unknown 

positions of matrix elements to zeros and the known positions 

to ones. Through CP decomposition of tensor Q, the 

optimization problem can be corrected as: 
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Through Tucker decomposition of tensor Q, the 

optimization problem can be converted into: 
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3.2 Data collection through compressed crowd sensing 

based on sparse sampling 

 

The key to reconstructing the original data is the random 

sparse sampling of low-rank tensors. Our random sparse 

sampling method takes basis on theory of compressed crowd 

sensing. For any data sequence c, the sparse vector c*=ΓTc 

obtained by orthogonal basis Γ transform is sparse if it satisfies: 

 

Pcc

r

i

r

i
r









=  

/1

 (8) 

 

where, r[0, 2]; P>2. If the transformation coefficients of the 

data sequence decay exponentially under the orthogonal basis 

Γ, then all terms with close-to-zero coefficients can be 

neglected. In this case, the sparse approximation of data 

sequence c can be achieved with the linear combination of a 

few terms with large coefficients. Here, the sparsity of the 

linear combination is set to k, that is, the k basis vectors with 

nonzero coefficients of orthogonal basis Γ. At this time, the 

sparse vector c* has M-k coefficients equal to zero (k≪M). 

Then, the data sequence c can be expressed: 

 
= cc  (9) 

 

Based on compressed sensing theory, the original data are 

reconstructed with the compressed N-dimensional signal, 

rather than the original M-dimensional signal. Let Φ be an 

N×M matrix of linear measurement. Then, the mathematical 

model of linear measurement L can be expressed as: 

 
 === ccΨΨcL  (10) 

 

The original data can be reconstructed by extracting the N-

dimensional data sequence from the measurement L=Ψc. The 

reconstruction can be completed by solving (10), that is, the 

optimization problem (11): 

 
 == cycc ，

0
minargˆ  (11) 

 

As can be seen from (13), solving one L0-norm optimization 

problem is sufficient to recover c from the sparsely sampled 

data sequence. However, this problem is rather complex to 

solve directly, and often transformed into an L1-norm 
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optimization problem. Being the most important matrix of 

compressed crowd sensing, the linear measurement matrix Φ 

must have the restricted isometry property (RIP): 

 
2

2

2

2

2

2
)1()1( yyxy ddd  +−  (12) 

 

That is, if 1<d<b and d are integers, there exists a λd(0<λd<1) 

making each a×d submatrix Xd and every vector y of a×b 

matrix X satisfy (12). 

The case where the measurement matrix Ψ is not correlated 

with sparse orthogonal basis matrix Γ is equivalent to the RIP 

criterion. Let Ψi denote a vector of Ψ, and Γi denote a vector 

of Γ. The correlation coefficient can be defined as: 

 

ii
i*j

,= max  (13) 

 

where, φ>0 describes the correlation between Ψ and Γ. The φ 

value is positively correlated with the degree of correlation 

between the two matrices. 

In the traditional theory on compressed crowd sensing, the 

target data sequence is usually discrete. Hence, the 

compressed sensing framework should be expanded to suit the 

collection of continuous analog signals in actual application. 

For this purpose, an analog signal converter was designed 

(Figure 5). 

 

 
 

Figure 5. The analog signal converter 

  

Let C(t) be an analog signal with a finite information rate, 

composed of a limited number of discrete weighted continuous 

bases: 
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In the light of Figure 2, the discrete observations can be 

expressed as: 
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That is: 
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where, 
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By (17), the matrix Φ of the reconstruction algorithm can 

be established, laying the basis for effective reconstruction of 

the sampling data. 

 

3.3 Adaptive data collection strategy based on tensor 

completion  

 

In this research, the items of mobile crowd sensing data are 

defined as the real-time temperatures in a city. Firstly, the 

urban area D was meshed into S1×S2 grids at a certain interval 

d. The center of each grid is the sampling point of the real-time 

temperature, denoted as (si, sj), i=1, …, S1, j=, …, S2. During 

data collection, the users measure the temperatures of T hours 

with mobile phone or other intelligent mobile terminals. The 

tensor of real-time temperatures in the 2D area D was defined 

as a third-order tensor formed by the temperatures of T hours 

at any sampling point (s1, s2), denoted as Tem(s1, s2, t)∈RS1×S2×T. 

Let n be the preset number of samples, which is much 

smaller than S1×S2. Then, temperatures were collected from n 

out of all sampling points. The goal of data collection is to 

reconstruct the complete tensor of real-time temperatures 

through sparse sampling in urban area D, that is, reconstruct 

Tem from the data sampled by n users. After data collection, 

the measurement matrix L can be obtained as: 

 

)(TemL =  (18) 

 

where, ▽Φ(A) is the sampling operator. If (s1, s2)∈Φ, then L(s1, 

s2, t)=Tem(s1, s2, t); otherwise, L(s1, s2, t) is 0.  

To reduce the sensing cost, the preset number of samples 

could only cover a subset of all sampling points, with the hope 

that the original tensor Tem can be fully recovered from the 

observation tensor L. 

Before tensor completion of the collected real-time 

temperatures, it must be ensured that the target tensor Tem is 

approximately low-rank. To solve the approximate tensor 

Tem*, the tensor rank should be minimized, and then the 

restored approximate tensor Tem* should be kept equal to the 

observation tensor L at the sampling points. Then, it is a must 

to solve the following optimization problem: 
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(19) 

 

where, δ is the parameter to adjust the ratio of accurate fitting 

to minimization of tensor rank.  

In the above model, the set Φ of sampling point positions 

and the approximate tensor Tem* are both uncertain, and both 

include two objectives: sampling and reconstruction. In other 

words, it is attempted to build a set Φ of samples L that can 

contain most of the information in the original data Tem, and 

estimate the complete original tensor Tem from the 

observation tensor L, such as to minimize the error between 

the estimated value Tem* and the original data Tem. 

After the construction of set Φ, finding the rank is a problem 

with non-deterministic polynomial-time (NP) hardness. Thus, 

it is an NP-hard problem to solve the optimization problem 

(19). Replacing rank(Tem*) with ||Tem*||, (19) can be 

transformed into: 
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3.4 Algorithm implementation 

 

Based on tensor completion and sparse sampling, our 

strategy of compressed mobile crowd sensing relies on 

adaptability to identify the highly informative elements for the 

low-dimensional tensor subspaces of real-time temperatures in 

the urban area. The data collection can be divided into two 

phases: collecting the basic information of urban area D; 

sampling at the points with rich information. The total present 

number of samples n can be split into ρn and (1-ρ)n for the two 

phases by the ratio ρ. 

The workflow of our algorithm goes as follows: 

Step 1. Initialization 

Initialize tensor dimensions S1 and S2, T, ratio ρ, and number 

of iterations M.  

Step 2. Horizontal sparse sampling 

Perform horizontal sampling at ρn/S2 points in urban area D 

uniformly, allocate the samples collected by the i-th sampling 

to the set Φ1
j, and establish the sample set Φ1 of phase 1 after 

S2 samplings.  

Step 3. Vertical iterative sampling 

Estimate the sampling frequency, allocate the remaining (1-

ρ)n samples to the high-information columns identified in 

phase 1, according to the distribution of sampling frequency, 

and form the set Φj of vertical samples after the j-th iteration. 

Step 4. Tensor reconstruction 

Approximate the temperature Tem* at unsampled points 

based on the sampled value Tem. 

 

 

4. EXPERIMENTS AND RESULT ANALYSIS 

 

The original data were collected through crowd sensing 

from the area of a city within the Third Ring Road. The target 

area was evenly meshed into 50*50=2,500 grids. The missing 

items in the collected data were supplemented by the k-nearest 

neighbors (k-NN) algorithm.  

To fully disclose the features of real-time temperature in the 

city, the data were collected from multiple time intervals and 

time periods, and the coherence and singular values of the 

tensor of sensing data were analyzed in details. 

Figure 6 provides the row- and column-space coherence 

curves of different time intervals. It can be seen that the 

distribution of row-space/column-space coherences varied 

with time intervals. The two parameters were not distributed 

uniformly, during the periods with drastic temperature 

changes; that is, the temperature distribution is uneven. The 

two parameters were distributed evenly, during the periods 

with slight temperature changes; that is, the temperature 

distribution is even. Figure 7 presents the singular value 

distribution of the tensor norm. 

 

 
(a) 

 
(b) 

 

Figure 6. The row- and column-space coherence curves of 

different time intervals 

 

 
 

Figure 7. The singular value distribution of the tensor norm 

 

 
(a) 

 
(b) 

 

Figure 8. The temperature changes of the city through 

random sparse sampling 
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Figure 9. The relative errors of three sampling algorithms in 

data recovery 

 

 
(a) 

 
(b) 

 

Figure 10. The temperature changes through tensor 

completion 

 

Next, contrastive experiments were carried out to verify the 

effectiveness of the proposed random sparse sampling method 

in compressed crowd sensing. The temperature changes of the 

city through random sparse sampling are recorded in Figure 8, 

where the abscissas in subgraphs (a) and (b) are both the serial 

number of sampling point; the ordinate in subgraph (a) is the 

temperature; the ordinate in subgraph (b) is the temperature 

coefficient obtained from the corresponding point through 

random sparse sampling. It can be seen that the temperatures 

obtained through compressed crowd sensing were orderly, 

compact, and regular. 

Furthermore, the proposed algorithm was compared with 

traditional sparse sampling, and discrete cosine transform 

(DCT). Figure 9 compares the relative errors of the three 

methods in data recovery. Obviously, our algorithm achieved 

the lowest error, an evidence to its superiority in data 

reconstruction. 

 
(a) 

 
(b) 

 

Figure 11. The relative errors and successful recovery ratios 

of crowd sensing temperatures 

 

Figure 10 records the temperature changes through tensor 

completion, where the abscissas and ordinates are similar to 

those of Figure 8. It is easy to learn that tensor completion 

reduced the number of nonzero temperature coefficients, 

leaving only a few large positive values (the first few 

coefficients). This means compressed crowd sensing can 

effectively reduce the number of sampling data, and simplify 

the calculation, while ensuring the restoration of the original 

data. 

Finally, our algorithm was tested on an actual air quality 

dataset, in comparison with the OptSpace algorithm, tensor 

alternating least squares (TenALS), and twist tensor nuclear 

norm (t-TNN). The two subgraphs of Figure 11 compare the 

relative errors and successful recovery ratios of the four 

methods, respectively. It can be seen that our algorithm clearly 

outperformed the three contrastive methods. When the 

sampling rate was greater than 45%, our algorithm could 

accurately reconstruct all the sensing data. 

 

 

5. CONCLUSIONS 

 

To maximize the accuracy of mobile crowd sensing system, 

this paper presents a novel data collection method based on 

tensor completion and sparse sampling. Firstly, the 

architecture of mobile crowd sensing system was designed in 

the context of big data, and the principle of data optimization 

was explained in details. Next, an adaptive collection method 

was developed for mobile crowd sensing data in sparse form 

or in the form of 3D tensor. Finally, the coherence and singular 

values of the tensor of urban temperatures were analyzed, and 

contrastive experiments were conducted to prove that our 

method is effective in compressed crowed sensing and 

accurate in data reconstruction. 
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