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Abstract  

The principal target of preprocessing is to get more appropriate resultant image than its 

original for further additional analysis. Enhancement of retinal images creates several challenges. 

The main obstacle is to develop a technique to accommodate the wide variation in contrast inside 

the image. Necessity of preprocessing methods are for image normalization and to increase the 

contrast for achieving accurate analysis. This work examined literature in the prior process of 

digital imaging, in the field of the analysis of fundus image to extract normal and pathologic 

retinal traits within the context of diabetic retinopathy (DR). 
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1. Introduction 

Normally, in the center of the image contrast of the fundus is high and diminishes with 

respect to the distance of pixel away from the center. Preprocessing minimizing this effect and to 

get the more uniform image by normalizing the mean intensity of an image. Retinal imaging 

generally affected by non-uniform illumination due to several factors such as the narrow lens in 

the completely dilated pupil, variation in light reflection and diffusion, noise, low contrast, 

differences in retinal pigmentation and differences in cameras, limitations of the instrument as the 

ring-shaped model illumination pattern and imaging related to variation in illumination axes of 

the eye with respect to optical axes. For the comparison of changes in images acquired at 

different times mostly affected by this spatially non-uniform illumination. The major factor for 

inhomogeneity, in terms of luminosity and contrast lies in the same image or between images. In 
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computer-assisted diagnostic system preprocessing play a vital role for precise extraction of 

various characteristics and diagnosis of DR according to the analysis of the fundus images. 

 

2. Related Work 

The compensation of image variability is essential to result in meaningful brightness 

information. To target this problem, the retinal background area was analyzed to detect changes 

of luminosity, contrast and through an estimation of their local statistical properties, derives a 

compensation for their drifts. Three of the parts belong to preprocessing: color space conversion 

along with Shade correction, color normalization and poor image quality detection through 

illumination equalization and filtering. The preprocessing techniques used in the previous articles 

of the fundus images are shortly discussed in the following section.  

 

2.1  Color Space Conversion and Normalization 

The color modes used for fundus image analysis are as follows. RGB bands intensities are 

transformed to intensity -hue -saturation representation. The RGB and HSI color models are 

invertible. This results in only processing of intensity of the pixels instead of its perceived 

relative color values. As HSI model provides decoupling of intensity from color component of an 

image. Local contrast enhancement of these intensity components only proves beneficial in image 

enhancement and conversion of it to RGB is provided without disturbing the color content of 

image pixels. It is closer to the way a human experiences color and removal of noise in HSI color 

space. HSI Color space conversion has adopted by Sopharak et al. [1-2]. Median filtering and a 

zero and edge padding removal on I band of HSI model has employed in [3]. On the intensity 

values of HIS color model, local adaptive contrast techniques result in intensity normalization 

and contrast enhancement as proposed by Usher et al. [4]. But the adverse effect of this technique 

is that along with adjustment of contrast sometimes noise may also increase. Median filtering and 

CLAHE on I band of HIS has proposed in [5]. The HSV color system is another color system 

similar to HSI. Both the HSI and HSV color systems can be used in a similar way in color image 

segmentation. Adaptive histogram equalization on HSV color space conversion was applied in 

[6]. Brightness correction on HSV color model, Gaussian algorithm and CLAHE proposed in [7]. 

RGB to YIQ color conversion results in overall improvement in color saturation and in the 

contrast between lesions and background as proposed by Sanchez et al. [8]. RGB to YIQ is 

suitable component for retinal image analysis by Haniza et al. [9]. Contrast enhancement of 

lesions attributes and overall image color saturation in [10]. Adaptive histogram equalization was 

applied to M band of CMY color space [11]. Preprocessing consist of RGB to CIELab color 
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space conversion was given in [12]. The variation is correlated with the skin pigmentation and 

iris color of the different person. Color normalization is achieved by combining the normalized R, 

G and B components. CIE color model allows separation of intensity from two other color 

components make it more appropriate for enhancement. To carry out preprocessing algorithm 

only on circular fundus and not to hinder by background pixels, the detachment of fundus with 

respect to its background employed as one of the major important steps of preprocessing. A 

comparison between grey world normalization, color histogram equalization and color histogram 

specification to a standard image was undertaken by Goatman et al. [13]. Osareh et al. [14] used 

the same approach after color normalization of fundus images using histogram specification. 

After conversion of RGB to HIS, only on intensity I channel of HIS, this operation was applied 

so that color attributes of the image would not affect [15-16]. Color normalization not finding 

true object color but aims to transform the color, which is invariant with respect to illumination 

changes having the ability of differentiation between ROI.  

 

2.2 Shade Correction 

In color fundus images the main challenge is the presence of noise at some level; to address 

this problem most of the previous literature have based on median filtering and convolution with 

smoothing kernels. Small intensity variations in the green-plane image background are removed 

in the preprocessing step resulting in a “shade corrected” image. This shade correction is 

accomplished by subtracting the background image from the green image. The background image 

was estimated by smoothing the green image with a median filter. 56x 56 median filter was 

employed by Lee et al. [17] to get shade corrected image. A shade-corrected image has also used 

in [18-20]. The background image produced by smoothing the original image with a low-pass 

filter or a mean or median filter whose size is greater than the largest retinal feature. 3 x 3 mean 

filters in combination with Gaussian kernel were applied for shade correction in [21]. The goal of 

preprocessing steps was employed using a noise cleaning to avoid aberrant pixels due to the 

inadequate method of transferring image followed by a smoothing step and finally, normalization 

was applied as a shade correction method [22]. AHE and median filtering along with the 

thresholding were proposed to get shade corrected image [23]. 

 

2.3 Adaptive Contrast Enhancement 

In an image low intensity pixel represent interested objects among several objects present in 

an image. To identify those objects these minimum intensity criteria have used. Local contrast 
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enhancement is a histogram-based contrast enhancement method [24] in which the brightness 

across the whole image is flattened, tending to enhance the darker and not to over expose the 

brighter areas. Simple histogram equalization may tend to degrade the image by over enhancing 

certain areas, which leads to information loss in both the brighter and darker areas of the image 

and to blur of the retinal details. Bright regions will tend to become over exposed and areas of the 

low signal will tend to become darker. The introduction of local contrast enhancement eliminated 

these problems by dividing the image into relatively small areas with similar contrast. Each area 

has then enhanced appropriately. For further analysis of retina images, several illumination 

equalization preprocessing methods in terms of histogram processing such as equalization and 

specification considerably increases the contrast and illumination. A preprocessing module 

encompasses four steps such as enhancement; contrast limited adaptive histogram equalization 

(CLAHE), brightness preserving dynamic fuzzy histogram equalization (BPDFHE) and de-

correlation stretching. BPDFHE provides few functional steps to have contrast improved image 

by passing low contrast image. CLAHE is a popular technique in the biomedical image 

processing because it is very effective in forming normally to interesting leaping out parts that are 

more visible. Splitting the image into disjoint regions and local histogram equalization is applied 

in each region followed by elimination of boundaries between the regions through bilinear 

interpolations [25]. In [26] preprocessing was applied as Illumination equalization and CLAHE. 

Normally effect of “Vignetting” was observed in retina images. As brightness diminishes over the 

edge causes contrast reduction over it. Illumination equalization method overcomes this effect 

and use of CLAHE results in the removal of noise present in an image. To improve the contrast 

of fundus images grey level transformation was proposed by Sinthanayothin et al [27]. 

Preprocessing algorithms distinguished bright objects from the background. This research started 

with the development of preprocessing techniques to improve image quality. Adaptive contrast 

enhancement was first proposed in [28] in order to emphasize features in the retinal image. The 

mean and variance of the intensity within a sub local region were considered and the 

transformation function was applied. The non-uniform illumination correction was provided by 

dividing the image by an over-smoothed version of it using a spatially large median filter [29]. 

Preprocessing method proposed in [30] makes the reduction in uneven illumination across the 

retinal images. In [31] the grey levels have normalized using CLAHE to visualize the hiding 

features. High contrast and well-balanced level of overall brightness in the images gives the 

characterization of the high quality of the image. Zhang et al. [32] was applied adaptive local 

contrast enhancement to sub-image areas using the local mean and standard deviation of 

intensities for the detection of bright DR areas from fundus images. Intensity properties as 
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standard contrast stretching techniques have applied by [33-34] for segmentation and noise 

reduction. Wang et al. [35] used brightness transform function similar to gamma correction to 

adjust the image brightness. Illumination was equalized by AHE followed by Gabor standard 

deviation filter in [36]. Adaptive local contrast enhancement was applied in [37], rescaled pixels 

to the full intensity range. Walter and Klein [38] contrast enhancement method results in smooth 

background grayscale image and emphasized on salient parts. Grayscale diameter closing [39] 

aims to get possible candidate extraction. Illumination equalization was also employed in [40]. 

Fundus images were contrast enhanced in order to obtain sharp edges and transformed to 

correlation coefficient images by the use of two sets of Gaussian Kernel patches with distinct 

scales of resolution [41]. The proposed algorithm of CLAHE was adopted to enhance the contrast 

of the image by divide and conquers approach to result in overcoming of the global noise from 

the images [42]. The digital color fundus image has pre-processed using AHE [43] and was 

enhanced by applying Top hat and Bottom hat transforms [44]. The aim of preprocessing has 

achieved by applying AHE to compliment of green channel image and then morphology to 

normalize the image followed by median filtering and double background subtraction [45]. 

 

2.4  Background Exclusion 

The main purpose of this step is eliminating background variations in illumination from an 

image so that the foreground objects can be analysed more easily. The background exclusion is 

performed by subtracting the original intensity image from the average filtered image. The 

majority of fundus images have backgrounds which change the image. This effect is partially due 

to illumination angles, partially due to the flash glare and also to the natural variation of the retina 

appearance. Grisan et al. [46] have improved the previous technique by employing a 

mathematical model of the background illumination and noticing that contrast normalization 

negatively affects lesion segmentation algorithms. Background removal using average filtering, 

salt and pepper noise removal using median filtering and AHE was proposed in [47]. Foracchia et 

al. [48] were reported luminosity and contrast enhancement using an adaptive calculation of 

contrast by first identifying pixels which has likely to belong to the background retina. 

Foreground and background separation were achieved through the estimation of uniform 

luminosity and standard deviation [49]. Luminosity and contrast normalization Foracchia method 

was also applied in [50]. A foreground image, background image and its acquisition function 

were proposed by several authors [51-52] through image formation models for describing 

observed fundus image. Modified valley emphasized automatic thresholding and morphology for 

color distorted background exclusion was adopted in [53]. Undesired background separation 
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through morphology and edge operator as preprocessing was proposed in [54]. Median filtering, 

CLAHE, Bottom hat and contrast stretching for background removal [55], median filtering and 

bottom hat for background separation [56], CLAHE, thresholding, background exclusion and 

post filtration [57] have reported. 

 

2.5 Filtering 

The use of the selected preprocessing methods aims to enhance the accuracy of the lesion 

detection in different ways. Yet, the technique of contrast increase improves not only the image, 

but improves also the picture contains noise. Hence, a smoothing technique is introduced first, 

which aims to suppress noise or other small fluctuations in the image. The smoothing method used 

median filtering which reduces the blurring of edges within the image. The idea is to replace a 

given point in an image by the median of the brightness in its neighborhood, instead of by the 

average. The median of the brightness in the neighborhood unaffected by individual noise spikes. 

The elimination of impulsive noise results through median smoothing. Furthermore, median 

filtering does not blur the edges as its objective is to achieve noise reduction rather than blurring. 

Median filtering is better in the state to remove these outliers without making the reduction in the 

sharpness of the image. The median filter has a benefit of simultaneously reducing noise and 

preserving edges [58]. Fleming et al. [59] were used a 3x3 median filter to remove salt-and-pepper 

noise. In order to extract candidates, this method constructs a maximal correlation response image 

for the input retinal image [60]. A better contrast was obtained by Gaussian filtering the resultant 

image. These methods have applied separately to the red, green and blue components of the RGB 

color values of the Image [61]. Pixel-wise cross-sectional profiles with multiple orientation was 

used for the computation of multi directional height map by Lazar et al. [62]. This map results in 

the assignment of the row of height values to describe pixel and its surroundings differentiation in 

a spatial direction. Spencer et al. [66] and Frame et al. [67] proposed one of the novel popular 

algorithms for extraction of candidates. The subtraction of maximum response of multiple top hat 

morphology transformed result was accomplished to get true candidates. Applications of Gaussian 

filter results in binarization. In this algorithm Gaussian matched filter results in smoothening. The 

map smoothens by the use of hysteresis thresholding and an averaging kernel. Finally, according 

to the size, resulting components are filtered. Before abnormal lesions have searched from an 

acquired fundus image, the image has pre-processed to ensure the adequate level of success in the 

abnormality detection [68]. In fact, median filtering is general enough to take into account the 

natural change in the retinal appearance in addition to the luminosity changes. The median is a 

non-linear filter, which reduces the impulsive distortion in an image and without too much 
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distortion at the edges of an image. The advantage of a median filter consists in the fact that it is 

very robust and has the capability to filter only outliers and is thus an excellent choice for the 

elimination of horizontal scanning artifact, especially salt and pepper noise. The combined method 

of histogram equalization and smoothing filter results in contrast enhancement of retinal image 

utilized in [69]. In [70-73] a large mean filter, large median filter, or both have used for estimating 

the fundus background. The median filtering and CLAHE applied on the green channel of the 

image to reduce the image noise and to improve the quality was adopted in [74] so that the image 

features become easier to detect in the automated fundus image analysis system. Preprocessing of 

the image was applied in terms of median filtering and CLAHE on complemented green channel 

image [75]. Preprocessing was employed for grey level homogenization, median filtering and 

thresholding [76]. Low pass filtering is the other type of approach results in correction of non-

uniformly illumination. The main issue related to this technique is the filter’s cut off frequency 

value for the removal of non-uniformly of the illumination without affecting the image details. 

Preprocessing in terms of grayscale estimation and GSZ shock filter was proposed [77]. Gabor 

wavelet along with sharpening filters to enhance vascular pattern employed in [78]. Convolution 

with fourteen digital filters was proposed by Niemeijer et al. [79]. 

 

2.6 Morphological Processing 

Mathematical morphology in image processing is particularly suitable for analyzing shapes in 

images through two main processes, dilation and erosion. On a grey level image, dilation brightens 

small dark areas. Erosion makes small bright areas as smaller or noise spur dark. The algorithms 

opening with an element of some form of structuring can separate objects in an image, while 

preserving image structures that can contain the structural element and remove those who are not. 

Closing has accustomed to ‘fill-in’ small holes within an image. Algorithms combining the above 

processes are used to create mechanisms of edge detection for noise removal and background 

removal as well as for finding specific shapes in images. The transformation of the Morphological 

top hat is a strong technique for image improvement, particularly in the extraction of bright 

qualities in the dark background [80-84], With the adaptation of, size of structuring element more 

than the maximum value of vessel scale results in suppression of non-vascular structures in fundus 

images. Walter et al. [85] have suggested a mathematical morphology supported approach, which 

recommends contrast improvement and shade correction as preprocessing steps. The treatment of 

morphological picture exploits characteristics of the form of vasculature which are a priori known, 

as it being piecewise linear and linked. Morphological operations play a vital role in digital image 
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processing which goes with a special application in the field of machine vision and automatic 

object detection in procession [86]. Multiscale morphological operations for vessel enhancement 

reported in [87]. Giancardo et al. [88] was proposed morphological reconstruction for 

enhancement of vessel like structures. Mathematical Morphology process in terms of opening and 

reconstruction operation with Top hat transform as well as Gaussian filtering was proposed for 

smoothing or removing any noise [89-90]. Top- hat transform and median filtering on the green 

component of the image was employed in [91]. Hybrid morphological reconstruction technique 

was adopted in [92]. Preprocessing consists of image enhancement based on HE morphological 

operator followed by binarization [93], AHE and morphology [94] has reported. 

 

2.7 Mask Generation 

A fundus image consists of a circular fundus and a dark background surrounding the fundus. 

Exclusion of background pixels and processing of only the fundus pixels provides with the use of 

fundus mask. The mask is defined as “a binary image of the same resolution of the fundus image 

whose positive pixels correspond to the foreground area”. Mask of the fundus camera has different 

size and shape according to its settings. Knowing which pixels belong to the retina is a step that 

helps subsequent analysis to give information about the effective size and shape of the image that 

has analyzed. Median filter results in the removal of noise from the resultant fundus mask and 

morphological opening results in the removal of edge pixels. Thereafter, the mask is acquired by 

extracting pixels having the values greater than 0 over the range of 0 – 255, then FOV will accept 

255 by multiplying the picture of the mask with the biggest value in pixels. The initial detection of 

the mask is particularly important. Various cameras employ masks of different sizes and 

parameters will be inaccurate if the ratio between the mask and real retina size varies. The mask is 

extracted employing the green plane with 256 levels. A binary image containing all the pixels less 

than a threshold set to 10 levels more than the minimum value is created. Preprocessing has 

applied in the steps of green channel extraction, mask generation and dilate borders and CLAHE 

image enhancement [95]. Automatic mask generation was employed to avoid processing of the 

black border in the images in [96-97]. Thresholding and morphological operations based technique 

fail to give a perfect mask when the fundus image is not well exposed. Image processing tool like 

ImageJ software has proposed to generate mask [98]. A new automatic method for preprocessing 

was proposed to generate a binary mask using the Gaussian filter to define the region of interest 

[99]. Bright artifacts mask generation was applied on blue channel of fundus image obtained by 

using the sixth quantile which estimates the threshold for distribution [100]. Thresholding and 
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morphological operations on image red band using 3x3 square kernels to get final ROI mask 

followed by AHE was proposed by [101]. HE and thresholding function has employed for mask 

generation [102-103]. Mean filtering, retinal mask generation and illumination correction in [104]. 

Other authors seem to have preprocessing operations which included spatial normalization 

and the preprocessing by [105], masking ROIs by Hoover et al. [106] and Leandro et al. [107], Ye 

and Zheng et al. [108] employed noise suppression algorithm. A simpler approach was used by 

Shin et al. [109], Lee et al. [110], mean normalization [111], Gaussian Pyramid and efficient 

neighborhood analysis [112] and Ege et al. [113], all used a 31 pixels squared median-filter as a 

smoothing operator in order to obtain a representation of the image, mentioning that the picture is 

of low frequency content. This image was then subtracted from the original to remove the effect of 

unequal or irregular illumination. Marwan et al. [114] was adopted four different steps for 

preprocessing. Several illumination correction techniques are based on AHE, Gamma correction, 

Gamut mapping [115], and Retinex based algorithms [116-117], linear and nonlinear background 

correction [118], Grayscale conversion, fuzzy filtering, fuzzy HE, fuzzy edge detection [119-120], 

homomorphic filtering [121-124]. The application of median filtering, CLAHE, binarization steps 

and surface fitting proposed in [125-126]. Without the use of any contrast enhancement procedure 

optimal AM-FM results in true candidates extraction to prove as reliable algorithm to not only 

enhance the low intensity of the images but also extraction of multiple features to detect actual 

candidates through classification in [127-128]. First white top hat transforms the geodesic 

detection followed by color histogram thresholding is the sequential steps provided in 

preprocessing module by [129]. Goatman et al. [130] proposed a method for contrast enhancement 

in which the image contrast stretching was used to cover full pixel dynamic range excluding the 

dark surrounding border pixels for normalization. Histogram thresholding was used in [131]. 

Image enhancement reported by applying decorrelation stretching with the increase in difference 

of hue measure [132]. Fast discrete curvelet transform via wrapping method was applied and 

reconstructed the image using modified coefficient [133]. Image enhancement based on lifting 

scheme version of D4 wavelet transform was proposed in [134]. Edge detection through Sobel 

operator followed by color compression using K-means clustering to emphasize on lesions 

proposed in [135]. The author of [136-137] proposed iterative homographic surface fitting for the 

compensation of non-uniform illumination. Gabor wavelet on the inverted green channel was 

proposed in [138]. Brightness Area Product for normalization and image subtraction for contrast 

enhancement [139]. Principal component analysis, image enhancement and inpainting algorithm 

as a preprocessing reported in [140]. Figure 1 shows the frequency of distribution of the various 

preprocessing techniques. 
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Fig.1. The Frequency Distribution of various Preprocessing Methods 

 

2.8 Conclusion 

Image preprocessing can do both improving qualities of the image and play a central role in 

improving the accuracy of features detection task (normal and abnormal). In this paper, we have 

discussed the wide variety of technique to provide high quality records of fundus appearance 

which have the potential to improve fundus image analysis and accurate diagnostic in automated 

in DR system. 
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