

67

AMSE JOURNALS-AMSE IIETA publication-2017-Series: Advances C; Vol. 72; N°1; pp 67-85

Submitted Jan. 2017; Revised March 15, 2017, Accepted April 15, 2017

https://doi.org/10.18280/ama_c.720105

 Trustworthiness Evaluation of Component-Based Software

Based on Level

*Junfeng Tian, *† Zhen Li, *Zhuo Chang, **Peng Lin

* School of Computer Science and Technology, Hebei University, Baoding, China

** Department of Personnel, Hebei University, Baoding, China

(† Corresponding author: lizhen_hbu@126.com)

Abstract

The traditional trustworthiness evaluation of running software is inaccurate and incomplete

because each component is as an independent unit during reliability evaluation. According to the

drawbacks of traditional models, this paper proposed a trustworthiness evaluation approach of

component-based software based on level. The trustworthy behavior trace diagram of component-

based software was presented based on the call relation between components, and it described the

trustworthy behavior trace of component in a recursive manner. With the combination of reliability

and security of component, the paper proposed the dynamic trustworthiness evaluation of running

software based on level and the trustworthiness evaluation approach of software based on running

paths. Experiments and analyses showed that the approach could evaluate the dynamic

trustworthiness of running component-based software more accurately, and could realize the

trustworthiness evaluation of component-based software through the tests of running paths.

 Key words

Component-based software, trustworthiness evaluation, level, reliability, security.

1. Introduction

With the rapid development of component technology, the approach of aggregating

components into complex software systems is becoming mature. Component-based software

engineering, constructing the software system through assembling reusable and plug-pull

components, becomes the mainstream of large and complex software development paradigms. It is

an appealing approach for software engineering development and industry-scale software

68

construction. With continuous deepening of the application of component-based software in the

sensitive industries such as banking and e-commerce [1], the trustworthiness requirement of

component-based software trustworthiness becomes more urgent.

If the software behavior is always accordant with the expected behavior, we call the software is

trustworthy [2]. The idea of trusted computing is to perfect the terminal computer fundamentally,

while the present trusted computer can only guarantee the static security of system resources. How

to guarantee and measure the dynamic trustworthiness during component-based software running

has become a key problem for system trustworthiness. The research on dynamic trustworthiness

during component-based software running and trustworthiness evaluation of component-based

software has very important significance.

For the trustworthiness of component-based software, Wen et al. [3] introduced aspect-oriented

architectural design approach and relevant techniques into the design and analysis of software and

offered an effective approach of software architectural design for trusted software based on

monitoring. Wang et al. [4] presented a verification model for trustworthiness of interaction

between software components by combining the Unified Modeling Language (UML) with Pi-

calculus. Luo et al. [5] considered the dynamic change software level attributes and proposed a

dynamic software reliability assessment model based on Markov chain. Mohammad et al. [6]

introduced a new process for a rigorous component-centered development of trustworthy systems.

Si et al. [7] presented an evaluation model for dependability of Internet-scale software on basis of

Bayesian networks and trustworthiness. Elshaafi et al. [8] presented a collaborative trustworthiness

determination approach using optimisation that could provide a solution to selecting trustworthy

component service constructs. Chen et al. [9] proposed an interaction based requirements

monitoring approach for Internetware. They collected the Internetware system behaviors in terms of

actual interactions between the Internetware system and its environment, and compared the

Internetware system behaviors with its specification.

Trustworthiness is a composite concept and the properties [10] contributing to it are

correctness, reliability, security, availability, efficiency, etc. Among them, reliability and security

are two of the most important properties, so trustworthiness can be denoted by trustworthiness ≈

reliability + security [11]. Therefore, many scholars carry out research on the reliability of

component-based software. Because the path-based reliability analysis methods can be used to

evaluate both the component-based software reliability and the path reliability of running

component-based software, many scholars carry out research on the path-based software reliability

model. Mao et al. [12] presented a general model for component-based software reliability –

component probability transition diagram – based on function abstractions in order to enable

69

reliability tracing through a dynamic process. Zhang et al. [13] introduced the dynamic transition

graph to build the relationship between the route of component-based software and component

reliability, and proposed an improved component-based software reliability model based on route.

Nautiyal et al. [14] presented an innovative reliability model in terms of multiple execution paths

and the usage percentage of each and every component. Hsu et al. [15] proposed an adaptive

framework of incorporating path testing into reliability estimation for complex component-based

software system.

When the software runs to a component, the component’s trustworthiness is related to its

running background, internal execution path and called components. However, these models don’t

consider the internal execution paths and the security of components, and just consider each

component as an independent unit during reliability evaluation. So the dynamic trustworthiness

evaluation of software is inaccurate and incomplete. Then the accuracy of trustworthiness

evaluation of component-based software based on running paths is influenced. In this paper, we

make the following contributions:

First, the conception of component level is introduced considering the call relation among

components in component-based software.

Second, the trustworthy behavior trace of component is described in a recursive manner, and

on this basis, the trustworthy behavior trace diagram of component-based software is presented.

Third, we combine the reliability and security of component and propose the dynamic

trustworthiness evaluation of running component-based software based on level and the

trustworthiness evaluation approach of component-based software based on running paths.

The remainder of this paper is structured as follows: We introduce the trustworthy behavior

trace of component-based software in Section 2 and discuss the simplification of trustworthy

behavior trace diagram of component-based software based on association relations in Section 3.

We describe the trustworthiness evaluation of component-based software in Section 4 and discuss

the experimental results and analyses in Section 5. Section 6 concludes the paper.

2. Trustworthy Behavior Trace of Component-Based Software

Definition 1 (Component level). The component invoked by component-based software

directly is called the first level component. The component invoked by the nth (1 n N ) level

component directly is called the (n+1)th level component. N is the maximum component layer for

the component-based software.

In this paper, we assume that the transitions between the same level components obey Markov

process, that is to say, the execution of next component only depends on the current component.

70

Definition 2 (Component). The nth (1 n N ) level component ()ic n of component-based

software S is denoted by () , ()
ii cc n scene G n=  .

1) scene is the scene of component, that is the background information of component when it

begins to run. The scene of component is mainly used for security evaluation and it includes

deterministic attributes and fuzzy attributes. For deterministic attributes, once any of them deviates

from the normal value, the component is determined to be insecurity directly. These attributes

include concurrent component, mutually exclusive component, context (call stack information),

argument policies, etc. Fuzzy attributes cannot be expressed as accurate numbers. They are fuzzy

and granted the prescribed error bounds. These attributes include timestamp, CPU occupancy rate,

memory occupancy rate, etc.

2) ()
icG n is the trustworthy behavior trace diagram of component ()ic n .

Definition 3 (Meta component). If component ()ic n doesn’t invoke other components, then

()ic n is called meta component.

According to the view of “trustworthiness ≈ reliability + security” [9], the trustworthiness

()
icd n of meta component ()ic n can be denoted by

() (1) ()
i i i i ic c c c cd n r s n = −  +  . (1)

icr is the reliability of meta component ()ic n . In this paper, we assume that all meta components are

the third party components. The reliability of meta components of independent development can be

evaluated by the test results of them. Therefore, their reliability is unrelated to the component level.

()
vcs n is the security of component ()ic n and can be obtained by monitoring the scene of ()ic n .

For the details, see Section 4.1.
ic is the weight of security for trustworthiness evaluation and it

depends on the degree of practical requirements. If the security of meta component, such as access

control, consistency verification, integrity, security protection, etc., is in high demand, the value in

(0.5,1] can be assigned to
ic . If the reliability of meta component, such as tolerance, effectiveness,

recovery, etc., is in high demand, the value in [0,0.5) can be assigned to
ic . If the security and

reliability of meta component have the same degree of practical requirements, 0.5
ic = .

Definition 4 (Component-based software). The component-based software S is composed of

components and the relations between two components, which is denoted by ,S C R=  . C is the

set of the Nth level components, denoted by { () | 1,2,..., }C C n n N= = where

http://dict.cnki.net/dict_result.aspx?searchword=%e5%b9%b6%e5%8f%91&tjType=sentence&style=&t=concurrent

71

()={ ()| =1,2,..., }i nC n c n i m . N is the maximum component layer of S . nm is the number of nth level

components. R is the set of relations between the same level components.

The relations between two components with the same level include:

1) Independence relation. The components are mutually independent.

2) Association relation. The association relations between two components with the same level

include:

① Sequence relation. At time t only the component ()ic n is running. When component ()ic n

finishes, a subsequent component begins to run. The relationship between these two components is

called sequence relation. There may be one or more than one subsequent components for selection.

② Concurrent relation. In concurrent environment, if two or more components are running at

the same time or overlapped running, the relationship between any two components is called

concurrent relation. The concurrent component, as an attribute of scene, can be used to evaluate the

security of component.

③ Fault tolerance relation. A group of components with fault tolerance relation is composed of

a primary component and a group of backup components. The primary component and backup

components can be released by several program solutions. When the primary component is failed,

the first backup component becomes the new primary component; when the new primary

component is failed, the second backup component becomes the new primary component; and so

on. When all fault tolerance components are failed, the software is failed. The association relation

can be used to simplify the trustworthy behavior trace diagram of component-based software. See

Section 3 for details.

3) Exclusive relation. If component ()ic n and component ()jc n (i j) cannot run at the same

time, the relationship between these two components is called exclusive relation. The components

with exclusive relation are as follows: components in two or more branch paths, components

contending for critical resource, component with interruption and component in the interrupt

handling routine, and so on. The mutually exclusive component, as an attribute of scene, can be

used to evaluate the security of component.

Definition 5 (Trustworthy behavior trace diagram of component). The trustworthy behavior

trace diagram ()
icG n of component ()ic n is denoted by

(1)

(), () , () is a meta component;

() (1), (1), (1),
else.

(1), (1), (1) ,

i

i i

i c i

c C n

c n d n c n

G n G n T n s n

e n P n D n

+

 


=  + + +


+ + + 

 (2)

72

1) ()
icd n is the trustworthiness of component ()ic n .

2)
(1) (1) { (1) | (1)}

i jC n c j iG n G n c C n+ + = +  +（n+1） , where (1)iC n+ is the set of the (n+1)th

level components for component ()ic n .

3) (1)T n + is the transition set of the (n+1)th level components. The transition of component

(1)c n + to component (1)c n + is denoted by ((1), (1))c n c n + + .

4) (1)s n + is the start component, (1) (1)s n C n+  + .

5) (1)e n + is the end component, (1) (1)e n C n+  + .

6) (1)P n + is the universe of transition probabilities for the (n+1)th level components, that is

{ | 0 1x x  }. The transition probabilities between component (1)c n + and component (1)c n +

is denoted by , (1|)ip n c  + which can be abbreviated as ,p  if the component level and caller

component are not concerned. ()ic n is the caller component of (1)c n + and (1)c n + .

7) (1)D n + is the trustworthiness universe of the (n+1)th level components, that is

{ | 0 1x x  }. (1)cd n


+ is the trustworthiness of component (1)c n + which can be abbreviated as

cd


 if the component level is not concerned.

Definition 6 (Trustworthy behavior trace diagram of component-based software). The

trustworthy behavior of component-based software S is denoted by trustworthy behavior trace

diagram of component-based software (1), , , , ,G C T s e P D=  .

1) (1)C is the set of the first level components.

2) T is the transition set of the first level components. The transition of component (1)c to

component (1)c is denoted by ((1), (1))c c  .

3) s is the start component, (1)s C .

4) e is the end component, (1)e C .

5) P is the universe of transition probabilities for the first level components, that is

{ | 0 1x x  }. The transition probabilities between component (1)c and component (1)c is

denoted by , (1)p  abbreviated as ,p  .

6) D is the trustworthiness universe of the first level components, that is { | 0 1x x  }. (1)cd


is the trustworthiness of component (1)c abbreviated as cd


.

In the paper, we only consider one single input component and one single output component.

The input component is the start component and the output component is the end component. For

73

multiple input components and multiple output components, we can revise it to one single input

component and one single output component by introducing a start component connecting multiple

input components and an end component connecting multiple output components.

3. Simplification of Trustworthy Behavior Trace Diagram of Component-Based

Software

Because the structure and the function of component-based software are complex and the

relations among the same level components are multiple, the trustworthy behavior trace diagram of

component-based software is large, which is not satisfied with the need of efficient evaluation.

Therefore, the trustworthy behavior trace diagram of component-based software needs to be

simplified. Based on the different type of association relations between components in ()C n , the

trustworthy behavior trace diagram of component-based software is simplified so that the

association relation between two components with the same level only have sequence relation after

simplification.

1) Sequence style

The components of this type execute in sequence, as shown in Figure 1. The component

structure of this style does not need simplification. The component ()ic n before simplification is

corresponding to the component '()ic n after simplification and their trustworthiness and transition

probabilities are all the same.

c1(n)
p1,2

1c
d

2cd
kcd

c2(n) ck(n)

p1,2

1c
d

2cd
kcd

c2'(n) ck'(n)c1'(n)

(a) (b)

Fig. 1. Sequence style (a) Before simplification (b) After simplification

2) Concurrent style

In concurrent environment, the performance of system can be improved by running multiple

components concurrently. Because components running concurrently in the trustworthy behavior

trace diagram of component-based software have the same scene, front component and next

component, the components running concurrently can be merged into one component for

trustworthiness evaluation.

74

In Figure 2(a), the dotted line denotes part or all of component 2()c n , …, 1()kc n− run

concurrently. All the transition probabilities between component
1()c n and component

2()c n ,
3()c n ,…,

1()kc n−
 are 1,2p . Let the set of components running concurrently in a scene be

()PC n which is a subset of {
2()c n ,

3()c n ,…,
1()kc n−

}. When the components in ()PC n run

concurrently, the components in ()PC n can be as a whole and the trustworthiness to outside is

() ()P

c

c n C n

d


 

 .

The component 1()c n and ()kc n before simplification are corresponding to the component

1 '()c n and '()kc n after simplification respectively. The components in ()PC n are merged into one

component 2 '()c n . The trustworthiness of 1 '()c n and '()kc n are the trustworthiness of 1()c n and

()kc n respectively, and the trustworthiness of 2 '()c n is
() ()P

c

c n C n

d


 

 . The transition probability

between component 1 '()c n and component 2 '()c n is 1,2p , and the transition probability between

component 2 '()c n and component '()kc n is the product of the transition probabilities between each

component in ()PC n and component ()kc n , that is ,

() ()P

k

c n C n

p






 , as is shown in Figure 2(b).

p1,2 p2,k

...

...

kcd
1c

d
2cd

3cd

1kcd
−

c1(n)

c2(n)

c3(n)

ck-1(n)

ck(n)
p1,2

...

() ()P

c

c n C n

d


 



,

() ()P

k

c n C n

p








c2'(n)

kcd
1c

d

c1'(n) ck'(n)

(a) (b)

Fig. 2. Concurrent style (a) Before simplification (b) After simplification

3) Fault tolerance style

Only one of components with fault tolerance relation runs at a certain time, so the components

with fault tolerance relation can be merged into one component.

In Figure 3(a), the component 3()c n ,…, 3()kc n− denoted by dotted line are the backup

components of primary component 2()c n . At a certain time, only one component

75

()c n (2,3,..., 3k = −) runs, so component 2()c n ,…, 3()kc n− can be merged into component

2 '()c n . When all component
2()c n ,…, 3()kc n− are untrustworthy, component

2 '()c n is

untrustworthy, so the trustworthiness of component
2 '()c n is

3

2

1 (1)
k

cd




−

=

− − . The transition

probability between component
2 '()c n and component

2 '()kc n−
 or

1 '()kc n−
 is the same as that

between the primary component 2()c n and component 2 '()kc n− or 1 '()kc n− , as is shown in Figure

3(b).

p1,2

p2,k-2

...

...

...

p2,k-1
1c

d

2cd

2kcd
−

1kcd
−

kcd

c1(n)

c2(n)

c3(n)

ck-3(n)

ck-2(n)

ck-1(n)

ck(n) p1,2

...

3

2

1 (1)
k

cd




−

=

− −

p2,k-2

p2,k-1

1c
d

2kcd
−

1kcd
−

kcd

c1'(n)

c2'(n)

ck-1'(n)

ck-2'(n)

ck'(n)

(a) (b)

Fig. 3. Fault tolerance style (a) Before simplification (b) After simplification

4. Trustworthiness Evaluation of Component-Based Software

4.1. Dynamic Trustworthiness Evaluation of Running Component-Based

Software

The trustworthy behavior trace diagram of component-based software G is denoted by

' '(1), ', ', ', ', 'G C T s e P D=  after simplification.

Definition 7 (Running path). In 'G , if there is a path 1 2: '(1) '(1) '(1)ql c c c that is satisfied with

1 '(1) 'c s= , the path is called a running path with final component '(1)qc . If '(1) 'qc e= , the path is

called a running path of 'G .

The trustworthiness of running path 1 2: '(1) '(1) '(1)ql c c c with final component '(1)qc is

'

'(1)

(1)
j

j

l c

c l

d d


=  . (3)

The trustworthiness of any of the nth level component '()vc n for component '(1)jc in the

running path l is

76

' ' ' '

'
'

'(1) (1)

() (1) , '() is a meta component;

()
(1), else.

v v v v

v
u

u

c c c c v

c
c

c n l n

s n r c n

d n
d n

 

+  +

 + − 


=  +




 (4)

where 1n  , (1)l n + is the running path of l in ' '()
vcG n , ' ()

vcs n is the security of component '()vc n ,

and 'vc is the weight of security for trustworthiness evaluation. The value of 'vc depends on the

practical requirements of reliability and security and the details are in Section 2.

' ()
vcs n can be achieved based on the scene of component '()vc n . If the components with

concurrent relation don’t run concurrently, or the components with exclusive relation run at the

same time, or the context or argument deviates from the normal, then ' ()
vcs n =0; otherwise, ' ()

vcs n

depends on the fuzzy attributes and '() [0,1]
vcs n  . The evaluation process is as follows:

In the training phase, for component '()vc n , the training sample iX (1)i t 

(1 2[, ,...,]i i i ikX x x x=) of fuzzy attributes is captured. Let
1 2, ,...,j j tjx x x be t sample values of the

fuzzy attribute jA . After removing various effects of the environment, fuzzy attributes are

approximately normally distributed and the normal value of each fuzzy attribute fluctuates around

the average value. Therefore, we can determine the security of fuzzy attribute according to the

degree of deviation from the average value. The average value
j of fuzzy attribute jA is as

follows:

1

()/
t

j ij

i

x t
=

=  . (5)

The test sample 1 2=[, ,...,]kY y y y is captured during the component-based software actual

running. The security ' ()
vc js n of fuzzy attribute jA for sample Y is as follows:

'

, [min ,]

() 1 , [, max]
max max

0, else

v

j

j j j

j

j j

c j j j j

j j

y
y x

y
s n y x

x x














= + − 





, (6)

where
1

min min{ }j ij
i t

x x
 

= ,
1

max max{ }j ij
i t

x x
 

= , 1, 2,...,j k= .

The security ' ()
vcs n of sample Y is

' '

1

() ()
v v

k

c j c j

j

s n w s n
=

= , where jw is the weight of fuzzy

attribute jA for component '()vc n and can be determined subjectively or objectively.

77

The threshold  ((0,1))  of software trustworthiness can be set through experiments

involving a large number of running paths with known trustworthiness. When the trustworthiness

ld of l is less than the threshold  , the software is untrustworthy when it runs to component '(1)qc

and should be stop running.

Through the experiments involving a large number of running traces with known

trustworthiness, we found that the detection accuracy is approximately normally distributed when

the threshold  of software trustworthiness changes from 0 to 1. When  is close to 0 , the

detection accuracy is highest. The bigger the value of  is, the higher the false positive rate is; the

smaller the value of  is, the higher the false negative rate is. Then the threshold  = 0 .

4.2. Trustworthiness Evaluation of Component-Based Software Based on

Running Paths

The probability of running path 1 2: '(1) '(1) '(1)ql c c c (1 '(1) 'c s= , '(1) 'qc e=) in 'G is

',(1) ' 1

'(1) '(1) '

1

(1), '(1) '(1);

1, '(1) '(1).

j j

j j q

c l c e
l

q

p c c

f

c c

+

  

 


= 
 =


 (7)

The trustworthiness of running path l in 'G is

'

'(1)

(1)
j

j

l c

c l

d d


=  . (8)

The trustworthiness of the nth level component '()vc n for component '(1)jc is

'

' '

'(1)

' ',(1) '

(1) (1) '(1) (1) '(1) (1)
' '(1) '(1)

',(1) '

() (1) , '() is a meta component;

(1) , '(1) '(1);

(1) (1)

()

(1)

v v

u

c u uv
v u

u

c c v

s n

c u u

l n L n c n l n c n l n
c c n e n

u u

c

s n r c n

d n s n e n

d n p n

d n

p n

 

+

+

+  + +  + +  +
 +  +

+

 + − 

+ + = +

 
 

+  +
 
 =
 

+

  

'(1) (1) '(1) (1)
'(1) '(1)

, else,

cv

u

l n L n n l n
c n e n

+  + +  +
 +  +











 
 
   
 




 

 (9)

where 1n  , (1)l n + is the running path of l in ' '()
vcG n , '(1)

vcL n + is the set of running paths in

' '()
vcG n for test. The calculation process of ' ()

vcs n can be found in Section 4.1.

The trustworthiness of component-based software for 'G is:

78

()l l

l L

l

l L

d f

d

f







=



, (10)

where L is the set of running paths in 'G for test. The wider the range of running paths for test is,

the more accurate the trustworthiness of component-based software we can get is.

5. Experiments and Analyses

Our experiment was carried on taking a simulator of an ATM bank system [16] for example.

The software, often used in software reliability or trustworthiness analysis, consisted of eleven

components and contained six natural faults. In order to have a better representation of call relation

between components, we extended the original software and added seven new components shown

in the dashed line frame of Figure 4. According to the two running paths in the extended software,

we evaluated their dynamic trustworthiness for normal running trace and abnormal running trace

respectively and discussed the threshold selection. We also evaluated the trustworthiness of

software by testing running paths in the software, and verified the effectiveness of our approach.

Start

GUI

Identifier

Account

manager

Transactor

End

DBMS1

DBMS2

Messenger

Verifier

Helper

Withdraw Transfer Query
Change

password

Currency

selector

Cash

withdrawal

Account

inquiry

c1(1)

c2(1)

c3(1|2)

c4(1|2)

c5(1)

c6(1)c7(2) c8(1|2)

c9(2) c10(2)

c11(3) c12(3) c13(3) c14(3)

c15(4) c16(4) c17(4)

c18(1)

Fig. 4. The extended ATM bank system architecture

There are eight meta components containing eight natural faults altogether in the extended

software. These meta components are 2c , 3c , 4c , 7c , 10c , 14c , 15c , 17c . In Figure 4, the components with

shadow are caller components and the components without shadow are meta components. The

numbers in bracket after component name are the component level. Some components such as

79

3c , 4c , 8c has multiple levels considering several running paths. Their different levels are separated

by “|”.

According to these eight faults, nine versions of the system were constructed, in which version

9 contained all the faults in component
7c , 10c , 14c , 15c and 17c but the others contained one fault

each. We randomly generated inputs to estimate the reliability of each individual faulty meta

component until it was converged. Similarly, to compute the reliability of the caller component
6c ,

version 9 was used. The operational behaviors in this experiment were collected to calculate the

transition probability between components. The reliability of meta-components are as follows:

1c
r =1.0,

2cr =0.98,
3cr =0.97,

4cr =0.97,
5cr =1.0,

7cr =0.99,
8cr =1.0,

10cr =0.98,
12cr =1.0,

14cr =0.99,

15cr =0.99,
16cr =1.0,

17cr =0.98,
18cr =1.0. The reliability of caller component 6c is

6
(1)cr =0.95. The

transition probability between components is shown in Table 1.

Table 1. The transition probability between components

Component The transition probability

1c 1,2 (1) 1.0p =

2c 2,3 2,4(1) (1) 0.999p p= = , 2,18 (1) 0.001p =

3c 3,5 (1) 1.0p = , 3,6 6(2 |) 0.669p c = , 3,8 6(2 |) 0.331p c =

4c 4,5 (1) 1.0p = , 4,6 6(2 |) 0.669p c = , 4,8 6(2 |) 0.331p c =

5c 5,2 (1) 0.048p = , 5,6 (1) 0.951p = , 5,18 (1) 0.001p =

6c
6,3 6(2 |) 0.4239p c = , 6,4 6(2 |) 0.4239p c = ,

6,7 6(2 |) 0.1612p c = , 6,9 6(2 |) 0.4149p c = , 6,18 (1) 1.0p =

7c 7,6 6(2 |) 1.0p c =

8c 8,6 6(2 |) 1.0p c =

9c 9,6 6(2 |) 0.01p c = , 9,10 6(2 |) 0.99p c = , 9,11 9(3 |) 0.425p c = , 9,12 9(3 |) 0.161p c = , 9,13 9(3 |) 0.31p c = , 9,14 9(3 |) 0.104p c =

10c 10,6 6(2 |) 1.0p c =

11c 11,9 9(3 |) 1.0p c = , 11,16 11(4 |) 1.0p c =

12c 12,9 9(3 |) 1.0p c =

13c 13,9 9(3 |) 1.0p c = , 13,16 13(4 |) 1.0p c =

14c 14,9 9(3 |) 1.0p c =

15c 15,11 11(4 |) 1.0p c =

16c 16,15 11(4 |) 1.0p c = , 16,17 17(4 |) 1.0p c =

17c 17,13 13(4 |) 1.0p c =

80

In the extended ATM bank system, component 4c is a backup component of component 3c in

order to improve the fault tolerant ability, that is the relationship of component
3c and component

4c is fault tolerant relation. Therefore, during the simplification of trustworthy behavior trace

diagram of component-based software, component
3c and component

4c should be merged into one

component 3 'c , and other component ic (1 18i  , 3, 4i i ) remains unchanged and is

corresponding to the component 'ic . The trustworthiness of the first level component
3 'c is

3 '(1)cd =
3 4

1 [1- (1)] [1- (1)]c cd d−  and the trustworthiness of the second level component
3 'c is

3 '(2)cd =
3 4

1 [1- (2)] [1- (2)]c cd d−  .

According to the running paths shown in Figure 5, we evaluate the dynamic trustworthiness of

running component-based software. In Figure 5(a), the execution sequence of component in running

path Pt1 is: 1 'c , 2 'c , 3 'c , 5 'c , 6 'c (9 'c (11 'c (16 'c , 15 'c)), 10 'c), 6 'c (3 'c , 8 'c) , 18 'c . In Figure 5(b), the

execution sequence of component in running path Pt2 is: 1 'c , 2 'c , 3 'c , 5 'c , 6 'c (9 'c (14 'c) , 10 'c)

, 6 'c (3 'c) , 18 'c . Among them, the call relations are denoted by brackets. For running path Pt1 and

Pt2, we discuss three running traces respectively. When the software runs along Normal trace, the

software is trustworthy; when it runs along Abnormal trace 1 or Abnormal trace 2, the software is

untrustworthy.

Start

GUI

Identifier

Account

manager

Transactor

End

DBMS

Messenger

Verifier

Withdraw

Currency

selector

Cash

withdrawal

c1'(1)

c2'(1)

c3'(1|2)

c5'(1)

c6'(1) c8'(2)

c9'(2) c10'(2)

c11'(3)

c15'(4) c16'(4)

c18'(1)

Start

GUI

Identifier

Account

manager

Transactor

End

DBMS

Verifier

Change

password

c1'(1)

c2'(1)

c3'(1|2)

c5'(1)

c6'(1)

c9'(2) c10'(2)

c14'(3)

c18'(1)

(a) (b)

Fig. 5. Running paths (a) Pt1 (b) Pt2

1) Normal trace: A trace that the software runs normally.

81

2) Abnormal trace 1: The codes of changing the input arguments of component 10 'c are added

between component
9 'c and component 10 'c .

3) Abnormal trace 2: The codes that don’t changing the context and argument policies are

added between component
9 'c and component 10 'c .

The value of 'vc depends on the component requirements of reliability and security.

According to the practical requirements of ATM bank system, component 10 'c (Verifier) should

have higher security and its security weight is set to 0.7; The security and reliability of other

components have the same demand degree, so these components’ security weight is set to 0.5.

The traditional approaches [12-15] do not consider the running paths and the security of caller

component and each component is as an independent unit during reliability evaluation. In order to

discuss the trustworthiness of running path based on reliability and security, the security of

component is added to traditional approaches just considering reliability, which is denoted by

“traditional approach + security”. The calculation process of the security of component can be

found in Section 4.1. The trustworthiness of component is the weighted average value of reliability

and security (the security weight of component '()vc n is 'vc). The trustworthiness of each running

trace for running path Pt1 and Pt2 evaluated by different approaches is shown in Table 2.

Table 2. Trustworthiness of running path Pt1 and Pt2

Running

path
Running trace

Reliability of

running path

(traditional

approach)

Trustworthiness of running path

Our

approach

Traditional approach

+ security

Pt1

Normal trace 0.86 0.90 0.88

Abnormal trace 1 0.86 0.28 0.88

Abnormal trace 2 0.86 0.69 0.71

Pt2

Normal trace 0.88 0.92 0.90

Abnormal trace 1 0.88 0.27 0.90

Abnormal trace 2 0.88 0.40 0.45

 Through the experiments involving a large number of running traces with known

trustworthiness, we found that the detection accuracy is approximately normally distributed when

the threshold  of software trustworthiness changes from 0 to 1. When  is close to 0.85, the

detection accuracy is highest. The bigger the value of  is, the higher the false positive rate is; the

smaller the value of  is, the higher the false negative rate is. The trustworthiness evaluation of

running traces for different threshold  is shown in Table 3. In Table 3, “T” denotes trustworthy

and “U” denotes untrustworthy.  =0.95 is taken as an example of bigger  and  =0.65 is taken as

82

an example of smaller  . When  =0.95, the trustworthiness of Normal trace for running path Pt1

or Pt2 is determined to be untrustworthy inaccurately for two approaches; when  =0.65, the

trustworthiness of Abnormal trace 1 or Abnormal trace 2 is determined to be trustworthy

inaccurately for two approaches. We mainly discuss the situation of  =0.85 below.

Table 3. Trustworthiness evaluation of running path for different threshold 

Running

path
Running trace

Trustworthiness evaluation of running path

Our approach Traditional approach + security

 =0.95  =0.85  =0.65  =0.95  =0.85  =0.65

Pt1

Normal trace U T T U T T

Abnormal trace 1 U U U U T T

Abnormal trace 2 U U T U U T

Pt2

Normal trace U T T U T T

Abnormal trace 1 U U U U T T

Abnormal trace 2 U U U U U U

For Normal trace, the trustworthiness of each running path (Pt1 or Pt2) is greater than  and

each running path is determined to trustworthy accurately for two approaches. For Abnormal trace

1, when the software runs along each running path, our approach can detect the component 10 'c is

not satisfied with its argument policies, so
10 '(2)cs =0, the trustworthiness of each running path is

less than  and each running path is determined to be untrustworthy accurately; “Traditional

approach + security” cannot find the abnormal of arguments passed between called components, so

the trustworthiness of each running path is greater than  and each running path is determined to be

trustworthy inaccurately. For Abnormal trace 2, our approach can detect that the fuzzy attributes of

scene such as timestamp deviate, so the trustworthiness of each running path is less than  and

each running path is determined to be untrustworthy accurately; “Traditional approach + security”

can also determine the trustworthiness correctly, but the grain is coarse and the abnormal of

component 6 'c called for the first time cannot be found until calling the component 6 'c for the

second time with abnormal scene. Therefore, “traditional approach + security” cannot distinguish

the reliabilities of component 9 'c calling different components and do not consider the security of

inside components called by component 6 'c , so that the trustworthiness of caller component 6 'c is

inaccurate, which influences the accuracy of trustworthiness evaluation of running path.

In the experiment, we test the trustworthiness of component-based software from three

situations listed in Table 4. For test 1, the trustworthiness of component-based software for two

approaches is greater than  and the software is determined to be trustworthy accurately. For test 2,

the trustworthiness of component-based software for two approaches is less than  and the software

83

is determined to be untrustworthy accurately. For test 3, our approach can determine the

trustworthiness of component-based software accurately, while because “traditional approach +

security” cannot find the abnormal of arguments passed between called components, each trace with

abnormal component arguments is determined to be trustworthy inaccurately, the trustworthiness of

component-based software is greater than  and the software is determined to be trustworthy

inaccurately. Therefore, our approach can evaluate the trustworthiness of component-based

software more accurately.

Table 4. Trustworthiness of component-based software

Test

No.
Running traces for test

Trustworthiness of component-based

software

Our approach
Traditional

approach + security

1 15 normal traces 0.91 0.92

2
5 traces with abnormal fuzzy

attributes in scene +10 normal traces
0.63 0.67

3
5 traces with abnormal component

arguments +10 normal traces
0.55 0.91

6. Conclusion

According to the inaccurate and incomplete trustworthiness evaluation of running software for

traditional models, the conception of component level was introduced. The reliability and security

of component were combined and the trustworthiness evaluation approach of component-based

software based on level was proposed. Experiments and analyses showed that our approach could

evaluate the dynamic trustworthiness of component-based software and the trustworthiness of

component-based software more accurately. Our future work is to study the best test range of

running paths involving loop structure during the trustworthiness evaluation of component-based

software so that we can achieve higher accuracy of trustworthiness of component-based software

with less cost.

Acknowledgments

This paper was supported by the National Natural Science Foundation of China (61170254),

the Natural Science Foundation of Hebei Province (F2015201089, F2014201099), the Youth

Foundation of Hebei Educational Committee (QN2016149), and the Science Foundation of Hebei

University (2013-250).

84

References

1. H. Pang, Research on optimization of B2C e-commerce service quality oriented by customer

demand, 2016, Revista de la Facultad de Ingeniería, vol. 31, no. 6, pp.103-113.

2. TCG specification architecture overview, http://www.trustedcomputinggroup.org/tcg-

architecture-overview-version-1-4, May 2016.

3. J. Wen, H.M. Wang, S. Ying, Y.C. Ni, T. Wang, Toward a software architectural design

approach for trusted software based on monitoring, 2010, Chinese Journal of Computers, vol.

33, no. 12, pp.2321-2334.

4. D. Wang, J.S. Chang, W.B. Zhao, Verification model for trustworthiness of interaction between

software components with Pi-calculus, 2012, Journal of Frontiers of Computer Science and

Technology, vol. 6, no. 5, pp.419-429.

5. X.X. Luo, Z.Y. Tang, Y.J. Zhao, Dynamic software reliability assessment based on Markov

chain, 2015, Application Research of Computers, vol. 32, no. 8, pp.2400-2405.

6. M. Mohammad, V. Alagar, A component-based development provess for trustworthy systems,

2012, Journal on Software: Evolution and Process, vol. 24, no. 7, pp.815-835.

7. G.N. Si, J. Xu, J.F. Yang, W. Shuo, An evaluation model for dependability of Internet-scale

software on basis of Bayesian networks and trustworthiness, 2014, Journal of Systems and

Software, vol. 89, pp.63-75.

8. H. Elshaafi, D. Botvich, Optimisation-based collaborative determination of component

trustworthiness in service compositions, 2016, Security and Communication Networks, vol. 9,

no. 6, pp.513-527.

9. X.H. Chen, J. Liu, Z.M. Liu. Requirements monitoring for Internetware: an interaction based

approach, 2013, SCIENCE CHINA: Information Science, vol. 56, no. 8, pp.1-15.

10. X.L. Liu, A.X. Wang, L. Wang, Quality evaluation model and algorithm of software system

based on fuzzy closeness degree, 2016, Revista de la Facultad de Ingeniería, vol.31, no.7,

pp.144-151.

11. C.X. Shen, H.G. Zhang, H.M. Wang, J. Wang, B. Zhao, F. Yan, F.J. Yu, L.Q. Zhang, M.D. Xu,

Research on trusted computing and its development, 2010, SCIENCE CHINA: Information

Sciences, vol. 40, no. 2, pp.139-166.

12. X.G.Mao, Y.J. Deng, A general model for component-based software reliability, 2004, Journal

of Software, vol. 15, no. 1, pp.27-32.

13. W. Zhang, W.Q. Zhang, Study of improved component-based software reliability model based

on route, 2011, Computer Science, vol. 38, no. 2, pp.148-151.

85

14. L. Nautiyal, N. Gupta, S.C. Dimri, Measurement of the reliability of a component-based

development using a path-based approach, 2014 ACM SIGSOFT Software Engineering Notes,

vol. 39, no. 6, pp.1-5.

15. C.J. Hsu, C.Y. Huang, An adaptive reliability analysis using path testing for complex

component-based software systems, 2011, IEEE Transactions on Reliability, vol. 60, no. 1,

pp.158-170.

16. W.L.Wang, Y. Wu, M.H. Chen, An architecture-based software reliability model, 1999,

Proceedings of the 5th Pacific Rim International Symposium on Dependable Computing, Hong

Kong, pp. 143-150.

