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Abstract  

This thesis discusses linear EV (errors-in-variables) regression models, that is, regression 

models with measurement errors. Because in practice, data are often obtained with measurement 

errors, EV model is more fit for application than the ordinary regression model. However, it is 

more complicated in the statistical inference and analysis, so research about this theory is very 

difficult. Due to the application of statistics, when the weight function uses real variables in EV 

model, we extend the consistency of the weighted sum for the independent random variable 

sequence and obtain a result of convergence about the weighted sum for the exchangeable random 

variable sequence in EV model. 
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1. Introduction 

In the early 1930s, De Finetti put forward the concept of random variable exchangeability [1]. 

The so-called exchangeability of finite sequence {𝑋𝑘}𝑘−1
𝑛  refers to that if the joint distribution of 

random variables X1, X2, …, Xn is unchanged in displacement, that means the joint distributions to 

any displacement of 1,2,…,n on π, Xπ(1), Xπ(2),…, Xπ(n) and on X1, X2, …, Xn  are identical. The 

infinite sequence {𝑋𝑘}𝑘−1
+∞  of exchangeable random variable is exchangeable, in case that any finite 
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subset thereof is exchangeable. Theories have proved that an infinite sequence of exchangeable 

random variables is independent identically distributed under the tail σ-algebraic condition, so no 

wonder that it is asymptotic similar to the independent identically distributed sequence.  

As the fundamental structure theorem for infinite exchangeable random variable sequences, 

De Finetti’s theorem states that an infinite exchangeable random variable sequence is independent 

and identically distributed with the condition of the tail σ-algebra. So, some results about 

independent identically distributed random variables are similar to exchangeable random variables. 

As the fundamental structure theorem for infinite exchangeable random variable sequences, De 

finetti’s theorem is not applicable to finite exchangeable random variable sequences, and it is 

therefore necessary to find other technologies to solve the approximate behavior problems of finite 

exchangeable random variable sequences. By using the reverse martingale approach, scholars have 

given some results. In this paper, we do some researches about the similarity and differences 

between identically distributed random variable and exchangeable random variable sequences and 

mainly discuss the limit theory of exchangeable random variables.  

We suppose X and Y are random variables and (Xi, Yi), i=1, 2,.., n are the samples from the 

parent. Here the sample (Xi, Yi) is a function of the importance of x.  

 

( ) ( )1, , ,ni ni nW x W x X X
 

 

If the following conditions are satisfied: 

 

( ) ( ) 0, 1,2, ,nii W x i n =
;  

( ) ( )
1

1
n

ni

i

ii W x
=

=
. 

 

Wni(x) is called the weight function 

The following questions are proposed in the literature [2]: Under what conditions, when n→∞, 

we obtain  

 

( ) ( )0

1

.
n

ni i

i

W x Y E Y X x a s
=

→ =
                                                                                              (1) 
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Discussion on this issue is rare at home and abroad. 

When we establish the regression model, we assume that the independent variable is fixed, 

and that the dependent variable is affected by random factors or measurement errors.  

 

,y  = + ( );f x =
 

 

In the above equations, x and θ are vectors of dimension k, and y, μ, and ԑ are vectors of 

dimension n, and E(ԑ)=0.  

For a long time, the research on EV model has not considered the errors in model selection; in 

other words, in the model, the dependent variable and the independent variable are really connected 

by the function, but later it was found that in economic analysis, there exist errors. In many cases 

in actual production, the independent variable is the measured value and thus will be affected by 

random factors. So when the parameter is a random variable, the model can be expressed as follows: 

 

,x  = + ,y  = + ( );f  =
 

 

In the formula E(ԑ)=E(δ)=0, ξ, and θ are represented as parameters, we call this model the 

errors-in-variables model. 

There are some literatures about the errors-in-variables model [3-12], Generally we assume 

that 𝑋̃ = 𝑋 + 𝜀 is right, when studying this model. Here X is a variable that cannot be directly 

observed while X  is a variable that can be observed. Under normal circumstances, the relationship 

between X  and X is complicated. For example, 𝑋̃ = 𝜓(𝑋, 𝜀), where ԑ is the error of measurement 

independent of (X, Y). ψ represents an arbitrary known function.  

In the one-dimensional linear structural relation of the errors-in-variables model y=a+bx, Y=y+ 

ԑ, X=x+u, if the parameters a,b are bounded continuous functions a(t), b(t) where the real variable 

t∈ (0,1)(b(t)≠0), then the EV model of the one-dimensional linear structure with variable 

coefficients is obtained as follows:  

 

( ) ( )

,

y a t b t x

Y y X x u

= +


= + = +  

 

Where x, y are a random variables, and (ԑ,u) are measurement errors. 
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Suppose t0∈(0,1), and we want to estimate the parameters (a(t0),b(t0)) at t0. If we are not able 

to observe n times at t0, we just have to observe n times in the vicinity of t0. Supposing t1, t2,…, tn, 

are n design points in [0,1], and satisfy 0≤t1< t2<…< tn ≤1, we observe (y,x) at every point ti, and 

then will get n groups of observations of (Yi, ti, Xi), i=1,2,…n. If we use these n groups of 

observations to estimate the parameters (a(t0),b(t0)) at t0, we should note that the observed values 

of (Yi, ti, Xi) at ti  are not the same as those at t0. The importance can be measured by the weight 

function Wni(t0) of the real variable ti, i=1, 2, ..., n. We first give the following definitions: 

Suppose (Yi, ti, Xi), i=1, 2, …, n. are the samples taken from the parent of (Y, X), that t1, t2, …, 

tn are n design points in [0,1], and that t0 is a point within the interval (0,1). 𝑊𝑛𝑖(𝑥) ≜

𝑊𝑛𝑖(𝑡0, 𝑡1, ⋯ 𝑡𝑛) is the function of the real variables t1, t2, …, tn, (i=1, 2, ..., n), and we call it the 

real variable weight function, if it satisfies the following conditions:  

 

( ) ( )0 0, 1,2, ,nii W t i n =
;  

( ) ( )0

1

1
n

ni

i

ii W t
=

=
.  

 

We assume the one-dimensional probability density function is ( )  and that the bandwidth 

is hn∈(0,1/2), and then we obtain:  

 

( )

0

0

0

1

, 1,2 ,

i

n

ni n
i

i n

t t

h
W t i n

t t

h




=

 −
 
 = =
 −
 
 


 

 

Wni(t0) is called the kernel weight function. 

 

2. Result 

Here the weight function Wni(x) is a real variable kernel function. Wni(t0) is studied in (1). We 

obtain the conclusion on the exchangeable random variables of {𝑌𝑖}𝑖=1
𝑛 , and obtain the consistency 

between the weighted sums of ∑ 𝑊𝑛𝑖(𝑡0)𝑌𝑖
𝑛
𝑖=1  and the weighted sum of the sequence of 

exchangeable random variables in the EV model.  

The theorem assumes it satisfies the following conditions:  
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A1 For any real variable kernel function {𝑊𝑛𝑖(𝑡0)}𝑖=1
𝑛 , there exists the integer A:  

 

0
1

log
max ( )ni

i n
n

A n
W t

nh 


 

 

A2 Random variables of Y, Y1, Y2, …, Yn are the exchangeable random variable sequence. 

Cov(Y1,Y2)=0, and EY exists, and there is a positive number D for which, Var(Y)≤D, so  

(1) If ( )
log

nnh
n

n
→ → holds, then 0

1

( )
=

⎯⎯→
n

P

ni i

i

W t Y EY   

(2) If 2
( )

log

nnh
n

n
→ → holds, then 0

1

( ) . .
=

→
n

ni i

i

W t Y EY a s  

0

1

( )
=

⎯⎯→
n

P

ni i

i

W t Y EY and 0

1

( ) . .
=

→
n

ni i

i

W t Y EY a s  can be described as follows: 

( )0

1

( ) 0
=

− ⎯⎯→
n

P

ni i i

i

W t Y EY  and ( )0

1

( ) 0 . .
=

− →
n

ni i i

i

W t Y EY a s  

( ) ( ) ( )0, , 1,2, , ,− = − =  =i i i i iE Y EY Var Y EY Var Y D i n ; therefore, the theorem can be 

changed as follows:  

Theorem 1 For the weight function {𝑊𝑛𝑖(𝑡0)}𝑖=1
𝑛  of any real variable under the following 

conditions, there is a positive number A:  

A1 
0

1

log
max ( )ni

i n
n

A n
W t

nh 


 

A2 Random variables of Y, Y1, Y2, …, Yn are exchangeable random variables sequence. 

Cov(Y1,Y2)=0, and EY=0, and there is a positive number D, for which  

2 ( )EY Var Y D=  , so  

( )1
If ( )

log

nnh
n

n
→ → holds, then ( )0

1

( ) 0
=

− ⎯⎯→
n

P

ni i i

i

W t Y EY   

(2) If 2
( )

log

nnh
n

n
→ → holds, then ( )0

1

( ) 0 . .
=

− →
n

ni i i

i

W t Y EY a s   

Proof: (1) because 0

1

( ) 0
n

ni i

i

E W t Y
=

 
= 

 
 , to prove ( )0

1

( ) 0
=

− ⎯⎯→
n

P

ni i i

i

W t Y EY  is right, we only 

need to prove: 
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0

1

lim ( ) 0
n

ni i
n

i

Var W t Y
→

=

 
= 

 


 

In fact, due to the result of A1, A2 and ( )0

1

1
n

ni

i

W t
=

= , we obtain 

 

( )0 0 0
11 1

log
( ) ( ) max ( )

n n

ni i ni i ni
i ni i n

DA n
Var W t Y W t Var Y D W t

nh = =

   
= =   

  
 

 

 

Because of the result of ( )
log

nnh
n

n
→ → , we know that 0

1

lim ( ) 0
n

ni i
n

i

Var W t Y
→

=

 
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 
 is right, 

and then  

 

( )0

1

( ) 0
=

− ⎯⎯→
n

P

ni i i

i

W t Y EY

 

 

(1) is proved. 

(2) To prove ( )0

1

( ) 0
n

ni i i

i

W t Y EY
=

− →  . .a s is right, for any given positive number ԑ (suppose 

ԑ<D/2), we note 

 

( )   ( )  1 22 2,i i i i i iY Y I Y i Y Y I Y i =  = 
 

 

Then we obtain 𝑌𝑖 = 𝑌𝑖
(1)

+ 𝑌𝑖
(2)

, and based on EYi=0, we obtain 𝐸𝑌𝑖
(1)

= −𝐸𝑌𝑖
(2)

, so 

 

( ) ( )( ) ( ) ( )( )1 1 2 2

i i i i iY Y EY Y EY= − + −
 

 

is right. 

 

( ) ( )( ) ( ) ( )( )1 1 2 2

0 0 0

1 1 1

( ) ( ) ( )
n n n

ni i ni i i ni i i

i i i

W t Y W t Y EY W t Y EY
= = =

= − + −  
                                                 (2) 

 



328 

 

There are two steps to prove the result. First we need to prove the result as follows: when 

n→∞, 

 

( ) ( )( )1 1

0

1

( ) 0 . .
=

− →
n

ni i i

i

W t Y EY a s

                                                                                               (3) 

 

We note ( ) ( ) ( )( )1 1

0 ,ni ni i iZ W t Y EY− and ( )0
1
maxn ni

i n
b W t

 
, so {𝑍𝑛𝑖}𝑖=1

𝑛  is the zero mean 

exchangeable random variable sequence, and 
log

n

n

A n
b

nh
 .  

Because ( ) ( ) ( ) ( )1 1 1 1 2 2 22i i i iY EY Y EY i i i  −  +  + = , so we obtain 

 

( ) ( ) ( )1 1

0
1 1
max max
   

= −ni ni i i
i n i n

Z W t Y EY
( ) ( )1 1 2 2

1 1
max max 2 2  
   

 −  = i i n n n
i n i n

Y EY b i b n Db n
 

 

Because 

 

( ) ( ) ( ) ( )( )1 1

0
 = −
 ni ni i iVar Z Var W t Y EY ( ) ( )( ) ( )( ) ( )

2
12 2

0 0
1
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 
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So ( ) 2

1=


n

ni n

i

Var Z nb D is right. 

Because 

2log
0

n

n

nh
→

 and 
1

0
log n

→  are right when n→∞, for arbitrary ԑ>0, when n is 

sufficiently large, 

2log

n

n

nh


and
1

log n
  is right. From the result of Bennett exponential 

inequality, we note B=2DA(A+1), then  

 

2

2 2
1

2exp
2 2

n

ni

i n n

P Z
nb D Db n




=
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n
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Because 2
1

1n

i n=

  is right, 
1 1

n n

ni

i i

P Z 
= =

 
   

 
  is also right. 

By Borel-Cantelli lemma, for arbitrary ԑ>0, when n is sufficiently large, we obtain:  

 

1

. .
=


n

ni

i

Z a s

 

 

When n is sufficiently large, we obtain ( ) ( ) ( )( )1 1

0 0 . .− →ni i iW t Y EY a s  that is  

 

( ) ( )( )1 1

0

1

( ) 0 . .
=

− →
n

ni i i

i

W t Y EY a s

 

 

We prove the result as follows. When n is sufficiently large,  

 

( ) ( ) ( )( )2 2

0 0 . .− →ni i iW t Y EY a s
                                                                                                   (4) 

 

Firstly, 
( ) ( ) 2 2

1

n

i i
i

Y EY
=

−  is a zero mean exchangeable random variable sequence, so  

 

     ( )2 2

ii i YE Y I Y i x I x i dF x 
+

−
 =  ( )2 2

iYi dF x i 
+

−
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and so 

 

( ) ( )  2 1 2 2 2

1 1 1 1
max max max maxi i I I

i n i n i n i n
E Y E Y E Y I Y i i n  

       
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( ) ( ) ( ) ( )( ) ( )2 2 2 2 2 2

1 1 1
max max 2max 2i i i i i

i n i n i n
Y E Y Y E Y Y n

     
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Because 

 

( ) ( )( ) ( ) ( )( ) ( )
2

2 2 2 2

i i i i iVar Y E Y E Y E Y Var Y D− = − = 
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we have 
( ) ( )( )2 2

1

n

i i

i

Var Y E Y nD
=

−  .  

Because 

 

     ( )2 2

ii i YE Y I Y i x I x i dF x 
+

−
 =  ( )

2
iY

x i

xdF x
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1 1

2 22 2

ii Var Y Di = 
 

 

when n is sufficiently large, we obtain 

 

( )2 2

1

1
2 log

2

n

i

i

E Y nD n n 
=
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(we use the formula 
1

2

1

2
n

i

i n
=

  above. When n is sufficiently large, 24 logD n .) 

Because
( )2 2

1

1
2 log

2

n

i

i

E Y nD n n 
=

  is right and due to the result of bennett 

exponential inequality, we obtain 
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−
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2

1

n

i

n−

=

  is right, we obtain 
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1 1
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i

i i

P Y n n
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By Borel-Cantelli lemma, we obtain 
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i

i
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Because
( )2 2

1

1
2 log

2

n

i

i

E Y nD n n 
=

   and 
( )2

1

log
n

i

i

Y n n
=

  . .a s is right, when n is 

sufficiently large, we have 

 

( ) ( ) ( )( )
2

2 2

0

1

3 log
.

2

n

ni i i

i n

n
W t Y E Y A a s

nh


=
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Because of the result of ( )
2log

0
n

n
n

nh
→ →

, when n is sufficiently large, 

 

( ) ( ) ( )( )2 2

0

1

0 .
n

ni i i

i

W t Y E Y a s
=

− →
 

 

(4) is proved. 

When n is sufficiently large, because ( )0

1

0 . .
=

→
n

ni i

i

W t Y a s  and (2), (3), and (4) are all right, 

we obtain  

 

( )0

1

( ) 0 .
n

ni i i

i

W t Y EY a s
=

− →
  

 

The theorem is proved. 

 

Conclusion 

In this paper, as the application of statistics, when the weight function uses real variables in 

errors-in-variables model, we extend the consistency of the weighted sum for the sequence of 

independent random variables, and obtain a result of convergence about the weighted sum for the 

sequence of exchangeable random variables in errors-in-variables model. The exchangeable 

random variables are independent and identically distributed so, it has some properties of 

independent identically distribution and is more applicable to some statistics. The errors-in-

variables model is the real variable weight function. The kernel weight function of independent and 

identically distributed variables is generalized to the errors-in-variables model in the real variable 

weight function. This paper discusses the convergence of weighted sums of random variable.  
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