
169

AMSE JOURNALS-AMSE IIETA publication-2017-Series: Advances A; Vol. 54; N°2; pp 169-184

Submitted Apr. 04, 2017; Revised Sept. 25, 2017; Accepted Sept. 28, 2017

https://doi.org/10.18280/ama_a.540203

 Design and Evaluation of Text Pre-Processor: A Tool for Text Pre-

Processing

*Amit Prasad Rauth, **Anjan Pal

*Department of Computer Science & Engineering, OmDayal College of Engineering &

Architecture, 39(P) & 39(A), Uluberia, West Bengal-711316, India. (amitrauth1234@gmail.com)

** Department of Computer Science & Engineering, OmDayal College of Engineering &

Architecture, 39(P) & 39(A), Uluberia, West Bengal-711316, India. (anjanpal5@gmail.com)

Abstract

This paper introduces the Text Pre-processor, a tool that integrates several text pre-

processing tasks such as tokenization, parts-of-speech tagging, and elimination of stop words.

These pre-processing tasks are prerequisite for any text processing tasks such as sentiment

analysis or text summarization. However, there does not exist any one-stop solution to perform

multiple text pre-processing tasks. The Text Pre-processor serves to cover this gap. The tool

includes five modules. These include text editor, single file processing, file to file processing,

multiple file processing, as well as split and merge files. Informed by the technological

acceptance model, a qualitative user study was conducted to evaluate the efficacy of the tool.

Participants generally found the tool efficacious.

Key words

Natural language processing, Text processing, Text pre-processing, Text mining tool.

1. Introduction

In the era of ever-growing volume of information, fields such as text mining, natural

language processing, and big data analysis are charting a meteoric rise. Both practitioners and

researchers working in these fields rely on computational techniques to process huge volumes of

170

information. There has been evolving interest in domains such as computational linguistics,

corpus linguistics, information extraction, information retrieval, and discourse processing [1, 2].

These domains entail processing huge volumes of textual data for several text processing tasks

such as sentiment analysis, and text summarization [3, 4].

However, text processing tasks are often cumbersome because they entail extensive pre-

processing [5, 6]. Text pre-processing refers to transformations that need to be applied on texts

before they can be meaningfully parsed and processed. It includes tasks such as tokenization,

stop-words elimination, quantification of words, characters, vowels, white space, and sentences

as well as parts-of-speech (POS) tagging [7, 8]. These tasks are often necessary before doing any

major text processing tasks for further investigation.

Although many advances have been done in text processing tasks, little has been done to

automate multiple text pre-processing tasks on a single platform. Prior studies mostly rely on

different tools to conduct text pre-processing tasks [9]. For example, some studies used the

Stanford Parser’s POS tagger to find the proportions of various POS in texts, and some other

customized Java programs to compute measures such as characters per word, and words per

sentence. Likewise, some studies used the Stanford Parser to obtain POS tagging, while some

undisclosed tool was used for lower-casing of text.

Even though there are many distinct tools available that can perform such text pre-

processing tasks in isolation, they either perform basic pre-processing tasks such as word count,

and upper-lower casing; or advanced pre-processing tasks such as stop-word elimination and POS

tagging [10, 11]. Moreover, these tools do not facilitate the pre-processing tasks repeatedly on

multiple files. Furthermore, there exists no single tool that integrates many text pre-processing

tasks. For these reasons, this paper introduces the Text Pre-processor, a tool that performs several

pre-processing tasks through the use of a Graphical User Interface (GUI). The tool was developed

using Java Application Programming Interface (Java API). A user study was conducted to

examine the efficacy of the tool.

2. Motivation and Significance

Several text mining tools have been developed for mining knowledge from huge amount of

text. Holzman presented the design of such a tool for text mining developed in C++ [12].

OpenNLP [13] is a collection of open source tools for NLP. It focuses on feature extraction

through annotation. LingPipe is another example of similar text mining tool [14]. Besides, there

are a few tools available in the market to pre-process text. Many tools such as notepad++, and

171

editplus can perform some of the pre-processing tasks on text [15, 16]. However, these tools were

not designed to support several pre-processing tasks all at one place. This calls for the

development of a stand-alone text pre-processing tool.

The significance of this tool is three-fold. First, to the best of the authors’ knowledge, this

represents one of the earliest attempts to build a tool to integrate multiple text pre-processing

tasks. It serves the purposes of various pre-processing tools in an integrated processing unit.

Second, this tool serves as an invitation for budding scholars to embark on text mining research.

Researchers need not be overly concerned about text pre-processing tasks in handling text corpus.

The tool can smoothen the perceived learning curve by offering a one-stop solution for multiple

text pre-processing tasks. Third, from the perspective of programmers, this paper demonstrates

the use of Java API for handling text under a GUI. The choice of programming language makes

the tool platform independent in nature [17].

3. Features of the Tool

 The major features of the tool include:

• Provide a user-friendly GUI that can be used by experts and amateurs alike.

• Facilitate an editor to perform different operations such as cut, copy, and paste on the

selected file as per user requirements.

• Create new text file.

• Browse an existing text file from any hard drive for processing.

• Save the modified file content with proper extensions.

• Provide different font colors and background colors to make textual content attractive on

the editor.

• Support popular keyboard short-cuts such as Ctrl+O for opening the file, Ctrl+S for

saving, Alt+F4 for quit.

• Allow quantification of words, vowels, consonants, and sentences on a selected file.

• Eliminate stop-words, periods, and consecutive white spaces from a selected text file.

• Provide POS tagging of text in a file.

• Allow merging of several files into single file.

• Allow to split a large file into several smaller files.

• Facilitate text pre-processing tasks on multiple files.

• Provide a help menu to work with it.

172

4. Tasks Performed by Text Pre-processor

Before doing any text processing tasks, it is necessary to pre-process the collection of textual

data. Text has a rich substrate hierarchically comprising of paragraphs. Each paragraph consists

of a sequence of sentences, whereas each sentence consists of a sequence of words that are

separated by delimiters. To deal with textual data, the tool has aimed to achieve the following

pre-processing tasks:

Tokenization

Tokenization is the process of splitting a text into tokens. The text is converted to tokens

through one or more tokenizing functions such as removing all punctuation and extracting word-

chunks by grouping characters delimited by spaces [18]. Thus, the tool generates tokens as non-

empty sequence of characters excluding spaces and punctuation for fine-grained text processing.

Moreover, the tool can generate each sentence as a token for coarse-grained processing of text.

Superficial characteristics can be extracted from a text file. Additionally, the tool facilitates

calculating the total number of words, lines, vowels, consonants, digits, letters, spaces, and

sentences in a file.

Elimination of Consecutive White Spaces, Duplicate Sentences, and Numbers

In case of white space elimination, the tool can substitute consecutive white spaces by single

space for the content present in the text file. By eliminating consecutive white spaces, it allows to

quantify characters in a file with a high accuracy [19]. The tool can eliminate all duplicate

sentences that are redundant from a text file after taking them in the format of collection of

sentences. Number elimination facilitates removal of all the numeric digits from a text file in

order to improve performance of text clustering algorithm in terms of outlier elimination [20]. It

also facilitates extraction of numbers rather than simply eliminating them from a specific text file.

Punctuation and Stop-word Removal

Punctuation removal entails eliminating all types of punctuations such as periods, semicolons

and exclamations from the content of a text file. It helps in generating tokens from chunk of text

content without accounting for the punctuations, and to normalize text. It also facilitates

extracting lexical features such as character counts from the text content. Stop-word removal

entails eliminating words such as articles, conjunction and prepositions [11, 21]. Its primary use

is to prevent processing of text from being over influenced by very frequent words.

Extraction of Sentences and Paragraphs

Pre-processing tasks include extraction of sentences and paragraphs by matching a specified

word given by users. Comparative sentences and paragraphs are retrieved from the text content

173

against a search word for segmentations [22]. These pre-processing tasks are commonly

associated with text summarization, sentiment analysis, and knowledge extraction [23].

POS Tagging

Extracting accurate natural language information from a text entails tagging each word with

its POS tag [24]. Many text-based tools use POS taggers, which identify POS such as noun,

adjective and adverb of a word and tag it accordingly. Then taggers parse the tagged words into

grammatical phrases to help distinguish the semantics of the component words. POS taggers for

English texts are built using machine learning techniques that depend on the likelihood of a tag

given a single word and the tags of its surrounding words in order to contextualize training data.

POS tagging is widely used in several natural language processing tasks such as sentiment

analysis, text-to-speech conversion, information retrieval, shallow parsing, information

extraction, semantics, and translation [25, 26].

Splitting and Merging of Files

Processing text corpus often endeavors processing of either a large single text file or a large

number of multiple text files [27]. However, it is often required to split the single large file into

multiple files or to merge multiple files into a single one according to the requirement of the

processing tasks [28]. The manual process of doing these splitting and merging operations is time

consuming and lead to fatigue. Thus, handling a text corpus often lead to such pre-processing

tasks.

5. Design and Implementation of Text Pre-processor

The design and implementation of the tool could be broadly classified into two levels:

System level design and detailed level design. The system level design is associated with the

different modules of Text Pre-processor whereas the detailed level design pertains to the internal

implementation details of each module.

5.1 System Level Design

This level tends to identify modules, their specification, and how they interact with each

other to implement the desired system. The tool can be functionally divided into the following

five modules:

Module 1: Text Editor

Module 2: Single File Processing

Module 3: File to File Processing

174

Module 4: Multiple File Processing

Module 5: Split and Merge Files

5.2 Detailed Level Design

In detailed level design, the internal details of each of the modules are specified. The internal

details of all the five modules are given below:

Module 1: Text editor

This module provides an editor to process textual content as shown in Fig. 1. The editor

entails the use of a text area from the class of editor pane.

Fig.1. Screenshot of Module 1

This module provides three menu options, namely, file, edit, and help associated with other

menu items such as open, save, and new under each of them. It allows users to create new text

file, open an existing text file, and save current text file. It includes editing options such as cut-

paste, copy-paste, and select all. The character encoding scheme of this editor supports UTF-8, a

175

universal character set that allows to process multilingual content. The functionality of browsing

existing files into the editor is adjusted in such a way that the user can select only the mentioned

file extensions such as .txt, .java, .c, .cpp, .html. Hence, users can not browse other types of files

such as image video, audio in the editor that would make the module dysfunction.

Module 2: Single file processing

This module provides different quantitative information for a selected file containing textual

data as shown in Fig. 2. Different quantitative information includes total no. of words, lines,

vowels, digits, blank spaces, characters, consonants, letters, and sentences present in the file. This

module facilitates to import all these lexical features along with the selected file name into an

excel. It can process single file at a point of time.

Fig.2. Screenshot of Module 2

Module 3: File to file processing

This module allows to process file to file operations as shown in Fig. 3. It allows users to

select a file for different operations such as consecutive white space elimination, duplicate line

elimination, and stop word elimination. The two buttons namely, select source file and choose

176

destination file are used to browse a source file and to select destination location along with a file

name to store the required output respectively. After processing the selected file, the output is

generated in a new file by keeping the original intact. The module also facilitates all the

operations by a click on the button named “all function.” To do all the operations at a time, it is

required to browse all the destination file locations separately by clicking on the “browse file”

button for each operation. This module also allows to search all the sentences and paragraphs

from a selected file containing a specific word given by users.

Fig.3. Screenshot of Module 3

Fig.4. Screenshot of Module 4

177

Module 4: Multiple File Processing

This module allows users to process multiple files from a selected source directory in order

to speed up the repetitive tasks for those operations that have been done in the Module 3 as a

single file processing unit. After browsing the source directory where the files are kept for

processing, and the destination directory where the files need to be stored after processing, users

can click any of the operations that are to be done on such multiple files. All the generated output

files take the names of their corresponding input files while being created during the processing.

Moreover, this module additionally includes the POS tagging feature that have been done

commonly in many NLP tasks such as sentiment analysis and text summarization. It uses the

Stanford POS tagging parser in the back-end. The screenshot of this module is shown in Fig. 4.

Fig.5. Screenshot of Module 5

Module 5: Split and Merge Files

This module performs splitting and merging operations on files. It helps to split a large file

into multiple files having smaller sizes. To do this, users need to browse the source file that needs

to be split, and the destination directory that stores the multiple files generated during processing.

Conversely, it is possible to merge several files into a single file. The screenshot of this module is

shown in Fig. 5.

178

6. Evaluation of Text Pre-processor

A user study was conducted to evaluate the efficacy of the tool. A total of 20 participants

were recruited based on convenience sampling. Among them, 10 participants had undergraduate

degrees in computer science with a mean age of 24.40 years. The rest hailed from other

disciplines such as business and information studies with a mean age of 25.10 years. All of them

had interest and preliminary experience in text processing.

The user study comprised three steps. In the first step, a set of pre-compiled deck of slides

was used to demonstrate the tool to the participants. Slides contained a brief introduction to the

Text Pre-Processor followed by descriptions of the pre-processing tasks that are facilitated by the

tool. Next, participants were shown slides that described the different modules of the tool. This

was followed by video demonstration of a few tasks associated with each module.

In the second step, the participants were given a set of instructions containing 10 pre-

processing tasks—two from each module, and some sample text files for performing the tasks.

They had to complete at least five pre-processing tasks, one from each of the five modules. The

tasks are listed in Table 1.

Table 1. List of Text Pre-Processing Tasks

Module Text pre-processing tasks

1 Task 1: Browse a sample file to delete the existing textual content and write

your name and save it.

Task 2: Change the back color of the editor.

2 Task 3: Browse a sample text file, and report number of words and

sentences in the content.

Task 4: Browse a sample text file, and report number of characters and

vowels in the content.

3 Task 5: Find all the sentences containing a specific search word from a

given sample file, and save the generated output file in a given location.

Task 6: Eliminate all punctuations from a sample text file, and save the

generated output file in a given location.

4 Task 7: POS tagging for the textual content of all the sample files and save

the corresponding output files in a given location.

Task 8: Eliminate the stop words from all the given sample files and save

the corresponding output files in a given location.

5 Task 9: Merge all the given sample files into a single file.

179

Task 10: Split a sample file into multiple files.

In the last step, a questionnaire was administered to the participants regarding perceived

usefulness and perceived ease of use of the tool as shown in Table 2. Additionally, both positive

and negative feedback about the tool was sought. The questions were derived from Davis’

technology acceptance model (TAM) that explains the acceptance of the new developed products

and services at users’ end [29, 30]. TAM has been widely used to explain users’ perceptions

regarding adoption of new tools and technologies [31, 32].

 According to TAM, users’ perceptions can be measured by using two variables that impact

adoptions of new tools and technologies. The two variables are perceived usefulness and

perceived ease of use. Perceived usefulness refers to the degree to which a user believes that

using a particular tool or technology would enhance his or her job performance [32]. Perceived

ease of use refers to the degree to which a user believes that using a particular tool or technology

would not be cognitively challenging [32].

Table 2. Questionnaire Items Used in the Study

Construct Questionnaire items

Perceived usefulness What is the potential of the tool to enhance your performance in text pre-

processing tasks?

Perceived ease of use Does the tool make it easier for you to pre-process text? Why?

General feedback What did you like and dislike about the tool?

With respect to perceived usefulness, majority of the participants perceived Text Pre-

processor to be a useful tool. In particular, its perceived usefulness stems from its functionality

for various test pre-processing tasks performed on multiple files. For instance, participant 2

expressed that the tool “could be effective to handle multiple files” while participant 7 liked the

concept of the automated file naming system while doing work on multiple file processing

module. Some participants also suggested that the tool could be useful for pre-processing tasks on

text while handling a text corpus. For example, participants 15 and 19 related that the tool can

“encourage researchers” to “solve their text pre-processing difficulties” that are often

cumbersome before conducting any text processing tasks.

With respect to perceived ease of use, it was unanimously agreed that the interfaces of all the

modules was easy to learn and use. In particular, participant 12 shared that “the interface is quite

user-friendly with features that can be easily understood.” Participants also felt that the

180

navigation was unambiguous. For example, participant 1 complimented, “It is pretty easy to

navigate while performing multiple file processing tasks, and requires maximum of three-four

clicks to complete the task.” However, few participants stated that the interface could be made a

bit more attractive.

In terms of positive feedback, the majority of the participants perceived the Text Pre-

processor to be a useful tool in the field of text pre-processing. In particular, its perceived

usefulness stems from its power to handle multiple files for a single operation which is tedious to

perform separately for each file to them. For instance, participant 3 stated, “The tool is helpful

because it works not only on single file but also it helps in handling multiple files. It really takes

the hurdle of handling monotonous tasks for multiple files.” Participant 5 was impressed with the

facility of “performing several pre-processing tasks under a single tool.” Moreover, on the

response of perceived ease of use it was unanimously agreed that the tool has relatively simple

interface, and that it was easy to learn and use. In particular, participant 14 shared that “the tool is

quite user-friendly with all features. All the tasks starting from selecting a file, perform

operations and after that saving the file can be easily done.”

In terms of negative feedback, among the most common dislikes include the unattractive

interface. For example, participant 4 indicated, “the graphical interface can be made a bit more

attractive.” Some of the participants also suggested to add more functionalities related to some of

their fields such as stemming and other customized processing of text. For example, participants

17 commented that “the tool does not perform operations such as stemming.”

7. Conclusion

Recent years have been witnessing a growing interest in text processing tasks [1, 5].

However, these tasks are cumbersome because of extensive text pre-processing tasks that are

seldom conducted using a single tool. Hence, this paper introduced Text Pre-processor, a tool to

pre-process text.

This paper represents one of the earliest attempts to build a tool in order to integrate multiple

text pre-processing tasks that are prerequisite for almost all text processing applications. The tool

serves the purposes by providing many text pre-processing tasks to both practitioners and

researchers. Moreover, the tool makes it easier for users to process multiple files that could

otherwise have been time-consuming. The tool can smoothen the perceived learning curve by

offering a one-stop solution for multiple text pre-processing tasks.

181

The development of the tool relied on Java API. The choice of this programming language

makes the tool platform independent where the adoption of new technological trends often makes

the change in the platform itself. Thus, it facilities a cross platform solution. Since Java program

code is machine independent, and is designed to run in an identical manner on target platforms

ranging from embedded systems to high-end workstations, the tool has the potential to work with

other systems. Furthermore, Java API allows to facilitate the design of user-friendly GUI that

makes the tool to be used by amateur also.

The paper is constrained by two limitations. First, it used only qualitative data collection to

obtain participants’ opinion about the Text Pre-processor. Second, the sample size was small.

Using a larger sample coupled with both qualitative and quantitative data collections might have

yielded richer insights.

In response to the users’ study while evaluating the tool, this paper creates two opportunities

for future research. First, the modules of this tool could be extended by further adding more

functionalities such as stemming and other customized pre-processing tasks to meet further users’

requirements identified during the evaluation phase. This will further enrich the tool to make the

set of the pre-processing tasks complete.

Second, the follow-up version could conduct a user study to test the technology acceptance

model with a large set of participants. It will help to explain the factors such as perceived ease of

use and perceived usefulness that affects users’ perceptions and acceptance of the tool.

Furthermore, the look-and-feel of the GUI could be made more attractive than the present

version.

Acknowledgment

The authors would like to thank Mullick Kabirul Huda, Subhendu Maity, Subhajit Das, and Sk.

Abdul Nasim for their help in this project.

References

1. I. Pollach, Taming textual data: The contribution of corpus linguistics to computer-aided text

analysis, Organizational Research Methods, vol. 15, 2012, pp. 263-287.

2. S. Pletscher-Frankild, A. Pallejà, K. Tsafou, J. X. Binder, L. J. Jensen, DISEASES: Text

mining and data integration of disease–gene associations, Methods, vol. 74, 2015, pp. 83-89.

3. S.A. Crossley, L.K. Allen, K. Kyle, D. S. McNamara, Analyzing discourse processing using a

simple natural language processing tool, Discourse Processes, vol. 51, 2014, pp. 511-534.

182

4. P. Velardi, P. Fabriani, M. Missikoff, Using text processing techniques to automatically

enrich a domain ontology, Proceedings of the International Conference on Formal Ontology

in Information Systems-Volume 2001, 2001, pp. 270-284.

5. E. Haddi, X. Liu, Y. Shi, The role of text pre-processing in sentiment analysis, Procedia

Computer Science, vol. 17, 2013, pp. 26-32.

6. D. Munková, M. Munk, M. Vozár, Data pre-processing evaluation for text mining:

Transaction/sequence model, Procedia Computer Science, vol. 18, 2013, pp. 1198-1207.

7. Z. Ceska, C. Fox, The influence of text pre-processing on plagiarism detection, Proceedings

of the Association for Computational Linguistics, 2011, pp. 55-59.

8. N.A. Ghani, S.S.M. Kamal, A sentiment-based filteration and data analysis framework for

social media, Proceedings of the International Conference on Computing and Informatics,

2015, pp. 632-637.

9. S. Banerjee, A.Y.K. Chua, J.J. Kim, Using supervised learning to classify authentic and fake

online reviews, Proceedings of the International Conference on Ubiquitous Information

Management and Communication, 2015, pp. 88:1-7.

10. M. Ott, C. Cardie, J.T. Hancock, Finding deceptive opinion spam by any stretch of the

imagination, Proceedings of the Association for Computational Linguistics, 2011, pp. 309-

319.

11. W.J. Wilbur, K. Sirotkin, The automatic identification of stop words, Journal of Information

Science, vol. 18, 1992, pp. 45-55.

12. L.E. Holzman, T.A. Fisher, L.M. Galitsky, A. Kontostathis, W.M. Pottenger, A software

infrastructure for research in textual data mining, International Journal on Artificial

Intelligence Tools, vol. 13, 2004, pp. 829-849.

13. D. Ho, Notepad++, 2011, Retrived from: http://notepad-plus-plus. org.

14. R. Godwin-Jones, Emerging technologies: Web-writing 2.0: Enabling, documenting, and

assessing writing online, 2008, Language Learning & Technology, vol. 12, pp. 7-13.

15. C.C. von Bastian, A. Locher, M. Ruflin, Tatool, A Java-based open-source programming

framework for psychological studies, 2013, Behavior Research Methods, vol. 45, pp. 108-

115.

16. G. Neumann, J. Piskorski, A shallow text processing core engine, Computational Intelligence,

vol. 18, 2002, pp. 451-476.

183

17. V. Tunali, T.T. Bilgin, PRETO: A high-performance text mining tool for preprocessing

Turkish texts, 2012, Proceedings of the International Conference on Computer Systems and

Technologies, pp. 134-140.

18. K. Shi, L. Li, High performance genetic algorithm based text clustering using parts of speech

and outlier elimination, 2013, Applied Intelligence, vol. 38, pp. 511-519.

19. A.K. Uysal, S. Gunal, The impact of preprocessing on text classification, 2014, Information

Processing & Management, vol. 50, pp. 104-112.

20. M.K. Dalal, M.A. Zaveri, Automatic classification of unstructured blog text, Journal of

Intelligent Learning Systems and Applications, vol. 5, 2013, pp. 108-114.

21. N. Jindal, B. Liu, Identifying comparative sentences in text documents, Proceedings of the

International ACM SIGIR Conference on Research and Development in Information

Retrieval, 2006, pp. 244-251.

22. M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, S. Manandhar,

Semeval-2014 task 4: Aspect based sentiment analysis, Proceedings of the International

Workshop on Semantic Evaluation, 2014, pp. 27-35.

23. M. Mitray, A. Singhalz, C. Buckleyyy, Automatic text summarization by paragraph

extraction, Compare, vol. 22215, 1997, pp. 26:1-11.

24. R. Feldman, Techniques and applications for sentiment analysis, Communications of the

ACM, vol. 56, 2013, pp. 82-89.

25. S.N. Kim, O. Medelyan, M.Y. Kan, T. Baldwin, Automatic key phrase extraction from

scientific articles, Language Resources and Evaluation, vol. 47, 2013, pp. 723-742.

26. E.W. Brown, J.P. Callan, W.B. Croft, Fast incremental indexing for full-text information

retrieval, Proceedings of the Very Large Data Bases Conference, 1994, Internet:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.6221&rep=rep1&type=pdf [Dec

26, 2015].

27. T. Erjavec, C. Ignat, B. Pouliquen, R. Steinberger, Massive multi lingual corpus compilation:

Acquis communautaire and totale, Archives of Control Science, vol. 15, 2005, pp. 529-540.

28. S.C. Lewis, R. Zamith, A. Hermida, Content analysis in an era of big data: A hybrid approach

to computational and manual methods, Journal of Broadcasting & Electronic Media, vol. 57,

2013, pp. 34-52.

29. F.D. Davis, R.P. Bagozzi, P.R. Warshaw, User acceptance of computer technology: A

comparison of two theoretical models, Management Science, vol. 35, 1989, pp. 982-1003.

184

30. L.G. Wallace, S.D. Sheetz, The adoption of software measures: A technology acceptance

model (TAM) perspective, Information & Management, vol. 51, 2014, pp. 249-259.

31. G.H. Subramanian, A replication of perceived usefulness and perceived ease of use

measurement, Decision Sciences, vol. 25, 1994, pp. 863-874.

32. F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of information

technology, MIS Quarterly, vol. 13, 1989, pp. 318-340.

