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ABSTRACT 

A support vector regression (SVR)-based model and its hybrid (HSVR), both optimized 

with gravitational search algorithm (GSA), for accurate estimation of refractive indices of 

semiconductors using their energy gaps as descriptors are presented. The proposed GSA-

HSVR model demonstrates a better predictive and generalization ability than ordinary 

GSA-SVR model. The performances of the proposed models are compared with the 

existing Moss and Ravindra’s models and a better agreement with the experimental values 

were observed coupled with lowest mean absolute error of GSA-HSVR model. 

Considerable high coefficient of correlation and very small root mean square error also 

characterize GSA-HSVR model. The proposed GSA-HSVR model proves its identity and 

effectiveness compared to existing predictive models, in terms of accuracy, using simply 

accessible descriptor. It also reduces the estimation challenges accompanying 

determination of refractive indices of semiconductors.  
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1. INTRODUCTION

The evolution of modern technology aids novel 

semiconductors with established or promising optoelectronic 

properties to find wide range of applications in devices like 

laser diodes (LD), light emitting diodes (LED), 

nanotechnology, photonics, integrated circuits (IC) and other 

optoelectronic devices [1–3, 45]. Energy gap and index of 

refraction are the two fundamental properties that determine 

the optical and electronic properties of semiconductors. The 

energy gap is determined by the threshold of photon 

absorption while refractive index is, in general, a measure of 

transparency of the material to the incident light. The roles 

played by these two optoelectronic quantities in the study of 

semiconductor band structures make the correlation between 

the two an important part of intensive research from the last 

few decades [4–19]. Furthermore, it has been established that 

some electronic properties of a material, such as polarizability 

and electric permittivity, depends on the refractive index 

which can be calculated from the knowledge of energy gap. 

Also, these two basic parameters of a semiconductor are 

believed to have correlation since the refractive index of a 

material decreases with energy gap and vice versa [19].  

There have been several attempts to establish a suitable 

relation, empirical and/or semi empirical, between the energy 

gap and refractive index of semiconductor materials [1, 4–19]. 

Many empirical formulations propose direct relationship 

between the energy gap and the refractive index while some 

relations suggest that the energy gap be calculated from 

electronegativity which is then used to determine the refractive 

index. With an assumption that the valence and conduction 

bands are approximately parallel to each other along the 

symmetry directions, Ravindra and his fellow researchers [8], 

[18] proposed a linear relation between refractive index and

energy gap. The concept of Ravindra is believed to be an

approximate Penn model. Penn model is a simple model for

isotropic system which provides reasonable application to

liquid and amorphous semiconductors [10]. Moss used the

basics of photoconductivity to establish a relation in which the

electron energy levels are scaled down by a factor of 1/ϵ2

where ϵ represents the effective dielectric constant as felt by

the electrons in the material and is approximately equal to the

square of the refractive index of the material [13-14]. Lately,

Kumar and Singh fitted model parameters to a few

experimental energy gap and refractive indices data to

establish an empirical relation for refractive index [15]. In his

effort to modify the Penn model for high frequency dielectric

constant, Gopal formulated a relationship between refractive

index and energy gap [20]. Reddy et al. have proposed some

empirical relations between the two fundamental quantities of

a semiconductor for different compounds [4, 6]; meanwhile

Anani and his colleagues found a formulation for refractive

index of III–V semiconductors [19]. This work presents

gravitational search algorithm-based hybrid support vector

regression (GSA-HSVR) model with better estimation and

generalization ability in comparison to already existing models.

The results of the proposed model (GSA-HSVR) are closer to

the experimental values than those of the existing models. This
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is due to the inherent ability of the model to fully capture the 

non-linear relationship between energy band gap and 

refractive indices that has not been effectively captured by the 

existing theoretical models. 

Support vector regression (SVR), as a computational 

intelligence technique, is known for robustness and has 

excelled in several fields of applications due to its unique 

features [21]. The uniqueness of SVR includes generalization 

of error-bound and non-convergence to local minimum. SVR 

has been employed for several applications in various research 

fields especially where experimental data are rarely available, 

such as condensed matter physics [22-24]. Its importance has 

been demonstrated in estimation of the properties of 

perovskite [25], of superconducting properties, [26-28] and 

surface properties of materials [29-31]. SVR uses kernel trick 

to handle non-linear problems. Kernel trick allows data 

transformation into high dimensional space with the use of 

mapping function called kernel function. Proper selection of 

hyper-parameters, such as regularization, kernel option and 

epsilon govern the predictive strength of SVR-based model 

[32]. SVR hyper-parameters are optimized in this work using 

a novel optimization technique, gravitational search algorithm 

(GSA). The GSA is a population-based optimization algorithm 

that works on the principle of Newtonian gravitation and laws 

of motion [33, 46-47]. Its excellent performance has been 

demonstrated in various practical applications [34-35]. In 

order to fully capture the complex and non-linear relationship 

between energy band gap and refractive indices of 

semiconductors, homogenously hybridized SVR (HSVR) is 

developed. HSVR involves hybridization of two SVR 

algorithms in which the outputs (estimated refractive indices) 

of the first SVR algorithm serve as the descriptor to the second 

SVR algorithm. This proposed model (HSVR) outperforms 

ordinary SVR in its estimates. Hybrid SVR has been 

previously considered for semiconductors band gap estimation 

[36]. However, given the importance of semiconductor 

applications and its monumental impact in revolutionizing the 

computing process coupled with significance of refractive 

indices to these applications, this present work applies hybrid 

HSVR for refractive indices estimation and the obtained result 

outperforms the existing models in this area of study. The 

outstanding performance of the proposed hybrid model shows 

its potential to replace the existing methods, circumvents 

experimental stress and ultimately eases the refractive indices 

determination while experimental precision is preserved. 

Results of the proposed GSA-HSVR model show 

appreciable accuracy, based on coefficient of correlation 

between estimated and experimental refractive indices. A 

small value of mean absolute error (0.176eV) and root mean 

square error (0.213eV) are also observed during modeling and 

simulation. The estimated refractive indices for various 

semiconductors agree excellently with the experimental 

results, thus suggesting high predictive and generalization 

ability of the proposed models. 

 

 

2. THEORETICAL BACKGROUND 

 

This section presents the mathematical formulation of 

support vector regression and the proposed homogenously 

hybridized support vector regression model. Physical 

description of the optimization technique (GSA) is also 

presented. The parameters used for evaluating the 

generalization and predictive capacity of the models are also 

discussed. 

 

2.1 Mathematical formulation of support vector regression 

(SVR) 

 

SVR is a machine learning tool that uses statistical learning 

principle to form unique pattern between descriptors and 

desired targets [1]. The statistical learning principles are 

developed from structural risk minimization theory [5-6]. SVR 

algorithm locates minimum possible error within a certain 

distance in the training data using ε − insensitive loss function 

[7]. Unlike support vector machine, which is meant for 

classification problems, SVR employs kernels; and this has 

contributed to its uniqueness. For instance, for energy band 

gap descriptor  𝐸 , a decision refractive indices function 

𝜇(𝜔, 𝐸) which allows mapping of the descriptor is given in the 

equation (1), where 〈𝜔, 𝐸〉 represents the inner product while 

𝜔 is a weight vector. 

 

𝜇(𝜔, 𝐸) = 〈𝜔, 𝐸〉 + 𝑏                                                           (1) 

 

where 𝑏 ∈ ℝ  

In the SVR algorithm, flatness of the generated function is 

ensured through Euclidian norm minimization; that is by 

subjecting 
1

2
‖𝜔‖2 to the following condition as described in 

Ref. [8].  

 

𝜇𝑖 − 〈𝜔, 𝐸〉 − 𝑏 ≤ 𝜀 and 〈𝜔, 𝐸〉 + 𝑏 − 𝜇𝑖 ≤ 𝜀                       (2) 

 

where 𝜇𝑖  represents the experimentally measured refractive 

indices of semiconductors. 

It is essential to introduce slack variables, say (𝜉𝑖 , 𝜉𝑖
∗), to 

create room for infeasible constraints; and hence, the 

optimization problem is modified as presented in the equation 

(3).  

 
1

2
‖𝜔‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1                                                           (3) 

 

where 𝐶 is the regularization factor and 𝑛 the number of data 

points. Equation (4) presents the optimization problem with 

inclusion of slack variables.  

 

𝜇𝑖 − 〈𝜔, 𝐸𝑖〉 − 𝑏 ≤ 𝜀 + 𝜉𝑖  〈𝜔, 𝐸𝑖〉 + 𝑏 − 𝜇𝑖 ≤ 𝜀 + 𝜉𝑖
∗           (4) 

 

Proper handling of the optimization problem is ensured by 

introduction of Lagrange multipliers, 𝜆𝑖  and 𝜆𝑖
∗, described in 

Ref. [9]. Equation (5) represents the new refractive indices 

decision function in term of the Lagrange multipliers and the 

kernel function. 

 

μ(λ, E) = ∑ (λi − λi
∗)n

i=1 g〈Ei, E〉 + b                                        (5) 
 

𝑔〈𝐸𝑖 , 𝐸〉  represents the kernel function. Various kernel 

functions were tested during the process of optimizing the 

SVR hyper-parameters, using gravitational search (GSA) 

algorithm; the non-linear mapping that provides the optimum 

performance to the proposed model is the Gaussian kernel 

function presented in equation (6). 

 

𝑔〈𝐸𝑖 , 𝐸〉 = 𝑒𝑥𝑝 (− (
‖𝐸𝑖−𝐸‖

𝛼2 )
2

)                                                   (6) 
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The parameter 𝛼 in equation (6) is the kernel option that 

needs to be tuned using GSA algorithm. Estimation accuracy 

of the model is determined by the value of the various SVR 

hyper-parameters namely: Gaussian kernel option, loss 

function, lambda hyper-parameter and regularization factor 

[7]. Kernel option refers to the parameter of kernel function 

that controls the transformation of data-points to the space 

with high dimension, while lambda hyper-parameter sorts for 

hyper-plane where attainment of minimum possible error is 

most probable [9]. The penalty factor maintains the tradeoff 

between flatness of the decision function and the level to 

which deviation lager than the specified threshold (epsilon) is 

tolerated.  

 

2.2 The proposed homogeneously hybridized support 

vector regression (HSVR) 

 

Homogenously hybridized support vector regression 

(HSVR) is a class of hybrid intelligent proposed recently for 

solving complex problems that cannot be handled by ordinary 

SVR-based model to the desired level of accuracy [10-11]. It 

utilizes the desired features of two SVR algorithms for 

improved performance. In its operation, the energy band gap 

(descriptor) of semiconductors are fed into first SVR 

algorithm for refractive indices estimation while the estimated 

refractive indices emanating from the first SVR algorithm 

serve as the input to the second algorithm for its estimation. 

The descriptor in the first stage of the HSVR has been 

transformed into a new descriptor that contains all the 

intricacies, patterns and other information necessary for 

accurate estimation of refractive index of the material. The 

second SVR model now has access to a pool of information 

rich enough to develop a more efficient model. The resulting 

homogeneous SVR–SVR hybrid system minimizes 

generalized error bound more than once; and this results in an 

improved performance over the single SVR-based system. 

Among the advantages of the proposed hybridization is that it 

aggregates intrinsic features of two different SVR algorithms 

and allow the utilization of kernels of different parameters for 

data transformation. The regression functions of the initial and 

final stage of the proposed HSVR model are presented in 

equation (7) and (8) respectively assuming 𝜇(𝐸) = 𝑌. 
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where N is the number of support vectors while 


 and 
*

 are 

the Lagrange multipliers 

 

2.3 Optimization algorithm: The Gravitational Search 

Algorithm (GSA) 

 

Gravitational search algorithm (GSA) is a recently 

developed search heuristic algorithm whose working principle 

is based on Newton’s law of gravitation and the equations of 

motion [12]. The algorithm considers the objects in Newtonian 

description as agents whose mass determines the actual 

performance. In principle, the gravitational force brings about 

global movement towards massive agents. Each of the agent 

has characteristic position ( 𝑅 ), inertial mass ( 𝑀𝑖 ), active 

gravitational mass (𝑀𝑎) and passive gravitational mass (𝑀𝑝). 

Strength of gravitational field of an agent is a measure of its 

𝑀𝑎 while the resistance to change of state of motion, due to 

the force experienced, is determined by the 𝑀𝑖 , and the 𝑀𝑝 

measures the strength of the interaction between the agent and 

the field. Fitness function is used to determine the inertial mass 

of each agent; and their respective position is consequently 

updated [13-14]. 

As stated earlier, the entire GSA can be considered as an 

isolated system of masses governed by Newton’s law of 

gravitation and the equations of motion. Let the position of 𝑗𝑡ℎ 

agent in a system of N agents be defined by equation (9).  

 

𝑅𝑗 = (𝑟𝑗
1, 𝑟𝑗

2, … , 𝑟𝑗
𝑑) where 𝑗 = 1, 2, … , 𝑁                             (9) 

 

where 𝑟𝑗
𝑑 is the position of 𝑗𝑡ℎ agent in the 𝑑𝑡ℎ dimension. 

Let the Euclidean distance between mass 𝑀𝑝𝑗 and 𝑀𝑎𝑘 be 

𝑋𝑗𝑘(𝑡) = ‖𝑅𝑗(𝑡), 𝑅𝑘(𝑡)‖ , the gravitational attractive force 

between mass 𝑀𝑝𝑗 and mass 𝑀𝑎𝑘 is 

 

𝐹𝑗𝑘
𝑑 (𝑡) = 𝐺(𝑡)

𝑀𝑝𝑗(𝑡)𝑀𝑎𝑘(𝑡)

𝑋𝑗𝑘(𝑡)+𝜀∗ {𝑟𝑘
𝑑(𝑡) − 𝑟𝑗

𝑑(𝑡)}                         (10) 

 

And 

 

𝐺(𝑡) = 𝐺(𝑡0) (
𝑡0

𝑡
)

𝜈

         𝜈 < 1                                               (11) 

 

Equation (11) represents the time dependent gravitational 

constant whose value decreases with time. The acceleration 

(𝑎𝑗
𝑑(𝑡)) of the 𝑗𝑡ℎ agent, whose inertia mass is 𝑀𝑖𝑗, in the 𝑑𝑡ℎ 

dimension at time 𝑡 is given by the Equation (12), with the 

stochastic feature imposed through Equation (13). 

 

𝑎𝑗
𝑑(𝑡) =

𝐹𝑗
𝑑(𝑡)

𝑀𝑖𝑗
                                                                               (12) 

 
𝐹𝑗

𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑘𝐹𝑗𝑘
𝑑 (𝑡)𝑁

𝑘=1,𝑘≠𝑗                                                (13) 

 

In the Equation (13), 𝑟𝑎𝑛𝑑𝑘 represents a random number, 

which enforces randomness to the search procedure and 

ensures the ultimate location of the optimum SVR hyper-

parameters; it spans through [0, 1] interval. 

The next velocity of an agent is determined from its 

acceleration and some fraction of its present velocity. Thus, 

velocity and position of the agent are updated per the equations 

(14) and (15) respectively. 

 

𝑣𝑗
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑘𝑣𝑗

𝑑(𝑡) + 𝑎𝑗
𝑑(𝑡)                                        (14) 

 
𝑥𝑗

𝑑(𝑡 + 1) = 𝑥𝑗
𝑑(𝑡) + 𝑣𝑗

𝑑(𝑡 + 1)                                            (15) 

 

The inertial and gravitational masses are, of course, updated 

each time; by using the following Equations: 

 

𝑚𝑗(𝑡) =
𝑓𝑖𝑡𝑗(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡 (𝑡)−𝑤𝑜𝑟𝑠𝑡 (𝑡)
                                                           (16) 
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And 

 

𝑀𝑗(𝑡) =
𝑚𝑗(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑘=1

                                                                      (17) 

 

where 𝑓𝑖𝑡𝑗(𝑡) represents fitness of the 𝑗𝑡ℎ agent at time 𝑡 and 

the assumption given by equation (18) was adopted. 

 

𝑀𝑎𝑗 = 𝑀𝑝𝑗 = 𝑀𝑖𝑗 ,    𝑗 = 1, 2, … , 𝑁                                        (18) 

 
Besides the inertial and gravitational masses, the fitness 

function helps in determining a more efficient agent (that is the 

one with heavier mass) which moves sluggishly due to its 

comparatively large attractive gravitational force.  

 

2.4 Accuracy evaluation of the proposed gsa-svr and gsa-

hsvr model 

 

The degree of accuracy and precision of the proposed GSA-

SVR and the GSA-HSVR models in predicting the refractive 

indices of various semiconductor materials were analyzed by 

calculating the correlation coefficient (CC), mean square error 

(RMSE), and mean absolute error (MAE). The formulations 

for CC, RMSE and MAE are given by Equations (19), (20) 

and (21) respectively. 

 

𝑐𝑐 =
∑ (𝜇𝑖

𝑒𝑠𝑡−𝜇̅𝑒𝑠𝑡)
2𝑛

𝑖=1

∑ (𝜇
𝑖
𝑒𝑥𝑝

−𝜇̅𝑒𝑥𝑝)
2𝑛

𝑖=1

                                                              (19) 

 

𝑅𝑀𝑆𝐸 = √∑ (𝜇𝑖
𝑒𝑠𝑡−𝜇̅𝑒𝑠𝑡)

2𝑛

𝑖=1

𝑛
                                                     (20) 

 

𝑀𝐴𝐸 =
∑ |𝜇𝑖

𝑒𝑠𝑡−𝜇̅𝑒𝑠𝑡|
𝑛

𝑖=1

𝑛
                                                             (21) 

 

𝜇𝑖
𝑒𝑠𝑡 and 𝜇𝑖

𝑒𝑥𝑝
 in the equations respectively represent values 

of the estimated refractive index and the experimental 

refractive index while 𝜇̅𝑒𝑠𝑡 and 𝜇̅𝑒𝑥𝑝 represent their respective 

means. The number of data samples is denoted by 𝑛.  

 

 

3. DEVELOPMENT OF GSA-SVR AND GSA-HSVR 

MODELS 

 

This section presents the computational methodology 

employed while developing GSA-SVR and GSA-HSVR 

models. The computational flow chat of the proposed model is 

also presented. The data-set used for the modeling and 

simulation is analyzed statistically and the outcomes of the 

analysis are discussed.  

 

3.1 Description of dataset 

 

The descriptors used in estimating the refractive index of 

the semiconductor materials are the band gap energy of the 

respective materials. The models, GSA-SVR and GSA-HSVR, 

are developed by adopting test-set cross validation methods 

using eighty-five experimental band gap energies. The data are 

culled from [15-16]. Statistical analysis was performed on the 

dataset, and the results are as presented in table I. The results 

of the mean and standard deviation presented in the table I can 

be used to deduce the consistency in the dataset. The results of 

the statistical analysis give us an insight to the data and its 

strength for the proposed estimation. 

 

Table 1. Results of statistical analysis 

 
 Eg (eV) Refractive indices 

Mean 2.92 2.79 

Maximum 10.5 5.73 

Minimum 0.00 1.33 

Standard deviation 2.77 0.88 

 

3.2 Computational description of the proposed hybrid 

models 

 

The proposed GSA-HSVR model is developed within the 

MATLAB computing environment. The data was randomized 

and partitioned into two namely; training dataset and testing 

dataset in the ratio 80 to 20, respectively. The training dataset 

consists of the band gap energies (Eg) of semiconductor 

materials and their corresponding refractive index (µ) to train 

the model; also, the testing dataset is composed of Eg and their 

respective µ for testing the model. Gravitational search 

algorithm (GSA) was adopted for SVR hyper-parameters 

optimization while the RMSE between the measured refractive 

indices and the estimated values serves as the fitness function. 

The procedures for computational hybridization of GSA and 

SVR algorithms are itemized as follows; 

Step I: Data partitioning: The available data for simulation 

was randomly separated into training and testing portion in the 

ratio of 80 to 20. This means that sixty-eight and seventeen 

data points were respectively used for training and testing 

purposes.  

Step II: Initialization of GSA agents: population of agents in 

GSA description was initialized with each agent encodes SVR 

hyper-parameters which include regularization factor ( 𝐶 ), 

epsilon ( 𝜀) and kernel option (𝛼)  

Step III: With each agent of the population, root mean 

square error (RMSE) between the experimentally measured 

refractive indices and the estimated values was minimized 

using training data set as follows: 

(1) SVR hyper-parameters encoded in each of the agent was 

used to train SVR algorithm with the aid of training dataset 

and root mean square error (which serves as the fitness 

function) of each of the agent was obtained using testing data-

set.  

(2) Using the fitness of each of the agent coupled with the 

fitness of the entire population, gravitational mass of each of 

the agent was computed using equations (16) and (17) while 

the assumption contained in equation (18) was also 

implemented. 

(3) Gravitational pull on each of the agents due to the 

presence of other agents was computed using equations (11) 

and (13).  

(4) Accelerations of the agents were computed using 

equation (12) 

(5) Velocities and Positions of the agents were updated and 

the process continues until the root mean square errors (for 

testing data-set) between the experimental values of refractive 

indices and estimated refractive indices converge to global 

minimum. 

Step IV: The SVR hyper-parameters that minimize RMSE 

were used to develop GSA-SVR model 

Step V: Development of GSA-HSVR went a step further by 
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incorporating another SVR algorithm into the described GSA-

SVR model. The estimated refractive indices obtained through 

Step I to Step III were fed into another SVR algorithm and 

Step I to Step III were repeated for another set of GSA agents. 

Algorithm1 shows the computational description of the 

proposed model. 

 
 

Algorithm 1. The computational description of the proposed 

model 

 

 

4. RESULTS AND DISCUSSION 

 

This section presents the results of the developed models 

(GSA-SVR and GSA-HSVR). The correlation cross-plot 

between experimentally measured refractive indices and the 

estimated values are presented and discussed. The comparison 

between the results of the developed model and the existing 

theoretical models are also presented and discussed. 

 

4.1 Performance sensitivity of the proposed models to the 

initial population of the agents 

 

The exploration and exploitation ability of GSA based 

model can be influenced by the number of initial population of 

the agents. For a small number of agents, the search space 

might not be efficiently explored by the agents and 

convergence to local minimum would be observed.  

Similarly, for a very large number of agents exploring a 

search space, the exploration ability of the algorithm is 

strengthened while complexity might set in when large 

number of agents are exploiting for global minimum. In order 

to maintain a balance between exploration and exploitation 

ability of the model, the influence of the number of agents on 

the performance of the model is investigated and presented in 

Fig.1 and Fig.2 for GSA-SVR and GSA-HSVR model 

respectively. Fig. 1 presents the performance sensitivity of the 

proposed GSA-SVR model to the number of agents, as 

measured based on the RMSE. As can be observed from the 

figure, performance sensitivity was investigated when the 

number of agents was 10, 20, 40 and 60 respectively. It was 

observed that a minimum error, which may be regarded as the 

local minimum, was recorded when the number of agents was 

10. Whereas an initial population of 50 agents gives the global 

minimum with a RMSE value of about 0.2936. Above this 

optimum number of agents, further increase in the number of 

agents leads to convergence to local minimum due to the 

complexity as large number of agents is exploiting a global 

minimum. Similarly, Fig. 2 depicts the results of measurement 

of the performance sensitivity of GSA-HSVR model. It is 

observed that a local minimum arises when the number of 

agents was 40; this almost overlaps with the population 

containing 10 agents. Also, the global minimum was achieved 

with initial population of 20 agents which corresponds to a 

RMSE value of 0.2128. The optimum values of SVR hyper-

parameters for both GSA-SVR and GSA-HSVR model 

including the optimum number of agents are presented in table 

2.  

 

 
 

Figure 1. Sensitivity of the developed GSA-SVR model to 

the number of agents 

 

 
 

Figure 2. Sensitivity of the developed GSA-HSVR model to 

the number of agents 

 

Table 2. Optimum hyper-parameters values as obtained by 

GSA 

 
Hyper parameter GSA-SVR GSA-HSVR 

Regularization factor (C ) 695.6935 513.7134 

Epsilon 0.0582 0.0022 

Kernel option 0.5 0.2848 

Lambda 0.1 e-7 

Kernel function Gaussian Gaussian 
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4.2 Comparison of the estimation and generalization 

ability of ordinary SVR and the proposed hybrid system 

(HSVR) 

 

Cross-plots of the estimated and experimental values of the 

refractive indices of semiconductor materials, using GSA-

SVR model, for both training and testing datasets are as shown 

in Fig. 3. The alignment of the data-points with little deviation 

shows presence of only small discrepancies between the 

estimated and experimental refractive indices for training and 

testing set of data. The deviation between experimental and 

estimated refractive indices for both training and testing data-

set is around 8% in both cases. Meanwhile, similar cross-plot, 

using GSA-HSVR, is depicted in Fig. 4 with smaller 

discrepancies between the experimental and estimated indices 

of refraction. In the GSA-HSVR model, less than 7% deviation 

was observed for the training set while the deviation in the 

testing set is less than 4%. The small deviations, along with 

the small RMSE values, shows closeness of the estimated and 

experimental values of the refractive indices of the 

semiconductors, and justify the effectiveness of the proposed 

models. 

Fig. 5 presents the performance comparison between GSA-

SVR and GSA-HSVR models on the basis of correlation 

coefficient (CC). Other determinants of estimation accuracy, 

for the models, depicted by Fig.6 and Fig.7, are RMSE and 

MAE respectively. The results of the training and testing phase 

of GSA-SVR model are very close to each other with just 

about 0.08% improvement in the result of the testing dataset. 

On the other hand, the generalization capacity of GSA-HSVR 

model to unseen dataset during the testing stage outperforms 

the training phase by 4.7%. Comparison between the results of 

training phase of GSA-SVR and GSA-HSVR model, as 

depicted in Fig.5, shows that GSA-HSVR outperforms 

ordinary GSA-SVR model by 1.28%. Similar improvement of 

about 4.7% was also observed during testing phase of the 

simulation. The observed performance improvement 

demonstrated by GSA-HSVR model can be attributed to the 

ability of the hybrid model to minimize the generalization 

error bound more than once as well as multiple 

transformations of input data to high feature space.  

 

 
 

Figure 3. Correction crossplot between the experimental and 

estimated refractive indices of semiconductors using GSA-

SVR model 

 
 

Figure 4. Correction crossplot between the experimental and 

estimated refractive indices of semiconductors using GSA-

HSVR model 

 

 
 

Figure 5. Generalization and predictive capacity of GSA-

SVR and GSA-HSVR models on the basis of correlation 

coefficient 

 

 
 

Figure 6. Generalization and predictive capacity of GSA-

SVR and GSA-HSVR models on the basis of root mean 

square error 
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Fig.6 and Fig.7 compares the generalization and predictive 

ability of GSA-SVR and GSA-HSVR models on the basis of 

RMSE and MAE, respectively. The RMSE values for training 

and testing phase of GSA-SVR-based model are 0.3498 and 

0.2936 respectively, as in Table 3. Whereas, for the GSA-

HSVR-based model the RMSE values for training and testing 

stages are 0.3250 and 0.2128 respectively; this is about 28.6 % 

less than the RMSE obtained for the testing stage of GSA-SVR 

model. Also, the MAE is reduced, by 30.5 %, from 0.2537 to 

0.1763. Table 3 contains list of the actual values of the 

determinant of future estimation accuracy of the proposed 

models. 

 

 
 

Figure 7. Generalization and predictive capacity of gsa-svr 

and gsa-hsvr models on the basis of mean absolute error 

 

 
 

Figure 8. Comparing the mean absolute error (MAE) of 

OLR, GSA-SVR and GSA-HSVR models 

 

4.3 Comparison of predictive capacity of the developed 

model with ordinary regression model 

 

The predictive and generalization capacity of the developed 

models (GSA-SVR and GSA-HSVR) are compared with that 

of ordinary linear regression (OLR) on the basis of mean 

absolute error obtained using testing dataset. The OLR model  

obtained using the training dataset is shown in equation (23) 

as. 

 

R = −0.2463Eg + 3.4823                                                  (23) 

R  and Eg  are the refractive index and energy band gap, 

respectively 

 

Table 3. Measure of estimation accuracy of the gsa-svr and 

gsa-hsvr models 

 
 GSA-SVR GSA-HSVR 
 Training testing Training testing 

 dataset dataset dataset dataset 

RMSE 0.3498 0.2936 0.325 0.2128 

MAE 0.2312 0.2537 0.1932 0.1763 

CC 92.23 92.3 93.41 96.64 

 

 
 

Figure 9. Comparing the mean absolute error (mae) for gsa-

svr and gsa-hsvr models with other theoretical models 

 

Using the testing dataset, the mean absolute error 

performance of OLR model is compared to that of the 

developed GSA-SVR and GSA-HSVR model and the result is 

depicted in. Fig.8. The significance of non-linear modeling in 

estimating the refractive indices of semiconductors manifests 

from performance comparison between the models as both the 

developed non-linear models greatly perform better than the 

OLR. In comparison to OLR, Figure 8 shows that both the 

GSA -SVR and GSA-HSVR results in error performance 

improvement of 24.06% and47.23%, respectively. This result 

justifies the consideration of non-linear modeling techniques 

in this work. 

 

4.4 Comparison of the determinant of estimation accuracy 

of the developed model with other existing theoretical 

models 

 

In order to further validate the predictive and generalization 

strength of the developed models, the developed models were 

utilized for estimating the refractive indices of some 

semiconductors. In the implementation, the models were only 

supplied with the descriptors while the developed model 

utilized the acquired support vectors during the training stage 

for its refractive indices estimation. The mean absolute error 

of GSA-SVR and GSA-HSVR models are compared with that 

of other existing theoretical models using the same data-points 

and presented in table 4 as well as Fig.9. The developed GSA-

HSVR model has the least mean absolute error of 0.190 

followed by the GSA-SVR model whose mean absolute error 

value is 0.236; the models developed by Ravindra and Moss 

have mean absolute error of 0.370 and 0.372 respectively. 

Table 4 presents summary of mean absolute error for the 

compared models. The smallest mean absolute error 
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demonstrated by the developed GSA-HSVR-based model 

shows its superiority over the existing predictive models.  

 

 

5. CONCLUSIONS 

 

Gravitational search algorithm-based support vector 

regression (GSA-SVR) model and its hybrid (GSA-HSVR) 

are presented for semiconductors refractive indices estimation. 

The GSA-SVR-based model is characterized with a high CC 

of 92.30 %, small MAE of 0.254 and RMSE of 0.294. 

However, the GSA-HSVR-based model shows better 

generalization and predictive capacity with CC, MAE and 

RMSE of 96.64 %, 0.176 and 0.213, respectively. On the basis 

of RMSE and MAE, GSA-HSVR model outperforms GSA-

SVR model with performance improvement of 28.6% and 

30.5%, respectively. The generalization and predictive 

capacities of GSA-SVR and GSA-HSVR model are better than 

other existing theoretical model such as Ravindra and Moss 

model when compared on the basis of mean absolute error. 

The outstanding performance of the developed GSA-HSVR 

based model makes it a viable model through which refractive 

indices of semiconductor materials can be predicted with high 

precision and accuracy.  
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