
Two Stages Best First Search Algorithm Using Hard and Soft Constraints Heuristic for

Course Timetabling

Marvin Chandra Wijaya

Computer Engineering Department, Maranatha Christian University, Jl. Suria Sumantri 65, Bandung 40164, Indonesia

Corresponding Author Email: marvin.cw@eng.maranatha.edu

https://doi.org/10.18280/ria.340405 ABSTRACT

Received: 26 May 2020

Accepted: 19 July 2020

Course Timetabling is to combine the components of teachers, students, subjects, and time.

The schedule consists of days on the horizontal axis and time of the clock on the vertical

axis. The best first search algorithm is an algorithm to find a solution from existing nodes.

Nodes can be various types of problems. In this case, the node is a two-dimensional

schedule. In course timetabling there are several constraints or called heuristic functions

that must be calculated. The Heuristic function consists of two parts. The first part is a

constraint that must be fulfilled (Hard Constraint). There is a schedule of conflicts of the

demands of the teacher cannot teach at a certain time. The second part is a constraint which

is an optimization to make the search results better in heuristic value (Soft Constraint).

Student schedules and teachers are worked out sequentially so students do not wait too long.

Best First Search algorithm is designed in two stages. The first step is to find the first

heuristic value that must be fulfilled. The second step is to find the second heuristic value.

The quality of the solution obtained is between 40% -75%. The significance of this research

is that dividing the Best First Search algorithm into two stages yields advantages in terms

of meeting hard constraints and the time needed to process the algorithm better.

Keywords:

timetabling, best first search, hard

constraint, soft constraint

1. INTRODUCTION

Timetabling problems can be defined as assigning a set of

class courses into a limited number of periods, subjects,

teacher's time, and student's time. The complexities and the

challenges of the timetabling process showed by timetabling

problems arise from the fact that a large of constraints and

some of which contradict with each other [1].

The timetabling problem first appeared in the artificial

intelligence literature in the 1960s. Since the 1960s, it has been

the subject of many researchers. The most specific basic

problem is scheduling classes of courses or events (small class

or large class) in such a way that no teacher or no students (or

classes) are assigned to more than one course or class at the

same time. This basic problem can be solved in polynomial

time or exponential time by a minimize network flow

algorithm. But in a real-world application, teachers can be

unavailable in some time slots. Therefore, when this constraint

takes place, the resulting timetabling problem is NP-complete

[2].

Timetabling is important planning in the school calendar.

The class timetabling process is a process for implementing an

event that contains a component of the teacher, students, and

subject on the time component. If a manual system is used, the

problem will take longer to find a solution, especially if the

number of components and rules increases.

Timetabling not only gives practical expression to the

curricular philosophy of the school but timetabling also

maintains and regulates the teaching and learning pulse of the

school. Scheduling that is done properly ensures the delivery

of quality education for students [3].

There are some aspects that must be considered to obtain a

class schedule. Aspects related to scheduling that must be

involved include:

a. There is a request where the teacher cannot teach at

certain hours and days. (hard constraint)

b. Student schedules and teacher schedules are made in

such a way that there is not too much free time. (soft

constraint)

Constraints in course scheduling that must be fulfilled can

be guaranteed not to be violated (hard constraint) and

optimization in finding the minimum waiting time for students

between classes (soft constraint) is processed using the two

stages of the Best First Algorithm. The objective function

attempts to optimize and minimize the idle hours between the

daily teaching times of all teachers and daily student class

times.

University course timetabling is assigning courses and time

slots and ensuring a minimum violation of soft constraints that

define the quality of the timetable. The soft constraints that

define differently for each institution, can make difficulty for

algorithm solvers to find good solutions fast enough to be used

in a practical setting [4].

The two-stage algorithm shows how to model the

timetabling problem as a partial constraint satisfaction

problem and gives a solver implemented with constraint

handling rules that, by performing soft constraint rule and

allows for making soft constraints an active process of the

problem-solving process [5].

More complex constraint means more importance of the

timetabling process for the educational system and highlights

the multiple objectives of the task. Moreover, it makes clear

that while the timetabling practice requires adopting all

requirements for each institution. Every different constraint

Revue d'Intelligence Artificielle
Vol. 34, No. 4, August, 2020, pp. 413-418

Journal homepage: http://iieta.org/journals/ria

413

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340405&domain=pdf

found that hold uniquely for each institution, quality is an ill-

defined feature that every institution strives to achieve. For

Example, at Virginia Tech, the quality of the course schedule

is evaluated by the distance that the teacher or lecturer must

travel from their office rooms to the classrooms. The unique

time slots for class timetabling in the various categories make

it possible to segregate the university-wide timetabling

problem into different independent problems [6].

At Purdue University, they have to process two separate

terms along with extensive experiments solving for two central

and six departmental problems, individually. The problems

faced by Purdue University reach 2500 classes each semester

[7]. The number of classes is very large, so processing times

can take a very long time. This must be anticipated in making

algorithms for scheduling.

At Hannover University, Germany, the School of

Economics and Management has to create the complete

timetable of all courses for a term. Approximately there are

150 weekly lectures, seminars, and other events. Every class

has to accommodate approximately 5 to 650 students. The

teacher number approximately 100 teachers and the student

number approximately 24,000 students. The decision problem

is to assign many teaching groups to time slots and rooms with

soft and hard constraints are met [8]. It is also necessary to pay

attention to the uncertainty and dynamic environment on these

constraints in each time schedule [9].

MARA University of Technology is one of the largest

universities in Malaysia. MARA University of Technology

has 13 branch campuses in Malaysia. Mara University of

Technology offers 144 programs, delivered by 18 faculties.

The dataset differs from the other institutions reported in the

literature due to weekend constraints that have to be observed

[10].

At Italian high schools, the timetabling problem consists of

assigning class should consider for a given number of hours

per week for each teacher [11]. The amount of time allocated

for each student has been determined and should not be

violated. The amount of time allocated has been regulated by

the government, so scheduling has new hard constraints that

cannot be violated.

From previous research studies, it appears that several

issues exist. In the existing problems, it appears that there are

important things in the constraint. The constraint consists of

hard constraints and soft constraints. Both of these problems

must be solved with different levels of importance. There exist

various institution timetabling problems depending on the

environment and the characteristics of the particular institution

[12]. The institution (University or school) timetabling

problem is combinatorial and there are several strict

organizational and sequence-related rules that must be

considered.

Combining the two types of constraints will make the

problem-solving process longer and more resource consuming.

It is also difficult to overcome hard constraint problems due to

the existence of soft constraints.

It also needs to be considered about the existence of highly

combinatorial in the search tree. The highly combinatorial

search tree will make the search time increase exponentially.

The repair and enhancement of existing constraints can reduce

search time. The use of two algorithm stages can also divide

the two possible combinatorial possibilities. This method can

also reduce the search time [13].

2. BEST FIRST SEARCH

The best first search is a search algorithm to search the most

promising node chosen according to a specified function or

rule. The best first search is a method that generates nodes

from the previous node. The best first search selects a new

node that has the smallest cost among all leaf nodes that have

been raised. The best node selection is done by using a

function called the f (n) evaluation function.

The best first search evaluation function can be an estimated

cost from a node to the goal. The evaluation function also can

be a combination of the actual cost and estimated cost. At each

step of the first best search process, nodes are selected by

applying an adequate heuristic function at each node selected

using certain rules for generating replacement nodes. The

heuristic function is a strategy to selectively search the space

for a problem state, which guides the search process carried

out along the path that has the greatest probability of success

[14, 15].

There are several terms used in the best-first search method

[16, 17]:

1. The start node is a term for the initial position of a

search

2. The current node is the node that is being run in the

shortest path search algorithm

3. A successor is the nodes that will be checked after the

current node

4. The node is a representation of the search area

5. An open list is a place to store data nodes that may be

accessed from the starting node or the node being run

6. A closed list is a place to store node data which is also

a part of the shortest path that has been obtained

7. The goal node is the destination node

8. The parent is the current node of a successor.

Scheduling for some tasks using the analytical hierarchy has

been studied by T. Witkowski. Searching and making

decisions for multi-objective scheduling has been successfully

made and results in optimum scheduling [18]. At each stage,

the best first search can use hyper-heuristic for the domain

search. The use of some low-level heuristics makes search

performance better [19]. Efficiency and optimization need to

be done from design to implementation and need to be

compared with other algorithms [20]. A full tree diagram as in

Figure 1, is a fully open tree diagram.

Figure 1. Example of a tree search [21]

414

The Best First Search Algorithm requires two lists to be

implemented. First is OPEN LIST which manages nodes that

have been raised but have not been evaluated. Another list is

CLOSE LIST which manages nodes that have been raised and

evaluated. The open list and the close list contain a list of state

sequences that contain a list of classes and students that have

been opened or closed.

The search algorithm is as follows:

1. The OPEN list contains the initial state and the

CLOSE LIST is still empty.

2. Repeat until the goal is found or until it is not in the

OPEN LIST.

a. Take the best node in the OPEN LIST.

b. If the node is the same as the goal, then

success.

c. If not, enter the node in CLOSE LIST.

d. Generate all successors from the node.

e. For each successor, do:

i. If the successor has never been

raised, evaluate the successor, add

to OPEN LIST, and record the

parent.

ii. If the successor has been raised,

change the parent if the path

through this parent is better than

the path through the previous

parent. Then update the cost for the

successor and other nodes at the

lower level.

Graphs that are used using non-color graphs. Color graphics

are not required in solving time scheduling problems, color

graphs are more widely used in Linked List-Based Exact

Algorithms.

2.1 Two stages best first search

On two stages of the best-first search, the process of the

best-first search algorithm is processed twice independently.

Goal nodes on the first stage of the best first search algorithm

is used as initial nodes on the second stage of the best-first

search algorithm. Both stages use different heuristic functions.

The first stage uses the hard constraints function. The second

stage uses the soft constraints function. Two heuristic levels

for multistage flow systems are buffers between each stage

[22]. The two best first search stages produce two-stage tree

diagrams as in Figure 2.

On stage two, it must be considered when opening a new

node. A node that is contrary to the hard constraint is not

opened. Because if it is opened it will disrupt the two-stage

Best First Search Algorithm system. The use of two-stage

heuristics is part of artificial intelligence that has sets of

parameters that can be set to produce a combination of two

optimal heuristic levels and produce the shortest time [23].

In opening a child from a node, it is important to consider

the hard constraint. Nodes that violate the hard constraint will

be immediately closed as in Figure 3. This makes the number

of children opened smaller. This step will reduce the

complexity of the course scheduling algorithm and cause a

speed up timetabling process. This happens because the nodes

that violate the hard constraints will be immediately removed

without being added to the open list.

Figure 2. Example tree search of two Stages Best First

Search

Figure 3. Example violation of hard constraints

3. PROBLEM SOLVING AND MODELLING

The goal of this research is to build a weekly time table. In

a week there are 5 workdays (Monday, Tuesday, Wednesday,

Thursday, and Friday). Every workday there is 5 timeslots for

each course class (Time slot 1, Time slot 2, Time slot 3, Time

slot 4, and Time slot 5).

A node in the search tree is a two-dimensional matrix:

𝑁𝑖 =

[

𝑆1,2 𝑆1,2 𝑆1,3 𝑆1,4 𝑆1,5

𝑆2,1 𝑆2,2 𝑆2,3 𝑆2,4 𝑆2,5

𝑆3,1

𝑆4,1

𝑆5,1

𝑆3,2

𝑆4,2

𝑆5,2

𝑆3,3

𝑆4,3

𝑆5,3

𝑆3,4

𝑆4,4

𝑆5,4

𝑆3,5

𝑆4,5

𝑆5,5]

 (1)

415

where, i is the number of nodes that are evaluated by the

algorithm (i = 1, 2, 3, 4, …).

On matrix pointed in (1), columns mean days and rows

mean slot- times. For every element of Ni, there is:

𝑆𝑖,𝑗 = [𝐴 𝐵 𝐶𝑖,𝑗] (2)

𝐶𝑖,𝑗 = { 𝑋 𝑤ℎ𝑜 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝐴| 𝑤ℎ𝑒𝑟𝑒 𝑋

∈ 𝑎𝑙𝑙 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑙𝑖𝑠𝑡 }
(3)

where:

A is course/subject code.

B is the teacher code.

Ci,j is a list of students registered for A course.

The matrix pointed in (1) and (2) represents the course

schedule as shown in Table 1.

Table 1. Course schedule that represented by matrix function

Time Day

Slot Monday Tuesday Wednesday Thursday Friday

1 S1,1 S1,2 S1,3 S1,4 S1,5

2 S2,1 S2,3 S2,3 S2,4 S2,5

3 S3,1 S3,2 S3,3 S3,4 S3,5

4 S4,1 S4,2 S4,3 S4,4 S4,5

5 S5,1 S5,2 S5,3 S5,4 S5,5

3.1 Heuristic function

A heuristic function that is processed is a non-negative

function. The standard way to build a heuristic function is to

find a solution to a simpler problem, with fewer constraints.

Problems with fewer constraints are often easier to solve. In

many spatial problems which cost is distance and the solution

are limited to going through predetermined arcs (for example,

road segments), Euclidean straight lines, and more. The

defined heuristic function is divided into two different

heuristic functions for each stage.

3.2 First stage heuristic function

In the first stage, the heuristic formula calculation process

is carried out for the teaching time of the teacher. The teacher

cannot teach at any time. Every teacher has a different time

slot to teach every day as pointed in (4) and (5).

𝐵𝑖 = [𝐷1 𝐷2 𝐷3 𝐷4 𝐷5] (4)

𝐷𝑖 = {𝑥 | 𝑥 ∈ 𝑥 ≤ 5 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟}

(5)

Each pair of subject schedules and teachers may not violate

the teacher’s time slot. As pointed in (6) is the violation

formula for one time slot and Monday.

𝑣𝑖 = {
0, 𝑖𝑓 𝑆𝑖,1[𝐴 𝐵 𝐶] ∈ 𝐷𝑖

1, 𝑖𝑓 𝑆𝑖,1[𝐴 𝐵 𝐶] ∉ 𝐷𝑖
(6)

The heuristic function for a node for this constraint is:

𝑓(𝑛) = ∑ ∑𝑣𝑖,𝑗

5

𝑗=1

5

𝑖=1

(7)

Because the first stage is a hard constraint, the goal node

occurs if the heuristic value is zero.

3.3 Second stage heuristic function

In the second stage, the process of calculating the heuristic

formula is processed to streamline student time. Student

waiting time between one course/class and another course is

kept to a minimum.

The algorithm for calculating student waiting times between

the two classes is:

1. For each class in a certain time slot student data is

taken one by one.

2. In the next time slot is searched whether the student

is registered.

3. If there is a student then the distance from the time

slot is calculated (d = distance).

4. If there is no student, then look for another time slot.

The heuristic function for a node for this constraint is:

𝑓(𝑛) = ∑ ∑ ∑ 𝑑𝑖,𝑗,𝑘

𝑛

𝑘=1

5

𝑗=1

5

𝑖=1

(8)

Because in the second stage is the calculation for soft

constraints, the goal node is the minimum heuristic value as

possible, the best value is zero but it is hard to achieve.

4. COMPUTATIONAL RESULT

4.1 Set data input

The model was tested by solving an instance from a set of

random data. The experiment was carried out by:

- Changing the number of teachers.

- Changing lecturer teaching hours (hard constraints)

- Changing the number of all students

- Changing the number of students registered in a lesson

This model was implemented in Personal Computer Intel®

Core ™ i5-3570 CPU @ 1.40GHZ, 4 GB RAM

4.2 First stage experiments

For the first stage experiment, changes were made to the

number of teachers and time slots for each teacher. In one

week there are 5 days X 5 time slots = 25 time slots. The

number of teachers determined in the experiment was 10

teachers, 15 teachers, and 20 teachers. Each teacher is

allocated 10 time slots. Experiments were carried out thirty

times and the results of the experiments were averaged. The

average results for each number of teachers (10, 15, and 20

teachers) are shown in Figure 4.

The next experiment is to change the time slot owned by

each teacher. The number of teachers is was fixed, namely as

many as 10 teachers. Several experiments were run for

different time slots. The trial of the number of time slots held

by each teacher is 5,10,15 as in Figure 5.

In this experiment, the hard constraint experiment has

completed a solution worth 100%. Some of the factors

obtained are the more teachers there are, the longer the

processing. Similarly, the fewer time slots a teacher has, the

longer the processing time.

416

Figure 4. Solution quality for changing the number of

teachers

Figure 5. Solution quality for changing the number of time

slots

4.3 Second stage experiments

In the second stage experiment, changes were made to the

number total of students. The number of students processed

starts from 300, 500, and 700 students divided into several

parallel classes. Meanwhile, the number of teachers and

teacher time slots were fixed with data from the first stage.

Experiments were carried out thirty times and the results of

the experiments were averaged. The average results for each

number of students (300, 500, and 700 students) are shown in

Figure 6. In this experiment, the resulting quality solution

ranges from 55% to 75%. Fulfillment of soft constraints is not

achieved 100%, this means that every student may have to wait

between the classes that the student takes.

Figure 6. Solution quality for changing the number of total

students

The next experiment is to change the number of students

registered in a class. The number of students registered in a

class starts from 25, 40, and 60 students. Meanwhile, the

number of teachers and teacher time slots were determined

using the first stage data.

Experiments were carried out thirty times and the results of

the experiments were averaged. The average results for each

number of students are shown in Figure 7.

Figure 7. Solution quality for changing the number of

students registered in a class

In this experiment, the constraint experiment has not

completed a solution worth 100%, the results range from 40%

to 60% only. Some of the factors obtained were that the more

the number of students, the smaller the percentage of the

quality of the solution. Likewise, the more students in a class,

the smaller the percentage of solution quality

5. CONCLUSION

This paper proposed a heuristic model for timetabling using

two stages Best First Search Algorithm. The use of two stages

serves to keep the hard constraint from being fulfilled and not

modified when processing the soft constraint.

In the first stage, the heuristic function is taken from the

hard constraint. The hard constraint is the availability of time

or time slot from the teacher. The results of the experiment

always managed to find a good solution with a relatively short

time. Although the number of teachers was added, experiment

results still managed to find a good solution.

In the second stage, the heuristic function is taken from the

soft constraint. This soft constraint is the efficiency of student

waiting time. In the second stage algorithm experiment, it was

never solved with 100% quality. In an experiment with a

number of students of 300 - 700 students produce solutions

with a quality of 55% - 75%. In the experiment with the

number of students per class that changed between 25 - 60

students per class resulted in a solution with a quality of 40%

- 60%. Following the results of the second stage algorithm

experiment, the time needed to process the second stage

algorithm takes longer.

With the resulting solution not being able to meet all the

constraints, it is necessary to make adjustments to adjust

certain classes so that the resulting solution is better.

ACKNOWLEDGMENT

This research was supported by a Computer Engineering

417

Department, Faculty of Engineering, Maranatha Christian

University, Bandung, Indonesia. This research is fully

supported by the Computer Programming Laboratory of

Maranatha Christian University.

REFERENCES

[1] Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee,

S.Y. (2009). A survey of search methodologies and

automated system development for examination

timetabling. Journal of Scheduling, 12(1): 55-89.

https://doi.org/10.1007/s10951-008-0077-5

[2] Dorneles, A.P., de Araujo, O.C.B., Buriol, L.S. (2014).

A fix-and-optimize for the high school timetabling

problem. Computer & Operation Research, 52: 29-38.

https://doi.org/10.1016/j.cor.2014.06.023

[3] Birbas, T., Daskalaki, S., Housos, E. (2009). School

timetabling for quality student and teacher schedules.

Journal of Scheduling, 12(1): 177-197.

https://doi.org/10.1007/s10951-008-0088-2

[4] Lindahl, M., Sorensen, M., Stidsen, T.R. (2018). A fix-

and-optimize Matheuristic For University timetabling.

Journal of Heuristic, 24(4): 645-665.

https://doi.org/10.1007/s10732-018-9371-3

[5] Abdennadher, S., Marte, M. (2000). University course

timetabling using constraint handling rules. Journal

Applied Artificial Intelligence, 14(4): 311-325.

https://doi.org/10.1080/088395100117016

[6] Sarin, S.C., Wang, Y., Varadarajan, A. (2010). A

university-timetabling problem and its solution using

Benders’ partitioning—a case study. Journal of

Scheduling, 13(2): 131-141.

https://doi.org/10.1007/s10951-009-0157-1

[7] Rudová, H., Müller, T., Murray, K. (2011). Complex

university course timetabling. Journal of Scheduling,

14(2): 187-207. https://doi.org/10.1007/s10951-010-

0171-3

[8] Schimmelpfeng, K., Helber, S. (2006). Application of a

real-world university-course timetabling model solved

by integer programming. OR Spectrum, 29(4): 783-803.

https://doi.org/10.1007/s00291-006-0074-z

[9] Verfaillie, G., Jussien, N. (2005). Constraint solving in

uncertain and dynamic environments: A survey.

Constraints, 10(3): 253-281.

https://doi.org/10.1007/s10601-005-2239-9

[10] Burke, E., Trick, M. (2004). A tabu search hyper-

heuristic approach to the examination timetabling

problem at the MARA University of Technology.

Practice and Theory of Automated Timetabling V, 3616:

270-0293. https://doi.org/10.1007/11593577_16

[11] Avella, P., D’Auria, B., Salerno, S., Vasil’ev, I. (2007).

A computational study of local search algorithms for

Italian high-school timetabling. Journal of Heuristic,

13(6): 543-556. https://doi.org/10.1007/s10732-007-

9025-3

[12] Valouxis, C., Housos, S. (2003). Constraint

programming approach for school time tabling.

Computer & Operation Research, 30(10): 1555-1572.

https://doi.org/10.1016/S0305-0548(02)00083-7

[13] Chan, P., Weil, G. (2000). Cyclic staff scheduling using

constraint logic programming. Practice and Theory of

Automated Timetabling III, 3616: 155-175.

https://doi.org/10.1007/3-540-44629-X_10

[14] Felner, A., Kraus, S., Korf, R.E. (2003). KBFS: K-best-

first search. Annal of Mathematics and Artificial

Intelligence, 39(1-2): 19-39.

https://doi.org/10.1023/A:1024452529781

[15] Mencia, C., Sierra, M. R., Varela, R. (2013). An efficient

hybrid search algorithm for job shop scheduling with

operators. International Journal of Production Research,

51(17): 5221-5237.

https://doi.org/10.1080/00207543.2013.802389

[16] Chen, Z., He, C., He, Z., Chen, M. (2018). BD-ADOPT:

A hybrid DCOP algorithm with best-first and depth-first

search strategies. Artificial Intelligence Review, 50(2):

161-199. https://doi.org/10.1007/s10462-017-9540-z

[17] Lam, W., Kask, K., Larrosa, J., Dechter, R. (2018).

Subproblem ordering heuristics for AND/OR best-first

search. Journal of Computer and System Sciences, 94:

41-64. https://doi.org/10.1016/j.jcss.2017.10.003

[18] Witkoski, R., Antczak, P., Antczak, A. (2009). Multi-

objective decision making and search space for the

evaluation of production process scheduling. Bulletin of

The Polish Academy of Sciences Technical Sciences,

57(3): 195-208. https://doi.org/10.2478/v10175-010-

0121-4

[19] Cichowicz, T., Drozdowski, M., Frankiewicz, M.,

Pawlak, G., Rytwinski, F., Wasilewski, J. (2012). Hyper-

heuristic for cross-domain search. Bulletin of The Polish

Academy of Sciences Technical Sciences, 60(4): 801-

808. https://doi.org/10.2478/v10175-012-0093-7

[20] Dinu, S., Bordea, G. (2011). A new genetic approach for

transport network design and optimization. Bulletin of

The Polish Academy of Sciences Technical Sciences,

59(3): 263-272. https://doi.org/10.2478/v10175-011-

0032-z

[21] Matsui, T., Matsuo, H. (2007). Improvement of

efficiency in pseudo-tree based distributed best-first

search. International Journal of Computer Science, 34(1):

71-79.

[22] Magiera, M. (2013). A relaxation heuristic for scheduling

flow shops with intermediate buffers. Bulletin of The

Polish Academy of Sciences Technical Sciences, 61(4):

929-942. https://doi.org/10.2478/bpasts-2013-0100

[23] Mrowczynska, B., Krol, A., Czech, P. (2019). Artificial

immune system in planning deliveries in a short time.

Bulletin of The Polish Academy of Sciences Technical

Sciences, 67(5): 969-980.

https://doi.org/10.24425/bpas.2019.12663

418

