AMSE JOURNALS-AMSE IIETA publication-2017-Series: Advances A; Vol. 54; N°2; pp 360-372
Submitted Apr. 01, 2017; Revised May 25, 2017; Accepted Jun. 10, 2017
https://doi.org/10.18280/ama_a.540217

Continuous Mappings and Fixed-Point Theorems in Probabilistic Normed Space

*Gaoxun Zhang, **Honglei Zhang

*School of Science, Southwest University of Science and Technology, Mianyang 621010, China (Corresponding author: zhanggaoxun002@163.com)

**Research Center of Local Government Governance, Yangtze Normal University, Chongqing 408100, China (2279796418@qq.com)

Abstract

The notion of probabilistic normed space has been redefined by C. Alsina, B. Schweizer and A. Sklar [2]. But the results about the continuous operator in this space are not many. In this paper, we study B-contractions, H-contractions and strongly ε -continuous mappings and their respective relation to the strongly continuous mappings, and give some fixed-point theorems in this space.

Key words

Probabilistic Normed (PN) Space, Fixed-point theorem, Strongly ε-continuous.

1. Introduction

In 1963, Serstnev [1] introduced Probabilistic Normed spaces, whose definition was generalized by C. Alsina, B. Schweizer and A. Sklar [2] in 1993. In this paper we adopt this generalized definition and the notations and concepts used are those of [2-6].

A distribution function (briefly, d.f.) is a function F from the extended real line $R = [-\infty, +\infty]$ into the unit interval I=[0,1] that is left continuous nondecreasing and satisfies $F(-\infty) = 0$ and $F(\infty) = 1$. The set of all distribution functions will be denoted by Δ and the subset of those distribution functions called positive distribution functions such that F(0)=0, by Δ^+ . By setting

 $F \leq G$ whenever $F(x) \leq G(x)$ for all x in \overline{R} , a natural ordering in Δ and in Δ^+ has been introduced. The maximal element for Δ^+ in this order is the distribution function given by

$$\varepsilon_0(x) = \begin{cases} 0, x \le 0 \\ 1, x > 0. \end{cases} \tag{1}$$

A triangle function is a binary operation on Δ^+ , namely a function $\tau: \Delta^+ \times \Delta^+ \to \Delta^+$ that is associative, commutative and nondecreasing, and which has ε_0 as a unit, that is, for all F, G, $H \in \Delta^+$, we have:

$$\tau(\tau(F,G),H) = \tau(F,\tau(G,H)), \tau(F,G) = \tau(G,F),$$

$$\tau(F,H) \le \tau(G,H), whenever F \le G, \tau(F,\varepsilon_0) = F.$$

Continuity of a triangle function means continuity with respect to the topology of weak convergence in Δ^+ .

Typical continuous triangle functions are operations τ_T and τ_{T^*} , which are respectively given by

$$\tau_T(F,G)(x) = \sup_{s+t=x} T(F(s),G(t)),\tag{2}$$

and

$$\tau_{T^*}(F,G)(x) = \inf_{s+t=x} T^*(F(s),G(t)),\tag{3}$$

for all F, G in Δ^+ and all x in \overline{R} [7, Sections7.2 and 7.3], and T is a continuous t-norm, i.e., a continuous binary operation on [0,1] which is associative, commutative, nondecreasing and has 1 as identity; T^* is a continuous t-conorm, namely a continuous binary operation on [0,1] that is related to continuous t-norm through

$$T^*(x, y) = 1 - T(1 - x, 1 - y). \tag{4}$$

The most important t-norms are function W, Prod and M which are defined, respectively, by $W(a,b) = max\{a+b-1,0\}$, Prod(a,b) = ab, $M(a,b) = min\{a,b\}$.

Throughout this paper, we always assume that the t-norm T satisfies $\sup_{t \in (0,1)} T(t,t) = 1.$

Definition 1.1.[7] A probabilistic metric (briefly, PM) space is a triple (S, F, τ) , where S is a nonempty set, τ is a triangle function, and F is a mapping form $S \times S$ into Δ^+ such that, if F_{pq} denotes the value of F at the pair (p,q), the following conditions hold for all p,q and r in S:

(PM1)
$$F_{pq} = \varepsilon_0$$
 if and only if $p = q$; (θ is the null vector in S)

(PM2)
$$F_{pq} = F_{qp}$$
;

(PM2)
$$F_{pr} \ge \tau(F_{pq}, F_{qr})$$
.

Definition 1.2.[2] A probabilistic normed space is a quadruple $(V, \upsilon, \tau, \tau^*)$, where V is a real vector space, τ and τ^* are continuous triangle functions and υ is a mapping from V into Δ^+ such that for all p, q in V, the following conditions hold:

(PN1)
$$\upsilon_p = \varepsilon_0$$
 if, and only if, $p = \theta$; (θ is the null vector in V)

(PN2)
$$\forall p \in V, \upsilon_{-n} = \upsilon_n$$
;

(PN3)
$$\upsilon_{p+q} \ge \tau(\upsilon_p, \upsilon_q)$$
;

(PN4)
$$\upsilon_p \le \tau^*(\upsilon_{ap}, \upsilon_{(1-a)p})$$
 for all a in [0,1].

A Menger PN space under T is a PN space $(V, \upsilon, \tau, \tau^*)$, denoted by (V, v, T), in which $\tau = \tau_T$ and $\tau^* = \tau_{T^*}$ for some continuous t-norm T and its t-conorm T^* .

The PN space is called a Serstnev space if the inequality (PN4) is replaced by the equality $\upsilon_p = \tau_M(\upsilon_{ap}, \upsilon_{(1-a)p})$, and, as a consequence, a condition stronger than (PN2) holds, namely $\upsilon_{\lambda p}(x) = \upsilon_p(\frac{x}{|\lambda|})$, for all $p \in V, \lambda \neq 0$ and $x \in R$, i.e., the (Š) condition (see [2]). The pair (V, υ) is said to be a Probabilistic Seminormed Space (briefly, PSN space) if $\upsilon: V \to \Delta^+$ satisfies (PN1) and (PN2).

Let $\{p_n\}_{n=1}^{\infty}$ be a sequence of points in V. A is a sequence that converges to p in V, if for each t>0, there is a positive integer N such that $\upsilon_{p_n-p}(t)>1-t$ for n>N, and is a Cauchy sequence,

if for each t > 0 there is a positive integer N such that $\upsilon_{p_n - p_m}(t) > 1 - t$ for all n, m > N. A PN space is complete if every Cauchy sequence converges.

Definition 1.3.[7] A PSN space (V, υ) is said to be equilateral if there is a d.f. $F \in \Delta^+$ different from ε_0 and from $\varepsilon_{+\infty}$, such that, for every $p \neq \theta$, $\upsilon_p = F$. Therefore, every equilateral PSN space (V, υ) is a PN space under $\tau = \tau^* = \tau_M$, where the triangle function is defined for $G, H \in \Delta^+$ by

$$\tau_M(G,H)(x) = \sup_{s+t=x} \min\{G(s), H(t)\}.$$

An equilateral PN space will be denoted by (V, F, M).

Definition 1.4.[8] Let (V, ν, τ, τ^*) be a PN space, for $p \in V$ and $\lambda \in (0,1)$. We give the following two conditions:

 (Z_1) For all $a \in (0,1)$, there exists a $\beta \in [1,\infty[$ such that

$$v_p(\lambda) > 1 - \lambda \text{ implies } v_{ap}(a\lambda) > 1 - \frac{a}{\beta} \lambda.$$

(
$$Z_2$$
) For all $a \in (0,1)$, let $\beta_0(a,\lambda) = \frac{1+\sqrt{1-4a(1-a)\lambda}}{2}$, then

$$v_p(\lambda) > 1 - \lambda \text{ implies } v_{ap}(a\lambda) > 1 - \frac{a}{\beta_0(a,\lambda)} \lambda.$$

Definition 1.5.[7] There is a natural topology in the PN space $(V, \upsilon, \tau, \tau^*)$, and it is called strongly topology, defined by the following neighborhoods: $N_p(\lambda) = \{q \in V : \upsilon_{q-p}(\lambda) > 1 - \lambda\}$,

where $\lambda > 0$. The strongly neighborhood system for V is the union $\cup_{p \in V} N_p$, where $N_p = \{N_p(\lambda); \lambda > 0\}$. In the strongly topology, the closure $\overline{N_p(\lambda)}$ of $N_p(\lambda)$ is defined by

 $\overline{N_p(\lambda)} := N_p(\lambda) \bigcup N_p(\lambda)$, where $N_p(\lambda)$ is the set of limit points of all convergent sequences in $N_p(\lambda)$. From [5, Theorem 3], we know every PN space (V, V, τ, τ^*) has a completion. C.Alsina, B.Schweizer and A. Sklar [3, Theorem 1] have proved that υ is a uniformly continuous mapping from V into Δ^+ .

Now, we give two different definitions of the contractions in PN space.

Definition 1.6.[7](i).A mapping $f:(V, \nu, \tau, \tau^*) \to (U, \mu, \sigma, \sigma^*)$ is a B-contraction, if there is a constant $k \in (0,1)$ such that for all p and q in V, and all x>0,

$$\mu_{f(p)-f(q)}(kx) \ge \upsilon_{p-q}(x). \tag{5}$$

(ii). A mapping $f:(V, v, \tau, \tau^*) \to (U, \mu, \sigma, \sigma^*)$ is an H-contraction, if there is a constant $k \in (0,1)$ such that for p and q in V, and all x>0,

$$U_{p-q}(x) > 1 - x \text{ implies } \mu_{f(p)-f(q)}(kx) > 1 - kx.$$
(6)

Remark 1.1. If f is a linear operator, for all $p \in V$, we have that (1.5) is equivalent to $\mu_{f(p)}(kx) \ge v_p(x)$ and (1.6) is equivalent to that

$$\upsilon_p(x) > 1 - x$$
 implies $\mu_{f(p)}(kx) > 1 - kx$.

Definition 1.7. [6] Given a nonempty set A in a PN space $(V, \upsilon, \tau, \tau^*)$, the probabilistic radius R_A of A is defined by

$$R_{A}(x) := \begin{cases} \ell^{-} \varphi_{A}(x), x \in [0, +\infty[, \\ 1, x = +\infty, \end{cases}$$
 (7)

where $\ell^- f(x)$ denotes the left limit of the function f at the point x and

$$\varphi_A(x) := \inf \{ v_p(x) : p \in A \}.$$

As a consequence of DEFINITION 1.7., we have $\upsilon_p \ge R_A$ for all $p \in A$.

Definition 1.8. [9] In a PN space (V, ν, τ, τ^*) , a mapping $f: V \to V$ is said to be strongly ε -continuous $(\varepsilon > 0)$, if for each $p \in V$, it admits a strong λ -neighborhood $N_p(\lambda)$ such that

$$R_{f(N_p(\lambda))}(\varepsilon) > 1 - \varepsilon.$$

Lemma 1.9. [9] Suppose $(V, \upsilon, \tau, \tau^*)$ be a PN space and $A \subset V$. If $f: A \to A$ is strongly ε -continuous, then for each $p \in A$ and $\varepsilon > 0$, we have

$$\nu_{f(p)}(\varepsilon) > 1 - \varepsilon.$$

2. Main Results

Definition 2.1. A mapping $f:(V, \nu, \tau, \tau^*) \to (U, \mu, \sigma, \sigma^*)$ is strongly continuous, if for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$q \in N_n(\delta) \Rightarrow f(q) \in N_{f(n)}(\varepsilon),$$
 (8)

where (V, v, τ, τ^*) and $(U, \mu, \sigma, \sigma^*)$ are PN spaces, and $p, q \in V \setminus \{\theta\}$.

Theorem 2.1. In a PN space (V, v, τ, τ^*) with $\tau \ge \tau_W$, a strongly ε -continuous mapping $f: V \to V$ is strongly continuous.

Proof. Let $\varepsilon < 1/2$. In view of Definition 1.8, there exists $\delta > 0$ such that $R_{f(N_p(\delta))}(\varepsilon/2) > 1 - \varepsilon/2$, therefore $q \in N_p(\delta) \Rightarrow \upsilon_{f(q)}(\varepsilon/2) \ge R_{f(N_n(\delta))}(\varepsilon/2) > 1 - \varepsilon/2$, i.e.,

 $\upsilon_{p-q}(\delta)>1-\delta \ \text{implies} \ \upsilon_{f(q)}(\varepsilon/2)>1-\varepsilon/2. \qquad \text{From} \qquad p\in N_p(\delta) \qquad , \qquad \text{we} \qquad \text{have}$ $\upsilon_{f(p)}(\varepsilon/2)\geq R_{f(N,(\delta))}(\varepsilon/2)>1-\varepsilon/2, \ \text{thus}$

$$\begin{split} \upsilon_{f(p)-f(q)}(\varepsilon) &\geq \tau(\upsilon_{f(p)}, \upsilon_{f(q)})(\varepsilon) \\ &\geq \tau_{W}(\upsilon_{f(p)}, \upsilon_{f(q)})(\varepsilon) \\ &= \sup_{s+t=\varepsilon} W(\upsilon_{f(p)}(s), \upsilon_{f(q)}(t)) \\ &\geq W(\upsilon_{f(p)}(\varepsilon/2), \upsilon_{f(q)}(\varepsilon/2)) \\ &\geq W(1-\varepsilon/2, 1-\varepsilon/2) \\ &= 1-\varepsilon \end{split}$$

i.e.,
$$f(q) \in N_{f(p)}(\varepsilon)$$
. So $\forall q \in N_p(\delta) \Rightarrow f(q) \in N_{f(p)}(\varepsilon)$.

Theorem 2.2. Let (V, v, τ, τ^*) be a PN space, then

- (i). A B-contraction mapping is strongly continuous;
- (ii). an H-contraction mapping is strongly continuous.

Proof. (i). Suppose (V, v, τ, τ^*) be a PN space and $f: V \to V$ be B-contraction. According to Definition 1.6, there is a constant $k \in (0,1)$ such that for p and q in V, and x>0

$$\upsilon_{f(p)-f(q)}(kx) \ge \upsilon_{p-q}(x). \tag{9}$$

Therefore, let a>1, we have

$$\upsilon_{f(p)-f(q)}(ax) \ge \upsilon_{f(p)-f(q)}(kx) \ge \upsilon_{p-q}(x).$$
 (10)

Let $v_{p-q}(x) > 1-x$ we have

$$\upsilon_{f(p)-f(q)}(ax) \ge \upsilon_{p-q}(x) > 1 - x > 1 - ax,$$
 (11)

i.e.,

$$q \in N_p(x) \Rightarrow f(q) \in N_{f(p)}(ax).$$
 (12)

So for $\varepsilon > 0$, set $\delta = \varepsilon / a$ such that

$$q \in N_p(\delta) \Rightarrow f(q) \in N_{f(p)}(\varepsilon).$$
 (13)

By Definition 2.1., we have that f is strongly continuous.

(ii). Suppose (V, v, τ, τ^*) be a PN space and $f: V \to V$ be H-contraction, and if $\varepsilon > 0$, in view of Definition 1.6, there is a constant $k_0 \in (0,1)$ such that for p and q in V,

$$\upsilon_{p-q}(\varepsilon/k_0) > 1 - \varepsilon/k_0 \text{ implies } \upsilon_{f(p)-f(q)}(\varepsilon) > 1 - \varepsilon,$$
 (14)

i.e.,

$$q \in N_p(\varepsilon / k_0) \Rightarrow f(q) \in N_{f(p)}(\varepsilon).$$
 (15)

So for $\varepsilon > 0$, set $\delta = \varepsilon / k_0$ such that

$$q \in N_p(\delta) \Rightarrow f(q) \in N_{f(p)}(\varepsilon).$$
 (16)

Basing on Definition 2.1., we have proven that f is strongly continuous.

The following examples, Example 2.1. and 2.2., show that a B-contraction isn't necessarily an H-contraction, an H-contraction isn't necessarily a B-contraction, and a strongly continues mapping isn't necessarily a B-contraction or an H-contraction.

Example 2.1. Let V be a vector space and $\upsilon_{\theta} = \mu_{\theta} = \varepsilon_0$, if $a \in (2,3)$, $p, q \in V$ $(p, q \neq \theta)$ and $x \in \overline{R}$,

$$\upsilon_{p}(x) = \begin{cases} 0, x \le a \\ 1, x > a \end{cases} \quad \mu_{p}(x) = \begin{cases} 0, x \le 0 \\ 1/a, 0 < x \le \frac{2a}{3} \\ 2/a, \frac{2a}{3} < x < \infty \\ 1, x = \infty \end{cases}$$

and if $\tau(\upsilon_p,\upsilon_q)(x) = \tau^*(\upsilon_p,\upsilon_q)(x) = \underset{s+t=x}{\operatorname{supmin}}(\upsilon_p(s),\upsilon_q(t))$, then (V, v, τ, τ^*) and (V, μ, τ, τ^*) are equilateral PN spaces by Definition 1.3. Now let I: $(V, v, \tau, \tau^*) \rightarrow (V, \mu, \tau, \tau^*)$ be the identity operator, then I is not a B-contraction, but an H-contraction. In fact, for every $k \in (0,1)$, x>a and $p\neq\theta$, $\mu_{lp}(kx) \leq \mu_{lp}(x) = \mu_p(x) = \frac{2}{a} < 1 = v_p(x)$. Hence I is not a B-contraction.

Next we'll prove that I is an H-contraction. Suppose $v_p(x) > 1-x$, where $p \neq \theta$. This condition holds only if x > 1. In fact, if $x \le 1$, then $v_p(x) = 0 \le 1-x$. For $a \in (2,3)$, if $1 < x \le a$, let $h = \frac{2}{3}$, then $\frac{2}{3} < hx \le \frac{2a}{3}$, therefore $\mu_{Ip}(hx) = \mu_p(hx) = \frac{1}{a} > \frac{1}{3} = 1 - \frac{2}{3} > 1 - hx$. If x > a, let $h = \frac{2}{3}$, then $hx > \frac{2a}{3}$, therefore $\mu_{Ip}(hx) = \mu_p(hx) = \frac{2}{a} > 1 - \frac{a}{2} > 1 - \frac{2a}{3} > 1 - hx$. Thus there is a constant $h = \frac{2}{3}$ such that for all points $p \ne \theta$ in V, and all x > 0,

$$\upsilon_{p}(x) > 1 - x \text{ implies } \mu_{lp}(hx) > 1 - hx, \tag{17}$$

i.e., I is an H-contraction. In view of Theorem 2.2. (ii), we have that I is strongly continuous.

Example 2.2. Let $V=V'=\overline{R}$, $\upsilon_0=\mu_0=\varepsilon_0$, if, for x>0, $p\neq 0$ and $a=\frac{k+3}{2}$, where $k\in(0,1)$,

$$\upsilon_{p}(x) = \begin{cases} 0, x \le 0 \\ \frac{1}{a}, 0 < x \le a \\ 1, a < x \le \infty \end{cases} \quad \mu_{p}(x) = \begin{cases} 0, x \le 0 \\ \frac{1}{a}, 0 < x \le \frac{a}{2} \\ 1, \frac{a}{2} < x \le \infty \end{cases}$$

and if $\tau(\upsilon_p,\upsilon_q)(x)=\tau^*(\upsilon_p,\upsilon_q)(x)=\operatorname*{supmin}(\upsilon_p(s),\upsilon_q(t)))$, then $(\overline{R},\upsilon,\tau,\tau^*)$ and $(\overline{R},\mu,\tau,\tau^*)$ are equilateral PN spaces by Definition 1.3. Now let I: $(\overline{R},\upsilon,\tau,\tau^*)\to(\overline{R},\mu,\tau,\tau^*)$ be the identity operator, then I is not an H-contraction, but a B-contraction. In fact, for every $k\in(0,1)$, we have that $a=\frac{k+3}{2}\in(\frac{3}{2},2)$. Let $x=\frac{1}{a}$, we have that $\upsilon_p(x)=\upsilon_p(\frac{1}{a})=\frac{1}{a}>1-\frac{1}{a}=1-x$. But,

$$\mu_{I_p}(kx) \le \mu_{I_p}(x) = \mu_{I_p}(\frac{1}{a}) = \mu_p(\frac{1}{a}) = \frac{1}{a} < 1 - \frac{k}{a} = 1 - kx.$$

Hence I is not an H-contraction. Meanwhile, for every $p \in \overline{R}$ and x>0, there exists a constant $k_0 = \frac{2}{3}$ such that

$$\mu_{I_p}(k_0 x) = \mu_{I_p}(\frac{2x}{3}) = \mu_p(\frac{2x}{3}) \ge \mu_p(\frac{x}{2}) = \begin{cases} 0, x \le 0 \\ \frac{1}{a}, 0 < x \le a = \upsilon_p(x), \\ 1, a < x \le \infty \end{cases}$$

i.e., I is a B-contraction. In view of Theorem 2.2.(ii), I is strongly continuous.

Example 2.3. Let PN space (V, v, τ, τ^*) and (V, μ, τ, τ^*) satisfy Example 2.1, and I: $(V, \nu, \tau, \tau^*) \rightarrow (V, \mu, \tau, \tau^*)$ be the identity operator, then I is not strongly ε -continuous, but strongly continuous. In fact, according to Example 2.1., it is obvious that I is strongly continuous.

Now we are going to prove that I is not strongly ε -continuous. Suppose I is strongly ε -continuous. Let $A \subset V$ be not empty. In view of Lemma 1.1., for each $p \in A$ and $\varepsilon > 0$, we have

$$\mu_{l_p}(\varepsilon) > 1 - \varepsilon$$
. However, let $\varepsilon_0 \in (0, \frac{1}{3})$, for each $p \in A$ and $p \neq 0$, we have

 $\mu_{I_p}(\varepsilon_0) = \mu_p(\varepsilon_0) \le \mu_p(\frac{1}{3}) = \frac{1}{a} < \frac{2}{3} < 1 - \varepsilon_0$. Thus, there appears a contradiction. So, we have that I is not strongly ε -continuous.

Lemma 2.1. [10] Let V be Banach space and D be a compact and convex subset of V. If $f: D \to D$ is a strongly continuous mapping, then f has at least one fixed point on D.

Not all PN spaces are Banach spaces; Lemma 2.2. shows that under some conditions, a PN space is a Banach space.

- **Lemma 2.2.** [8] Let (V, v, τ, τ^*) be a TV PN space and $N_{\theta}(\lambda)$ be strong λ -neighborhoods of θ , where $\lambda \in (0,1)$.
 - (i) Suppose $\tau \ge \tau_W$. If there is an $N_{\theta}(\lambda)$ satisfying (Z_1) , then (V, ν, τ, τ^*) is nomable.
- (ii) Suppose $\tau \ge \tau_{\pi}$, $(\pi = Prod)$. If there is an $N_{\theta}(\lambda)$ satisfying (Z_2) , then $(V, \upsilon, \tau, \tau^*)$ is nomable.
- **Theorem 2.3**. Let *A* be a compact and convex subset of TV PN space $(V, \upsilon, \tau, \tau^*)$ and $f: A \to A$ be a strongly continuous mapping.
- (i) Suppose $\tau \ge \tau_W$ and there is an $N_{\theta}(\lambda)$ satisfying (Z_1) , then f has at least one fixed point on A.
- (ii) Suppose $\tau \ge \tau_W$ and there is an $N_{\theta}(\lambda)$ satisfying (Z_2) , then f has at least one fixed point on A.

Proof. In view of Lemma 2.1. and Lemma 2.2., it is obvious that Theorem 2.3. holds.

- **Corollary 2.1.** Let *A* be a compact and convex subset of TV PN space (V, v, τ, τ^*) and $f: A \to A$ be a B-contraction or an H-contraction mapping.
- (i) Suppose $\tau \ge \tau_W$ and there is an $N_{\theta}(\lambda)$ satisfying (Z_1) , then f has at least one fixed point on A.
- (ii) Suppose $\tau \ge \tau_W$ and there is an $N_{\theta}(\lambda)$ satisfying (Z_2) , then f has at least one fixed point on A.
- Proof. In view of Theorem 2.2., we have that $f: A \to A$ is a strongly continuous mapping on A. By Theorem 2.3., f has at least one fixed point on A.
- **Corollary 2.2.** Let A be a compact and convex subset of TV PN space (V, v, τ, τ^*) and $f: A \to A$ be a strongly ε -continuous mapping.
- (i) Suppose $\tau \ge \tau_W$ and there is an $N_{\theta}(\lambda)$ satisfying (Z_1) , then f has at least one fixed point on A.
- (ii) Suppose $\tau \ge \tau_W$ and there is an $N_{\theta}(\lambda)$ satisfying (Z_1) , then f has at least one fixed point on A.
- Proof. In view of Theorem 2.1., we have that $f: A \to A$ is a strongly continuous mapping on A. By Theorem 2.3., we have that f has at least one fixed point on A.

Theorem 2.4. Let A be a compact and convex subset of PN space (V, v, τ, τ^*) , where (V, v, τ, τ^*) is a Banach space. If $f: A \to A$ is a strongly continuous mapping, then f has at least one fixed point on A.

Proof. In view of Lemma 2.1., it is obvious that Theorem 2.4. holds.

Let (V, v, τ, τ^*) be a PN space and $f: V \to V$ be a single-valued self mapping. A point $p \in V$ with the property $\upsilon_{f(p)-p} = \varepsilon_0$ is called a fixed point of f on V. Note that, for every $p \in V / \{\theta\}$, if $\upsilon_{f(p)-p}(t) < 1$ for all t > 0 (see [12], Example 2.4.), then $f(p) \neq p$, i.e., f has no fixed point on V. In such a situation a question arises about the existence of an approximate fixed point. The following is the definition of the approximate fixed point in PN space.

Definition 2.2. [9] Suppose (V, v, τ, τ^*) be a PN space and $A \subset V$. We call $p \in A$ an ε -fixed point of $f: A \to A$, if, there exists an $\varepsilon > 0$ such that $\sup_{t < \varepsilon} \upsilon_{f(p)-p}(t) = 1$. A self mapping $f: A \to A$ has approximate fixed point property (in short a.f.p.p.) if the function f possesses at least one ε -fixed point.

Definition 2.3. *A* is bounded, if for every $n \in N$ and for every $p \in A$, there is a $k \in N$ such that $V_{p/k}(1/n) > 1 - 1/n$.

Lemma 2.3. [3] If $|\alpha| \le |\beta|$, then $\upsilon_{ap} \ge \upsilon_{\beta p}$.

Theorem 2.5. Suppose A be a bounded and convex subset of PN space (V, v, τ, τ^*) with $\tau \ge \tau_W$, where (V, v, τ, τ^*) is a Banach space. If the mapping $f: A \to A$ is strongly ε -continuous, then f has at least one approximate fixed-point on A.

Proof. Since f is an ε -continuous on A, by Definition 1.8. and Lemma 1.1, we have that for every $p \in A$, $\sup_{\varepsilon > 0} \upsilon_{f(p)}(\varepsilon) = 1$. Let B be a compact and convex subset of A, defined by $B = (1-a)\overline{A}$, where \overline{A} is a closure of A and (0 < a < 1) In view of Theorem 2.1., we have that f is strongly continuous. We can define a strongly continuous function $g: B \to B$ by

 $g(p)=(1-a)f(p), \forall p\in B.$ By Theorem 2.4., there is a $p_0\in B$ such that $g(p_0)=p_0$, which implies $(1-a)f(p_0)=p_0$. Whence $\upsilon_{(1-a)f(p_0)-p_0}=\varepsilon_0$. Since $f(p_0)-p_0=(1-a)f(p_0)-p_0+af(p_0)$, by (PN3) and Lemma 2.3., we have

$$\upsilon_{f(p_0)-p_0} \ge \tau(\upsilon_{(1-a)f(p_0)-p_0}, \upsilon_{af(p_0)})$$

$$= \tau(\varepsilon_0, \upsilon_{f(p_0)})$$

$$= \upsilon_{f(p_0)}.$$

By taking sup over $0 \le t \le \varepsilon$ on both sides of the inequality, we have $\sup_{0 < t \le \varepsilon} \upsilon_{f(p_0) - p_0}(t) \ge \sup_{0 < t \le \varepsilon} \upsilon_{f(p_0)}(t)$.

$$\text{Because} \quad p_0 \in B \subset A \ , \ \sup_{0 < t < \varepsilon} \upsilon_{f(p_0)}(t) = 1. \ \text{So} \ \sup_{0 < t < \varepsilon} \upsilon_{f(p_0) - p_0}(t) \geq \sup_{0 < t < \varepsilon} \upsilon_{f(p_0)}(t) = 1. \ \text{According} \ \text{ to}$$

Definition 2.2. p₀ is an approximate fixed point of f, thus f has at least one ε -fixed-point on A.

Acknowledgment

This work is supported by the Doctoral Program Research Foundation of Southwest University of Science and Technology (15zx7139).

References

- 1. A. N. Šerstnev, On the motion of a random normed space, 1963, Dokl. Akad. Nauk. SSSR., no. 149, pp. 280-283.
- 2. C. Alsina, B. Schweizer, A. Sklar, On the definition of a probabilistic normed space, 1993, Aequationes Math., vol. 46, pp. 91-98.
- 3. C. Alsina, B. Schweizer, A. Sklar, Continuity properties of probabilistic norms, 1997, J. Math. Anal. Appl., vol. 208, pp. 446-452.
- 4. B. Lafuerza Guillén, C. Sempi, G. Zhang, M. Zhang, Countable products of probabilistic normed spaces, 2009, Nonlinear Analysis., vol. 71, pp. 4405-4414.
- 5. B. Lafuerza Guillén, J.A. Rodríguez Lallena, C. Sempi, Completion of probabilistic normed spaces, 1995, Internat. J. Math. and Math. Sci., vol. 18, no.4, pp. 649-652.
- B. Lafuerza Guillen, J.A. Rodríguez Lallena, C. Sempi, A study of boundedness in probabilistic normed spaces, 1999, J. Math. Anal. Appl., vol. 232, pp. 183-196.
- 7. B. Schweizer, A. Sklar, Probabilistic metric spaces, 1983, New York, Elsevier North-Holland.
- 8. G. Zhang, M. Zhang, On the normability of generalized Šerstnev PN spaces, 2006, J. Math. Anal. Appl., vol. 340, pp.1000-1011.

- 9. M. Rafi, M.S.M. Noorani, Approximate fixed-point theorem in probabilistic normed (Metric) spaces, 2006, Proceedings of the 2end IMT-GT Regional Conference on Mathematics, Statistics and Applications University Sains, 2006, Malaysia, Penang, pp. 13-15.
- 10. D. Guo, Nonlinear functional analysis, 1985, Shandong Sci. and Tech. Press.