
GAP: Hybrid Task Scheduling Algorithm for Cloud 

Bhupesh Kumar Dewangan1*, Anurag Jain2, Tanupriya Choudhury1 

1 Department of Informatics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, 

India 
2 Department of Virtualization, School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, 

India 

Corresponding Author Email: b.dewangan@ddn.upes.ac.in

https://doi.org/10.18280/ria.340413 ABSTRACT 

Received: 9 March 2020 

Accepted: 16 July 2020 

Resource optimization is cost effective process in cloud. The efficiency of load balancing 

completely depends on how the infrastructure is utilizing. As per the current study, the 

resource optimization techniques are very costly and taking more convergence time to 

execute the task and load distribution among different virtual machines (VM). The 

objective of this paper is to develop a hybrid optimization algorithm to find the best virtual 

machine based on their fitness values and schedule different task to the fittest VM so that 

each task should get complete on time, and system can utilize the VM as well. The proposed 

algorithm is hybrid version of genetic (GA), ant-colony (Aco), and particle-swarm (Pso) 

algorithms, which is implemented and tested in amazon web service and compared with 

existing algorithms based on VM utilization, completion time, and cost. The proposed 

hybrid system genetic-aco-pso based algorithm (GAP) perform utmost while comparing 

with the existing systems.  
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1. INTRODUCTION

In a distributed environment, resource management is 

implemented under load balancing to minimize the cost, 

satisfaction of service level agreement (SLA), and efficient 

utilization of resources. Work found in literature does not meet 

the efficient resource scheduling parameters like server 

utilization, quality of service, and cost-effective workload 

balancing in minimum time collectively. The demand of users 

and the number of users is never certain. Therefore, there must 

be some mechanism to handle this growing and shrinking 

demand of users in such a manner so that it will not impact the 

quality of service, and also resources must be utilized 

inefficient manner. In this paper, authors have proposed a load 

balancing approach by merging the best features of Genetic [1] 

Particle Swarm Optimization [2], and Ant Colony 

Optimization [3] approach to ensure even load distribution, 

efficient usage of resources and satisfaction of service level 

agreement. Authors have also ensured that limitations of a 

genetic, ant colony and particle swarm approach are not 

inherited in the proposed hybrid approach (GAP). The 

structure of this paper is as follows: In section 2, authors have 

discussed the different scheduling algorithms to achieve load 

balancing in the cloud environment. Problem definition and 

methodology of the proposed new approach are discussed in 

sections 3 and 4 respectively. Details of the simulation 

environment, result, and their analysis are given in section 5. 

It is followed by the conclusion given in section 6. 

2. TASK SCHEDULING IN CLOUD

A real-time scheduling of task in cloud can be optimized 

through many nature and bioinspired optimization algorithms 

like Honey Bee, Particle Swarm, Ant Colony, Ant Lion, Grey 

Wolf, Genetic and other evolutionary patterns. In this research 

work, the best features of Genetic, Particle-swarm, and Ant-

colony have been used to propose a novel idea. Genetic-

Algorithm by Holland [4] in 1992 has given a new approach 

to search by simulating the concept of human evolution. He 

used the concept of crossover, mutation and recombination to 

find the best option among a pool of feasible options. At the 

same time, this concept has also discarded those options, 

which are lying below a certain level. Based on this concept, 

many modified and extended approaches are now used in 

optimization problems. Another bioinspired optimization 

approach is Ant-colony, it is based on the forging nature of a 

group of ants. Ants are very social and they collectively find 

the best path to find foods. This behavior of ant finding the 

best food in the shortest path is also used in many optimization 

problems. In continuation of this, another bioinspired 

approach is the particle-swarm approach. Optimization 

problems based upon this approach simulate the behavior of 

swarm which hunting fish and searching food. The fitness 

function of particles [5] can be given by the formula given in 

Eq. (1). 

𝑓(𝑖) =
1

ExecT
(1) 

where, i is several particles and belongs to [1, S], S is the total 

size of particles, and ExecT is task completion time. And 

completion-time by the task can be defined as: 

𝐸𝑥𝑒𝑐𝑇 = ∑ VM(m, n)

𝑘

𝑛=1

 (2) 
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The comparative analysis of the above-studied algorithms is 

presented in Table 1. 

Table 1. Comparative analysis of algorithms 

Algorithm Time Complexity Space Complexity 

Genetic-Algorithm O(g(nm+n) O(gnm) 

Ant-Colony O(n2) O(n2) 

Particle-Swarm O(n2) O(n2) 

GAP nO(logn) nO(logn) 

Recent advancements of resource-management in the cloud: 

In past decades, many new approaches have been developed 

by cloud researchers with some specific parameters. In 2020, 

a recent survey conducted in cloud resource management 

technique by author Dewangan et at. [6] it is categorized as 

follows:  

2.1.1 Cost-aware approach 

This parameter has been considered to schedule the 

resources at a minimal cost. This results in a low operational 

cost for both service providers and cloud users [7]. 

2.1.2 QoS-aware approach 

Quality of service attracts to the cloud users to opt cloud 

services. The satisfaction ratio decides the user’s trust [8]. 

2.1.3 SLA-aware approach 

Service level agreement approach is one of the key factors 

to enhance user’s trust [9]. 

2.1.4 Energy-aware approach 

In this approach, the authors considered the power 

consumption rate, they provided novel approaches to reduce 

energy consumption, which is directly connected with cost 

[10].   

2.1.5 Auction-based approach 

Cloud user can approach the service as per demand, in this 

concept, the service provider does auctions, and users can opt 

for the required services [11].  

2.1.6 Nature-bio-inspired approach 

It is based on nature and bio-inspired algorithm to find the 

optimal resource for scheduling [12].  

2.1.7 Profit-based approach 

Focused on the profit of both cloud users and service 

providers [13].  

2.1.8 Fault-tolerant approach 

Avoid the unnecessary failures of scheduling the job and 

load balancing approach.  

2.1.9 Optimization approach 

This approach is used to optimizes several parameters as 

desire [14].  

2.1.10 Autonomic computing 

New era in resource management, using some self-

characteristics for load balancing [15].  

The outcome of this extensive study is presented in Figure 

1. In this figure, the different parameters used in all recent

approaches which are developed for the load balancing

approach have been presented based on its utilization. Based

on this review, the resource-utilization, cost, SLA, and

execution time parameters are widely used.

Figure 1. Extensive analysis of cloud resource management approaches based on parameters 

3. PROBLEM DEFINITION

It is managing a problem diagnosed in a preceding 

algorithm or previous work interconnected to the task 

scheduling troubles. The sum of troubles that might be 

recognized is as: Local optima, Premature convergence [16], 

Parameter tuning, Stochastic procedures have trouble-based 

overall performance [17], and PSO algorithm does not have 

strong global seek capabilities. 

3.1 Local optima 

In done mathematics and laptop technological know-how, a 

nearby maximum appropriate of an optimization dilemma is a 

most suitable answer (either maximal or minimal) within a 

neighboring set of candidate solutions. This is in assessment 

to a worldwide most fine that is the choicest solution among 

all viable solutions, not the ones in a specific community of 

values. While the characteristic to be optimized is non-prevent, 
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it may be possible to appoint calculus to discover nearby 

optima. If the primary spinoff exists anywhere, it can be 

equated to zero; if the character has an unbounded domain, for 

a factor to be a local premiere it's miles critical that it fulfill 

this equation. Then the second one by-product check gives 

enough condition for the factor to be a local highest or nearby 

minimal [18].  

 

3.2 Premature convergence 

 

Premature convergence' [19] is common because of the loss 

of diversity. 

 

3.2.1 Diversity 

The degree of the amount varies i.e. wide range of diverse 

solutions [20] in the population, and the way one-of-a-type 

they're (distance between possibility answers). 

 

3.2.2 Loss of variety 

After the population converges, it will become very uniform 

(all answers resemble the tremendous one [21].  

 

3.2.3 Motives 

Too strong selective pressure in the direction of an awesome 

solution. An excessive amount of exploitation of current 

building blocks from the contemporary populace (e.g. via 

recombining them, or mutating them only barely) [22]. 

 

 

4. GAP: METHODOLOGY  

 

The fitness value by GAP is given by the following 

condition: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) =
1

x
 (3) 

 

where, x is total time need to complete the task, and i lies [0,1], 

and x can be obtained through: 

 

𝑥 = ∑ VM(m, n)

𝑘

𝑛=1

 (4) 

 

where, VM (m,n) is the total time in the nth task to execute the 

mth virtual machine, where K is the total task allocated to the 

virtual machine. Then evaluate the value of pbest and gbest 

that is local/particle best and global best, by using the above 

equations. 

 
𝑝𝑏𝑒𝑠𝑡𝑛𝑖(𝑡𝑛 + 1)

= {
𝑝𝑏𝑒𝑠𝑡𝑛(𝑡𝑛), 𝑖𝑓 𝑓(𝑝𝑛𝑖(𝑡𝑛 + 1)) ≤ 𝑓(𝑝𝑛𝑖(𝑡𝑛)

𝑝𝑛𝑖(𝑡𝑛 + 1), 𝑖𝑓  𝑓(𝑝𝑛𝑖(𝑡𝑛 + 1) ≥ 𝑓(𝑝𝑛𝑖(𝑡𝑛)
 

(5) 

 
𝑔𝑏𝑒𝑠𝑡𝑛𝑖(𝑡𝑛)

= {
max (𝑝𝑏𝑒𝑠𝑡𝑛(𝑡𝑛)), 𝑖𝑓 𝑓(𝑚𝑎𝑥(𝑝𝑛𝑖(𝑡𝑛))) ≥ 𝑓(𝑔𝑏𝑒𝑠𝑡(𝑡𝑛))

𝑒𝑙𝑠𝑒 𝑔𝑏𝑒𝑠𝑡(𝑡𝑛)                                                                             
 (6) 

 

After finding the 2 high-quality values, the particle updates 

its speed and positions with the following equations: 

 

𝑉𝑖(𝑡𝑛 + 1) = 𝑤. 𝑉𝑖(𝑡𝑛) + 𝐶1. 𝑅1. (𝑝𝑏𝑒𝑠𝑡𝑛𝑖(𝑡𝑛)
− 𝑝𝑖(𝑡𝑛) +  𝐶2. 𝑅2. (𝑝𝑏𝑒𝑠𝑡𝑛𝑖(𝑡𝑛)
− 𝑝𝑖(𝑡𝑛) 

(7) 

 

𝑝𝑛𝑖(𝑡𝑛 + 1) = 𝑝𝑛𝑖(𝑡𝑛) + 𝑉𝑖(𝑡𝑛) (8) 

 

where, tn is total iteration, w is weight, C1 and C2 are train and 

learn facts, and generally C1= C2 =2, R1 and R2 is a random 

value within [0, 1], f(pni (tn)) denotes particles fitness function, 

f(pni (tn+1)) denotes as fitness function during next iteration. 

In each iteration the particles rang is specific to (1 ≤ pni(tn) 

≤ M) then calculate its velocity then calculate and update the 

position of particles, then terminate if criteria are satisfied and 

show the gbest optimal value. If criteria are not satisfied then 

again go back to the second process and calculate the fitness 

value and execute the whole loop and repeat the process to 

optimize solution achieve. 

 

4.1 Task initiation  

 

The tasks are submitted to the cloud service provider for 

pertaining services. The task initiation process is presented 

through algorithm-01. 

 

Algorithm-01 

 

Start 

Submit taks T←T1, T2, T3, … Tn 

For each T do 

 for each T do 

  Calculate the priority value 

  If priority≤ threshold then 

   Swap T with consecutive task 

  End if 

 Enf for 

End for  

End 

 

 

4.2 Service monitor  

 

Initially, Service Monitor has collected the information 

from Task Initiation to monitor continuously the task value 

based on priority (exaction time in this research) as shown in 

Algorithm-02: Service Monitor (SM).  

 

Algorithm-02 

 

Start 

Set Taks T←T1, T2, T3, … Tn 

for each T do 

 if ExecT(t1) ≤ ExceT(tn) then 

  Start Swap T with consecutive task 

 End if  

 Alert 

End for 

End 

 

 

A proposed hybrid method is a novel approach based on GA, 

ACO, and PSO to find the optimal solutions. Therefore the 

objective function of the proposed method is:  

 

𝑚𝑖𝑛. 𝑓(𝐸𝑥𝑒𝑐𝑇) (9) 

 

Subjected to: 0 ≤ ExecT ≤ 1. 
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4.3 GAP scheduling  

 

The scheduling approach is presented in Algorithm 3. 

 

Algorithm-03 

 

Start 

The pseudo code of the procedure is as follows 

For initiate each particles do 

 For repeat the following for each particle do 

  Calculate the fitness score of each particle 

  If there is any improvement in the futness score 

  relative to best fitness score(pbest) in the history then 

   update new value as the latest pbest 

  end if 

 end for 

end for 

 

Select the particle having best fitness score of all the particle 

as gbest 

 

For every particle do 

 Compute particle velocity according to equation (7) 

End for 

 

If crossover particle ≥ 0.5 then  

 Apply one point crossover and update position of particle 

 Evaluvate the newly generated crossover particle 

End if 

 

Repeat until minimum error or maximum iteration criterion is 

not attained.  

For every particle do 

 Arrange particles (VM’s) in order 

 If particles value ≤ threshold then 

  Separate from group 

 End if 

 Produce Optimal particles (VM’s) 

End for 

 

End 

 

 

In the above algorithm, each particle is a virtual machine in 

this research.  

 

4.4 Service executer and scheduling  

 

The task initialized in task initiation are monitored and 

managed by service monitor, and ready to be scheduled with 

the virtual machine. The virtual machine is processed through 

GAP algorithm which is presented in algorithm 3, and the 

optimal VM is obtained for scheduling. The service executer 

executes the task and virtual machine and based on the priority 

value virtual machine assigned to the tasks through a round-

robin algorithm. 

 

 

5. RESULTS AND ANALYSIS 

 

The proposed algorithm is initialized with 10 virtual 

machines and 600 tasks. The virtual machines, which have 

different weight values as per CPU, and RAM value in the 

current state. The following analysis has been done to evaluate 

proposed research work.  

 

5.1 Waiting time 

 

Waiting time represents the time for which task remains in 

the queue. Higher waiting time indicates the poor performance 

of the system in terms of load balancing and resource 

management. The average waiting time of tasks is judged 

when there are 100, 200, 300, 400, 500, and 600 tasks in the 

system. From Table 2, it can be concluded that the proposed 

approach GAP is performing better in the context of waiting 

time relative to its parent approach. This has also shown 

graphically in Figure 2. The waiting time is calculated through 

the following equation: 

 

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑡𝑖𝑚𝑒 − 𝑏𝑢𝑟𝑠𝑡 𝑡𝑖𝑚𝑒 (10) 

 

 
 

Figure 2. Waiting time (sec) 

 

Table 2 shows the test results of the waiting time.  

 

Table 2. Comparative analysis of waiting time (sec.) 

 
Tasks GAP PSO ACO GA 

100 16 23 26 18 

200 21 34 35 32 

300 36 50 37 45 

400 43 64 65 54 

500 60 70 72 62 

600 65 75 79 54 

 

5.2 Execution time 

 

Execution time represents the time taken by the virtual 

machine to process the task. Less execution time represents 

that task is mapped with a suitable virtual machine in terms of 

its resource requirement. The average execution time of tasks 

is judged when there are 100, 200, 300, 400, 500, and 600 tasks 

in the system. From Table 3, it can be concluded that the 

proposed approach GAP is performing significantly better in 

the context of execution time relative to its parent approach. 

This has also shown graphically in Figure 3. Table 3 shows the 

execution time. The execution time is calculated through the 

following equations: 

 

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝑒𝑥𝑖𝑡 𝑡𝑖𝑚𝑒 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (11) 
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Figure 3. Execution time 

Table 3. Comparative analysis of execution time (sec.) 

Tasks GAP PSO ACO GA 

100 146 176 209 232 

200 195 287 309 328 

300 329 430 464 495 

400 440 525 577 626 

500 540 578 636 688 

600 593 647 695 716 

5.3 Completion time 

Completion time represents the sum of response time, 

waiting time, and execution time. Less completion time 

represents that the load balancing approach is performing 

better at all fronts. The average completion time of tasks is 

judged when there are 100, 200, 300, 400, 500, and 600 tasks 

in the system. From Table 4, it can be concluded that the 

proposed approach GAP is performing significantly better in 

the context of completion time relative to its parent approach. 

This has also shown graphically in Figure 4.  

Figure 4. Completion time 

While Table 4 shows the completion time of each algorithm. 

The completion time is calculated through the following 

equation:  

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (12) 

Table 4. Comparative analysis of completion time (sec.) 

Tasks GAP PSO ACO GA 

100 162 199 235 250 

200 216 321 344 360 

300 365 480 501 540 

400 483 589 642 680 

500 600 653 708 750 

600 658 717 774 790 

All three graphs shown in Figures 2, 3, and 4 are 

demonstrating that the proposed approach (GAP) is outshining 

the other three on the scale of waiting time, execution time, 

and completion time. This has happened due to better mapping 

of tasks with resources. Also, the proposed approach GAP map 

different tasks to different resources based on their need. This 

is resulting in less execution time of the proposed approach 

relative to the other three approaches. Moreover, better 

performance of the proposed approach GAP on the scale of 

waiting time and execution time is also resulting in better 

completion time relative to the other three approaches   

5.4 Cost analysis 

Cost is estimated based upon the time for which resources 

are used by the task. As it has analyzed from Figures 4, 5, and 

6 that the proposed approach GAP is taking less waiting, 

execution, and completion time, this implies that it will also 

use the resources for less time. This has reflected in Table 5 

for 100, 200, 300, 400, 500, and 600 tasks in the system. It has 

reflected graphically in Figure 5. 

Table 5. Comparative analysis of cost ($) 

Tasks GAP PSO ACO GA 

100 4.8 5.1 5.9 7 

200 6.4 6.9 7 10 

300 10 12 13 15 

400 14 15 17 19 

500 16 19 21 22 

600 19 21 23 24 

Figure 5. Cost analysis 

5.5 VM utilization 

In the proposed approach GAP, while mapping the task with 

a VM, the fitness value of VM is considered. The fitness value 
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is calculated based upon the present load and resources VM 

has. So in this manner, it ensures that all VM is used efficiently 

and no VM is overloaded. This results in better utilization of 

VM. This has reflected through the data shown in Table 6 for 

100, 200, 300, 400, 500, and 600 tasks in the system. It has 

reflected graphically in Figure 6. Table 6 shows VM 

utilization.  

Table 6. Comparative analysis of VM utilization (sec.) 

VM Id GAP PSO ACO GA 

1 5 4 3 2 

2 5 4 4 3 

3 4 4 3 3 

4 5 3 4 4 

5 5 4 5 4 

6 6 5 4 5 

7 6 4 5 4 

8 4 4 4 5 

9 4 4 5 5 

10 6 5 5 5 

Figure 6. VM utilization 

5.6 Throughput analysis 

Throughput represents the number of tasks completed per 

unit time. Lesser the sum of response time, waiting time, and 

execution time, more will be the throughput. Now due to better 

performance shown on the scale of waiting time and 

completion time, it is obvious that the proposed approach GAP 

will also show better performance on the scale of throughput. 

This has reflected through the data shown in Table 7 for 100, 

200, 300, 400, 500, and 600 tasks in the system. It has reflected 

graphically in Figure 7. While Table 7 shows throughput 

analysis of each algorithm. 

It shows the comparison of different approaches for 

different number of tasks on the scale of throughput. Better 

performance on the scale of waiting time, completion time, 

execution time, resource utilization, cost and throughput 

results in satisfaction of service level agreement. It also creates 

a win-win situation for customer as well as cloud service 

provider. 

Table 7. Comparative analysis of throughput (sec.) 

Tasks GAP PSO ACO GA 

100 0.6 0.5 0.4 0.4 

200 0.9 0.6 0.6 0.6 

300 0.8 0.6 0.6 0.6 

400 0.8 0.7 0.6 0.6 

500 0.8 0.8 0.7 0.7 

600 0.9 0.8 0.8 0.8 

Figure 7. Throughput analysis 

By embedding the proposed load balancing approach GAP 

in hardware like IP server, we can improve the performance 

and availability of the system. This will provide the capability 

to handle sudden traffic burst. 

6. CONCLUSION

In cloud environment, satisfaction of SLA is prime 

objective. It can be achieved by providing services in 

minimum time in an efficient manner on a lowest cost by 

utilizing the resources in efficient manner. This will create a 

win-win situation to not only cloud user but also for cloud 

service provider too. In this paper, authors have proposed a 

hybrid load balancing approach for cloud environment by 

incorporating the best features of genetic, ant colony and 

particle swarm optimization algorithms. Authors have tested 

and compared the proposed algorithm GAP with existing GA, 

ACO & PSO algorithms in cloud environment developed 

using 10 virtual machines created in Amazon Web Service 

environment. It has found that proposed algorithm GAP has 

outperformed than GA, ACO & PSO based load-balancing 

algorithm on all the popular parameters. 
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