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 Corporate internet reporting (CIR) has such advantages as the strong timeliness, large 

amount, and wide coverage of financial information. However, the CIR, like any other 

online information, faces various risks. With the aid of the increasingly sophisticated 

artificial intelligence (AI) technology, this paper proposes an improved deep learning 

algorithm for the prediction of CIR risks, aiming to improve the accuracy of CIR risk 

prediction. After building a reasonable evaluation index system (EIS) for CIR risks, the 

data involved in risk rating and the prediction of risk transmission effect (RTE) were subject 

to structured feature extraction and time series construction. Next, a combinatory CIR risk 

prediction model was established by combining the autoregressive moving average 

(ARMA) model with long short-term memory (LSTM). The former is good at depicting 

linear series, and the latter excels in describing nonlinear series. Experimental results 

demonstrate the effectiveness of the ARMA-LSTM model. The research findings provide 

a good reference for applying AI technology in risk prediction of other areas.  
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1. INTRODUCTION 

 

In the Internet era, significant changes have taken place in 

the way enterprises handle businesses and disclose financial 

information, owing to the rapid development of information 

technology (IT). Breaking through the shackles of traditional 

financial reporting, Corporate internet reporting (CIR) have 

such advantages as the strong timeliness, large amount, wide 

coverage, standardized disclosure, high transparency, and 

openness of financial information [1-4]. The CIR, like any 

other online information, mainly faces two kinds of risks: the 

participants on the information transmission chain might 

suffer losses, and the social factors might exert negative 

impacts in the disclosure process. Therefore, it is an urgent 

task to predict the risks of the CIR [5-9]. 

Currently, CIR risk analysis mainly focuses on the risks in 

the following areas and their control measures: internal control, 

commercial secret leakage, CIR diversification, and CIR users 

[10-14]. Aghaei et al. [15] evaluated the disclosure quality of 

the CIRs of 600 listed enterprises in the five semi-annual 

periods between 2018 and 2020, and empirically examined the 

correlation between disclosure quality and enterprise value; 

the empirical results prove that the CIR information could 

effectively reduce the forecast risks of investors. Kumar et al. 

[16] combines normative research with inductive and 

deductive approaches to explore the control strategies for CIR 

disclosure risks, and summarizes the risk control from three 

aspects: CIR information, CIR tools and CIR security system. 

By analyzing the synergy and risk transmission path of CIR, 

Nikoloudis et al. [17] sorted out the relationship between 

multiple factors affecting risk transmission (e.g. risk source, 

risk flow, risk carrier, and risk threshold), and provided 

precautionary suggestions on improving internal control and 

implementing CIR quality verification. 

Based on the cross-platform exchange of financial 

information, the CIR in eXtensible Business Reporting 

Language (XBRL) can improve the efficiency of internal 

information disclosure, while standardizing the financial 

information of the enterprise. So far, many scholars at home 

and abroad have investigated XBRL CIRs [18-23]. For 

instance, Challa et al. [24] constructed a three-dimensional 

(3D) evaluation index system (EIS) for XBRL CIRs, including 

the number of mandatory contents, the number of optional 

contents, and the number of disclosure forms, and empirically 

analyzed the correlation of CIR information disclosure index 

with factors like reliability analysis, enterprise size, and capital 

cost. Zhu et al. [25] highlighted the positive correlations of 

XBRL CIR with the expected cash flow and enterprise value, 

and compared the technical features of XBRL against those of 

Electronic Data Interchange (EDI). 

At present, artificial intelligence (AI), which is increasingly 

sophisticated, has been widely applied in various fields. 

Considering the sheer size of CIR data, it is meaningful to 

introduce deep learning (DL) and other AI techniques to risk 

factor analysis, and risk value calculation, shedding new light 

on CIR risk prediction. To improve the prediction accuracy of 

CIR risks of listed enterprises, this paper sets up an CIR risk 

prediction model based on an improved DL algorithm. After 

building a reasonable CIR risk EIS, the data involved risk 

rating and the prediction of risk transmission effect (RTE) 

were subject to structured feature extraction and time series 

construction. Based on DL algorithm, autoregressive moving 

average (ARMA) model was combined with long short-term 

memory (LSTM) into a combinatory prediction model. The 
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effectiveness of the ARMA-LSTM model was verified 

through experimental analysis. 

 

 

2. CIR RISK EIS 

 

Before applying DL algorithms in CIR risk prediction, it is 

necessary to collect the data related to the risk evaluation 

indices. For CIR risks, the evaluation indices need to reflect 

all the features of the relevant data of the CIR. Under the 

premise of comparability and continuity, this paper makes full 

use of all financial information resources of the target 

enterprises (e.g. financial statements, income statements, and 

balance sheets) to select the evaluation indices, and minimizes 

the impact of a single index on the entire EIS. 

Because DL algorithms can analyze complex functions, a 

total of five indices, including media structural risk, CIR 

technical risk, opportunistic risk, internal management risk, 

and monitoring risk, were taken as the primary indices for CIR 

risk prediction. The five primary indices are supported by 30 

secondary indices. Our three-layer EIS is detailed as follows: 

Layer 1 (Goal): 

R={CIR risk}. 

Layer 2 (Primary indices) 

R={R1, R2, R3, R4, R5}={Media structural risk, CIR 

technical risk, Opportunistic risk, Internal management risk, 

Monitoring risk} 

Layer 3 (Secondary indices) 

R1={R11, R12, R13, R14, R15}={Media technology risk, 

Media information risk, Media knowledge risk, Media public 

opinion risk, Media political risk}. 

R2={R21, R22, R23, R24}={Financial information storage 

risk, Accounting data operation risk, Accounting processing 

and query risk, Computer virus prevention measures}. 

R3={R31, R32, R33, R34, R35, R36}={Opportunistic risk 

during preparation, Opportunistic risk during accounting 

information generation, Opportunistic risk during compilation, 

Opportunistic risk during verification and review, 

Opportunistic risk during information transmissions, 

Opportunistic risk during information disclosure}. 

R4={R41, R42, R33, R34}={Funding management risk, 

Investment management risk, Operation fund risk, Profit 

distribution risk}. 

R5={R51, R52, R53, R54, R55}={Budget management risk, 

Accounting control risk, Quota control risk, Expense control 

risk, Investment monitoring risk}. 

Considering the high number of indices being selected and 

the fact that some index data are missing or difficult to obtain, 

the missing items or abnormal items should be deleted, 

depending on the enterprises to be evaluated. In addition, the 

various indices must be normalized to ensure the quality of 

evaluation. Otherwise, the prediction effect will be undesirable, 

because of the lag of unstructured data (e.g. the interpretations 

of the CIR by relevant analysts) and the diversity of the CIRs 

in disclosure rule and risk source. Therefore, this paper 

extracts feature factors from CIR risk evaluation indices, 

analyzes the extracted feature factors under the CIR single-

factor test framework, and thereby builds up a multi-factor 

feature library for CIR risk prediction. 

 

 

3. FEATURE FACTOR EXTRACTION BASED ON CIR 

 

This paper mainly carries out structured feature extraction 

from the data on CIR risk evaluation indices involved in risk 

rating and RTE prediction. As shown in Figure 1, the 

extraction of feature factors consists of two steps: structured 

feature extraction, and time series construction. 

 

 
 

Figure 1. The extraction of feature factors 

 

3.1 Feature factors of risk rating 

 

Risk rating is to analyze the basic financial situation 

disclosed by the CIR, and derive the risk level of the enterprise, 

according to the CIR risk formation mechanism and the 

established EIS. In traditional risk rating, the terms and 

measuring conditions vary with the third-party risk assessment 

agencies. 

With reference to other research reports and statistics, this 

paper divides CIR risks into five levels, namely, level A 

(strongly significant risk), level B (significant risk), level C 

(general risk), level D (insignificant risk), and level E (strongly 

insignificant risk), which respectively correspond to the five 

ranges of the quantitative values of CIR risks. For each CIR, 

the contents to be measured were extracted through regular 

matching and pattern matching. Then, the CIR risk was 

quantified according to all the contents of the evaluation 

indices. Figure 2 presents an example on the quantitative 

values of CIR risk levels. 

 

 
 

Figure 2. The quantitative values of CIR risk levels 

 

(1) Risk rating consistency factor 

Since the release time of CIR is relatively fixed, the 

quantitative values of CIR risk levels can serve as the time 

series feature factors in CIR risk prediction. But the evaluation 

indices are generally collected in different periods. It is 

necessary to convert the discrete data for risk rating into a time 

series. 
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Figure 3. The risk rating of index R21 obtained by the 

consistency factor 

 

The risk rating consistency factor was introduced for a 

single evaluation index. The factor counts the factor values of 

the index in the current period corresponding to all the 

historical CIRs of the enterprise. In this way, full consideration 

is given to the consistent risk rating of the index in the 

historical financial information of the enterprise.  

Let R={r1, r2, r3, …, rn} be the CIRs released for an index 

between time t-n to time t, where ri is the risk rating of the i-th 

CIR on that index in period [t-n, t]. Then, the consistency 

factor St of that index at time t can be calculated as the 

weighted sum of all risk ratings: 
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where, ωi is the weight of the i-th CIR; η1 is the attenuation 

factor; λi is the quantitative value of the CIR risk level 

corresponding to the index in ri. Figure 3 provides the risk 

rating of index R21 obtained by the consistency factor. 

(2) Risk rating change factor 

Based on the consistency factor, the risk rating change 

factor further considers the deviation of the predicted CIR risk 

from the actual value, which is induced by the interaction and 

mutual influence between various uncertain factors throughout 

information transmission. By the exponential weighted 

average method, the risk rating change factor was 

characterized as the difference between the risk ratings of the 

current period and the previous period, which are obtained by 

the consistency factor, processed by time smoothing and 

weighting: 
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where, St is the consistency factor at time t; Mt−1 is the change 

factor of the risk rating of the previous period; η2 is the time 

attenuation factor. 

(3) Risk rating adjustment factor 

The risk rating adjustment factor was designed based on the 

quantitative values of CIR risk rating, after limiting the 

selection of evaluation indices for principal components and 

the time periods. This factor could accurately reflect how the 

quantitative values of risk rating vary with the key evaluation 

indices. 

The risk rating adjustment factor Qt was determined by 

counting the adjustment events qi of key evaluation indices. 

The release time of new CIR was taken as the reference time 

for the occurrence of adjustment event. Then, the adjustment 

events were divided into core and non-core events. The core 

events refer to the adjustment of a general index into a key 

index, that is, the increase of the consistency factor; the non-

core events have the opposite meaning. 

During the statistical process, each core adjustment event 

was given +1 point, while each non-core event was given -1 

point. Then, the adjustment factor can be defined as the time 

attenuated weighted sum of the scores of all adjustment events 

of the index between time t-n and time t: 
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where, η3 is the time attenuation factor; vj is the score of the j-

th adjustment event between time t-n and time t. 

 

3.2 Feature factors of RTE 
 

The risk rating is an important way to identify the focus of 

CIR risk control. Apart from that, it is of even greater 

importance to predict the interaction between the risk 

transmission factors of CIR risks. Figure 4 illustrates the 

correlations between the risk transmission factors of CIR risks. 

These correlations need to be quantified accurately by 

analyzing the situation of the risk transmission factors, in the 

light of the relevant data on the risk evaluation indices. 
 

 
 

Figure 4. The correlations between the risk transmission 

factors of CIR risks 
 

(1) RTE prediction consistency factor 

Similar to the risk rating consistency factor, the discrete 

RTE values between two risk carriers should be converted into 

a time series through a suitable quantification method. The 

calculation of RTE prediction consistency factor is time 

sensitive. With the elapse of time, the RTE of the same path 

will gradually change. As a result, the RTE prediction 

consistency factor was not calculated based on specific time 

points. Instead, the factor was divided into the prediction value 

u1 at time b, the prediction value u2 at time b+Δb, and the 

prediction value u3 at time b+2Δb, with Δb being the width of 

time window. The specific values of u1, u2, and u3 will vary in 

the CIR disclosure process. The RTE prediction consistency 

factor can be calculated by: 
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(5) 

 

where, Sut is the predicted value of the RTE prediction 

consistency factor between time t-n and time t; ri-u is the 

predicted value of the RTE in the i-th part of the CIR; μi-u is 

the quantitative value of the predicted RTE corresponding to 

the CIR in ri-u; η4 is the time attenuation factor; SuB is the 

predicted value of the RTE prediction consistency factor under 

the time window with the width of Δb; k is the number of time 

windows. 

(2) RTE prediction change factor 

Similar to the risk rating change factor, the RTE prediction 

change factor further considers the deviation of the predicted 

RTE from the actual value, which is induced by the interaction 

and mutual influence between various risk carriers along with 

the moving time window. Because it involves time series state 

conversion, the RTE prediction change factor needs to be 

calculated referring to the computing strategy for the RTE 

prediction consistency factor: 
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where, Mut is the RTE prediction change factor between time 

t-n and time t; Sut is the RTE prediction consistency factor at 

time t; Mt−1 is the RTE prediction change factor in the previous 

period; η5 is the time attenuation factor. 

 

 

4. ARMA-LSTM MODEL 

 

The ARMA is a time series analysis model, which couples 

the autoregressive (AR) model with the moving average (MA) 

model. The i-th order AR model can be expressed as:  
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when α0=0, AR(i) becomes a centralized AR model. The j-th 

order MA model can be expressed as:  
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(9) 

when ϕ=0, MA(i) becomes a centralized MA model. Then, the 

ARMA model can be expressed as: 
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when α0=0, ARMA(i, j) becomes a centralized ARMA model. 

Three steps are necessary to build an ARMA model for CIR 

risk prediction: order identification (solving the sum through 

correlation analysis), parameter estimation (predicting model 

parameters by Gaussian maximum likelihood estimation), and 

data prediction (verifying the effectiveness of the model by the 

Akaike information criterion (AIC), and outputting the risk 

rating and RTE prediction). 

Figure 5 presents the structure of a neuron in the deep neural 

network (DNN) of LSTM. Different from other neural 

networks (NN), the neurons of the LSTM operate like a 

conveyor belt. Except for a few linear interactions, it is easy to 

keep all the other information flowing between the neurons.  

 

 
 

Figure 5. The structure of a neuron in LSTM 

 

To remove or add information to the neuron state, the LSTM 

have three gating units in each neuro, namely input gate, forget 

gate, and output gate. The gates selectively control the passage 

of information, using sigmoid function and multiplication 

operation. 

The forget gate reads the risk rating and RTE perdition ht-1 

of the previous moment and the input of the current moment 

Ht, and outputs a number in [0, 1] for the state of each neuron. 

The closer the number is to 1, the greater the probability of 

discarding the information; the closer the number is to 0, the 

greater the probability of retaining the information: 
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The input gate determines which new information should be 

stored in the neuron state. The sigmoid function is used to 

determine the updated information, while the tanh function is 

called to create a vector of the new candidate value to be added 

to the neuron state: 
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Then, the old neuron state will be updated. To discard some 

information, the new candidate value can be calculated by: 

 

ttttt IcfII
~
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(14) 

 

The output gate relies on sigmoid function to determine 

which information should be outputted. Then, the tanh 

function is called to obtain a value in [-1, 1]. The value will be 

multiplied with the output of sigmoid, forming to final output: 

 

  tanh1 tti Iyo +=+ 
 

(15) 

 

)],([ 1 yyttt WHhsigmoidy += −  
(16) 

 

In practical applications, risk ratings and RTE predictions 

are often converted into time series. But the high volatility of 

time series cannot be effectively described by ARMA or 

LSTM alone. 

To solve the problem, the risk ratings and RTE predictions 

were converted into the corresponding time series {Pt}. Then, 

the time series was decomposed into a high volatility series 

and a low volatility series by the filtering algorithm in Figure 

6: 

 

 ttt HIGHLOWP +=
 (17) 

 

 
 

Figure 6. The workflow of time series decomposition 

 

To obtain better prediction effect, the low volatility series 

was predicted by AMAR model, and the high volatility series 

was predicted by LSTM model. The former is good at 

depicting linear series, and the latter excels in describing 

nonlinear series. The ARMA model can be defined as: 
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The linear function can be expressed as: 
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For the high volatility series, the risk rating was predicted 

by three steps forward based on the time window obtained by 

formulas (5) and (6): 
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(20) 

 

To predict the RTE, the time series St in the above formula 

was replaced with time series Sut, and the value of time series 

{Pt} was predicted by formulas (18) and (9), using the time 

window obtained from formula (6). 

 

 

5. EXPERIMENTS AND RESULT ANALYSIS  

 

The CIR risk prediction experiments were carried out on the 

information disclosed by the CIR of a listed enterprise in 2019. 

Figure 7 shows the experimental results of structured feature 

extraction based on the original time series. Subgraphs (a) and 

(b) are the volatility curves of risk ratings and RTE predictions, 

respectively. It can be seen that the traditional time series 

prediction model ARMA did not achieve ideal prediction 

effect, despite its excellence in solving traditional time series 

problems. This is because the model is constructed based on 

statistical principles, and the CIR is affected by various risk 

factors. 

Figure 8 compares the risk prediction results of LSTM and 

those of ARMA-LSTM. The prediction quality was evaluated 

by F1-score, accuracy, and recall. The accuracy and recall 

refer to the proportion of strongly risky data in the data series 

and that of positive samples in the strongly risky data, 

respectively. It can be seen that the ARMA-LSTM clearly 

outperformed the LSTM in all three metrics. 

 

 
(a) 

 
(b) 

 

Figure 7. The volatility of feature factors 
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Figure 8. The effects of ARMA on risk prediction 

 

 
(a) LSTM 

 
(b) ARMA-LSTM 

 
(c) LSTM 

 
(d) ARMA-LSTM 

 

Figure 9. The effects of ARMA on feature factor predictions 

Figure 9 compares the feature factor predictions of LSTM 

and those of ARMA-LSTM. The risk ratings and RTE 

predictions are contrasted with the actual values in the four 

subgraphs. The results in Figure 9 further confirm the above 

conclusions. 

 

Table 1. The risk predictions with time windows of different 

widths 

 

Predictions 

LSTM 

Width of time window 

1 

week 

2 

weeks 

3 

weeks 

4 

weeks 

F1-score 

(%) 
36.87 35.64 35.76 35.77 

Accuracy 

(%) 
30.23 27.47 27.01 29.94 

Recall (%) 78.23 75.14 72.48 75.87 

ARMA-

LSTM 

Width of time window 

1 

week 

2 

weeks 

3 

weeks 

4 

weeks 

F1-score 

(%) 
46.44 45.48 44.55 43.47 

Accuracy 

(%) 
34.61 32.49 33.57 33.96 

Recall (%) 80.42 81.49 81.56 82.21 

 

Table 2. The CIR risk predictions of different models 

 

Method 
Prediction effects 

F1-score (%) Accuracy (%) Recall (%) 

SVM 34.69 27.63 76.85 

BPNN 36.57 28.71 76.94 

DNN 38.15 29.47 77.48 

LSTM 37.98 28.45 76.36 

ARMA-LSTM 44.76 33.42 81.35 

 

Table 1 compares the risk predictions of LSTM and those 

of ARMA-LSTM with time windows of different widths. 

Obviously, the recall reached the highest level, when the time 

window is 1 week in width. The reason is that taking a week 

as the cycle can simultaneously optimize the quality and 

computing load of CIR risk prediction. Hence, the risk 

prediction effect of the LSTM with a week as the time scale 

achieved better results. 

Furthermore, the proposed ARMA-LSTM was compared 

with support vector machine (SVM), backpropagation neural 

network (BPNN), DNN, and LSTM in CIR risk prediction. 

The results in Table 2 show that our model outperformed all 

these traditional DL methods. Specifically, the F1-score of our 

model was 1.26% higher than the highest score, the accuracy 

was 1.53% higher than the highest accuracy, and the recall was 

2.7% better than the best recall of the contrastive methods. The 

superiority of our model in CIR prediction is attributable to the 

combination of the strengths of ARMA and LSTM in 

depicting linear and nonlinear series, respectively, which 

results in a high sensitivity to CIR risks. 

 

 

6. CONCLUSIONS 

 

To improve the accuracy of CIR risk prediction, this paper 

proposes an improved deep learning algorithm for the 

prediction of CIR risks of listed enterprises. Firstly, a 

reasonable EIS was created for CIR risks. Next, the data 

involved in risk rating and RTE prediction were subject to 

structured feature extraction and time series construction. 
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Experimental results confirm the good effects of ARMA in 

solving traditional time series problems. Finally, a 

combinatory prediction model was established based on 

ARMA and LSTM. Through experimental analysis, it is 

learned that the proposed ARMA-LSTM achieved much better 

results than traditional DL methods in F1-score, accuracy, and 

recall. 
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