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The logistic growth model and the Susceptible-Infectious-Recovered (SIR) framework 

are utilized for the mathematical modelling of the Coronavirus disease (COVID-19) 

outbreak in India. Karnataka, Kerala and Maharashtra, three states of India, are selected 

based on the pattern of the disease spread and the prominence in being affected in India. 

The parameters of the models are estimated by utilizing real-time data. The models 

predict the ending of the pandemic in these states and estimate the number of people 

that would be affected under the prevailing conditions. The models classify the 

pandemic into five stages based on the nature of the infection growth rate. According 

to the estimates of the models it can be concluded that Kerala is in a stable situation 

whereas the pandemic is still growing in Karnataka and Maharashtra. The infection rate 

of Karnataka and Kerala are lesser than 5% and reveal a downward trend. On the other 

hand, the infection rate and the high predicted number of infectives in Maharashtra calls 

for more preventive measures to be imposed in Maharashtra to control the disease 

spread. The results of this analysis provide valuable information regarding the disease 

spread in India. 
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1. INTRODUCTION

The novel Corona virus disease-2019 (COVID-19) is a 

deadly infectious disease which was first reported in Wuhan, 

China by the end of the year 2019. Later, it spread across 

continents leaving only a few countries unaffected. The large 

spread and increasing number of deaths made the World 

Health Organization (WHO) to declare it as a pandemic on 11 

March 2020 [1]. The governments of the affected countries 

have imposed various preventive measures including 

lockdown, seal down, social distancing, quarantining infected 

and susceptible individuals, promotion of self-hygiene 

measures and usage of masks. Recently, Fang et al. [2] 

reported that the governmental interventions proved to be 

effective in containing the infection rate.  

In India, the pandemic was first reported on 30 January 2020 

in Thrissur, a district of Kerala for three individuals who had 

come from Wuhan. In March, the number of infected 

individuals multiplied due to individuals who had travelled to 

India from various affected countries. Initially, the 

government imposed preventive measures including thermal 

screening of passengers arriving at the airport, shut down of 

educational institutions and suspending tourist visas. Further, 

on 24 March, the government imposed a nationwide lock 

down as a major preventive measure to contain the spread of 

the virus. This restriction on the human mobility was reported 

to be effective for various infectious diseases [3, 4]. The Indian 

context of the disease spread and the impact of the public 

health interventions were mathematically modelled by Mandal 

et al. [5]. 

During these hard times of the pandemic, researchers from 

various disciplines conduct intensive research to analyze it and 

to curb its ill-effects [6-8]. Apart from virologic and 

experimental studies, mathematical and statistical explorations 

are also important for the decision-makers and policy makers 

to evaluate the current situation and to take the necessary 

actions for the future. These models also provide an estimate 

of the ending time and possible number of people that can be 

infected by this pandemic. The logistic growth model is an 

efficient technique for epidemic forecasting. Chowell et al. [9] 

used this model to estimate the transmission of the Ebola virus. 

They concluded that the predictions from the model were 

inconsistent in the initial period of the epidemic. The model 

was also adopted by Pell et al. [10] to estimate the final size 

and the peak time of the infection. The SIR model 

(compartmental disease model) is a mathematical method to 

describe the epidemic growth through a system of time 

dependent differential equations. The differential equations 

are based on the compartments into which the population is 

divided. The SIR model and various modified SIR models 

were widely used by researchers to model Ebola [11] and 

AIDS [12]. Recently, such models were used to model the 

coronavirus epidemic spreading. Khrapov and Loginova [13] 

utilized the modified SIR model for the analyzing the 

dynamics of the COVID-19 pandemic in China. In this 

direction, the modified SEIR model was used by Berger et al. 

[14] to include the effects of quarantining and infection testing.

Aggravated by the findings of the above explorations, the

present article aims at studying the dynamics of the novel 

Corona virus (COVID-19) in India. The mathematical 

modelling of the COVID-19 outbreak is done for three states 

of India, namely Karnataka, Kerala and Maharashtra due to the 

significant difference in the outbreak pattern. The logistic 

growth model and the SIR model are used to analyze the 
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situation in these states and the results of the models are 

compared. The simulations are carried out with the parameters 

that are estimated from the real time data by utilizing 

MATLAB. The data from 9 March 2020 to 9 May 2020 are 

used for the modelling. The final size of the pandemic in the 

states is estimated and the date when the pandemic becomes 

stable is also predicted.  

 

 

2. MATHEMATICAL MODELS 

 

2.1 Logistic growth model 
 

The population growth can be modelled using the logistic 

growth model which is a sigmoid curve. Pierre-Francois 

Verhulst pioneered the usage of logistic growth models for 

biological systems. 

 
𝑑𝒞

𝑑𝑡
= 𝑟𝒞 (1 −

𝒞

𝐾
)   (1) 

 

where,  C -accumulated number of cases,  

r-infection rate,  

t -time and  

K is the final epidemic size. 

If the initial number of cases is given by 𝒞|𝑡=0 = 𝒞0, then 

the solution to Eq. (1) is  

 

𝒞 =
𝐾𝒞0𝑒𝑟𝑡

𝐾+𝒞0( 𝑒𝑟𝑡−1)
    (2) 

 

i.e., 𝒞 =
𝐾

1+𝐴 𝑒−𝑟𝑡 where, 𝐴 = (
𝐾−𝒞0

𝒞0
).  (3) 

 

For estimating the maximum number of affected people, the 

cases follow the Weibull function. Further, the highest growth 

rate occurs at the time 𝑡𝑚𝑎𝑥 =
ln 𝐴

𝑟
. At tmax, the number of cases 

is 
𝐾

2
. The epidemy is modelled using five stages based on the 

time tmax. This is based on the nature of the growth rate. The 

five stages are as follows: 

Stage 1: Slow growth stage 

The spread of any infectious disease is slow initially which 

is accounted in this stage. This is the exponential growth phase 

of the logistic growth model. The growth at the time 𝑡 <

𝑡𝑚𝑎𝑥 −
2

𝑟
 is considered in this stage.  

Stage 2: Accelerating growth stage 

Here the spread of the disease spreads largely in the 

population. At this stage the number of positive cases 

multiplies several folds. This accelerating phase is at the time 

𝑡𝑚𝑎𝑥 −
2

𝑟
< 𝑡 < 𝑡𝑚𝑎𝑥.   

Stage 3: Decelerating growth stage  

At this stage the spread of the disease decelerates due to 

various preventive measures taken. The spread of the disease 

is controlled and lesser than that of Stage 2. The decelerating 

growth is at the time 𝑡𝑚𝑎𝑥 < 𝑡 < 𝑡𝑚𝑎𝑥 +
2

𝑟
. 

Stage 4: Transition stage 

This is the stage when the disease growth rate slows down. 

At this stage the epidemy is said to be under control. The 

preventive measures taken prove to be effective. The time 

duration of this stage is 𝑡𝑚𝑎𝑥 +
2

𝑟
< 𝑡 < 2𝑡𝑚𝑎𝑥 . 

Stage 5: Steady stage 

This stage can be regarded as the culminating stage of the 

epidemy. There is no growth in the disease spread. This stage 

is at the time t>2tmax. 

 

2.2 SIR model 
 

The Susceptible-Infected-Recovered (SIR) model is a 

mathematical model also known as compartmental disease 

model to describe the disease spread in a population. Here, the 

considered population belongs to any one of the three 

compartments: Susceptible, Infected or Recovered as shown 

in Figure 1. 

 

 
 

Figure 1. SIR model 

 

Susceptible are the individuals without immunity to the 

disease, hence they can be infected. Susceptible individuals 

can move to the next compartment (Infectious) through the 

interaction with infectious beings. Infectious beings are 

infected with the disease and they can transmit the disease to 

the susceptible individuals. By recovering from the illness, 

they can move to the next compartment called Recovered. 

Now, recovered beings can no longer develop the infection as 

they gained immunity via prior exposure. As beings can move 

among compartments, the number of members in each 

compartment varies with time. This model was first 

constructed by Kermack and McKendrick [15], it comprises of 

following set of time related nonlinear ordinary differential 

equations to simulate the growth of a disease. 
 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽

𝑁
𝑆(𝑡)𝐼(𝑡), (4) 

 
𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽

𝑁
𝑆(𝑡)𝐼(𝑡), −𝛾𝐼(𝑡), (5) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡),  (6) 

 

where, S(t) is the number of susceptible individuals, 

I(t) is the number of infected individuals 

R(t) is the number of recovered individuals 

N is the considered constant population size involved 

in the disease 

β is the contact rate of the disease  

γ is the mean recovery/removal rate. 

The initial conditions are S(t=0), I(t=0), R(t=0)≥0. Let it be 

respectively S0, I0 and R0. 

The following suppositions are involved in the model: 

• The population is considered to be unvarying during 

the phase of modelling.  

• All the infected beings have an equal chance to be 

recovered.  

• Secondary waves of infections and any other unusual 

outbreak of the infection are not considered in these models. 

• The real time data of the officially reported positive 

cases are used for the models. 

Solving the equations one can get, 
 

𝑆(𝑡) = 𝑆0𝑒
−

𝛽
𝑁𝛾

(𝑅(𝑡)−𝑅0)
 (7) 

 

To find the total number of susceptible individuals at the 
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end of the disease spread, the limit to ∞ is taken to get: 

 

𝑆∞ = 𝑆0𝑒
−

𝛽
𝑁𝛾

(𝑅∞−𝑅0)
 (8) 

 

where, R∞ is the final number of recovered individuals. In 

order to estimate the model parameters and S0 with the 

available real time data of the number of positive cases 

(denoted by Ci for each day i), the initial values are taken to be 

I0=C1 and R0=0. Now, the parameters are found such that the 

error sum of square of the predicted and the actual number of 

cases is minimum. 

 

 

3. METHODOLOGY 
 

The number of positive novel corona virus (COVID-19) 

cases in Karnataka, Kerala and Maharashtra from 9 March 

2020 to 9 May 2020 were recorded. The data source was based 

on the daily reports from the respective health departments of 

the states. These states were selected due to the significant 

difference in the disease spread patterns. This data was used to 

estimate the parameters for the logistic growth model and the 

SIR model. The models and the visualizations are done using 

the fitvirus program [16, 17] using MATLAB. 

 

 

4. INTERPRETATIONS OF THE RESULTS 

 

4.1 Logistic growth model 

 

Table 1 summarizes the estimated parameters for the 

logistic growth model. Within two months, Kerala reached the 

steady stage (Stage 5) whereas Maharashtra and Karnataka are 

in the decelerating growth stage (Stage 3). Though Karnataka 

and Maharashtra are in the same stage, the intensity of the 

disease spread is different. The logistic growth model for the 

three states is displayed in Figures 2-4.  

Considering that the same situations prevail in the states and 

the present growth rates, the estimated maximum number of 

people who will be infected in Maharashtra, Karnataka and 

Kerala are 43993, 1009 and 485 respectively. It is to be noted 

that the prediction of Kerala is lesser underestimated. This can 

be due to secondary disease infection waves or migration. This 

is visualized in Figures 5-7. The duration of the accelerating 

growth stage and the date corresponding to tmax are tabulated 

in Table 1. The end of the transition stage can be regarded as 

the stage at which the disease spread is under control. It is 

interesting to note that the estimated end of the transition stage 

for Maharashtra is by 7 July while it is by 24 April in Kerala 

and 11 June in Karnataka. The high values of the coefficient 

of determination (R2) suggest the accuracy of the fitted models. 

 

 
 

Figure 2. Logistic growth modelling of COVID-19 cases in 

Kerala 

 
Figure 3. Logistic growth modelling of COVID-19 cases in 

Karnataka 

 

 
 

Figure 4. Logistic growth modelling of COVID-19 cases in 

Maharashtra 

 

Table 1. Estimated logistic growth model summary 

 
Parameter Kerala Karnataka Maharashtra 

Epidemic stage Stage 5 Stage 3 Stage 3 

Number of cases on 9 May 2020 505 794 20228 

Epidemic size (cases) 485 1009 43993 

Duration of accelerating growth (days) 29 44 33 

date of tmax 1-04-2020 25-04-2020 08-05-2020 

End of transition stage 24-04-2020 11-06-2020 07-07-2020 

Total R2 98.4% 99.5% 99.9% 
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Figure 5. Daily estimated final size of COVID-19 cases in 

Kerala 

 
Figure 6. Daily estimated final size of COVID-19 cases in 

Karnataka 

 
Figure 7. Daily estimated final size of COVID-19 cases in 

Maharashtra 
 

4.2 SIR model 

 

The estimated parameters for the SIR model of the three 

states are given in Table 2. The contact rate quantifies the 

mean number of contacts per infected individual per day. It is 

seen that the contact rate is the highest for Maharashtra. The 

exclusion of the infected population by immunization, death, 

quarantining or isolation is quantified using the removal rate 

(γ). A high removal rate (γ=0.914) is estimated for 

Maharashtra. The estimated number of individuals who are 

likely to be involved in the coronavirus outbreak in each state 

is 487 (Kerala), 6626 (Karnataka) and 213604 (Maharashtra). 

In the aforementioned estimated numbers, the estimated 

number of infections in each state is found to be 449 (Kerala), 

1177 (Karnataka) and 46678 (Maharashtra). The remaining 

individuals are the estimated number of susceptible 

individuals. Time between contacts is the reciprocal of the 

contact rate and the time between contacts is the reciprocal of 

the removal rate. The respective values of each state are 

recorded in Table 2. The basic reproduction number (R0) 

quantifies the expected number of secondary infections by one 

typical infection in a population that is completely susceptible. 

Based on the data it is estimated that the 𝑅0 of Kerala is the 

highest among the three states. The high predicted number of 

cases of Maharashtra indicates that the state must enforce more 

strict measures to curb the spread of the virus. 

The SIR models of the states are visualized in Figures 8-10. 

The estimated number of infection rate (using the SIR model) 

is also plotted against the actual number of cases/day. Further, 

the change in the number of cases is analysed by using the 

growth rate plot. If the growth rate of the number of new cases 

reported per day is lesser than 5%, then the outbreak is said to 

be under control. It can be concluded that the infection growth 

rate is lesser than 5% in Kerala and Karnataka but Maharashtra 

is yet to get control over the infection transmission. 

 
Figure 8. SIR modelling of COVID-19 cases in Kerala 

 

Table 2. Estimated susceptible-infected-recovered (SIR) model parameters 

 
Parameter Kerala Karnataka Maharashtra 

Contact rate (𝛽) (/day) 0.312 0.836 1.031 

Removal rate (𝛾) (/day) 0.114 0.76 0.914 

Final number of cases 449 1177 46678 

Final number of susceptible 38 5449 166926 

Involved Population size (𝑁) 487 6626 213604 

Time between contacts (day) 3.2 1.2 1 

Infectious period (day) 8.8 1.3 1.1 

Basic reproduction number (𝑅0) 2.73684 1.1 1.128 
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Figure 9. SIR modelling of COVID-19 cases in Karnataka 

 

 
 

Figure 10. SIR modelling of COVID-19 cases in 

Maharashtra 

 

 

5. CONCLUDING REMARKS 

 

The COVID-19 outbreak in India was analyzed by 

comparing the dynamics of the pandemic in Karnataka, Kerala 

and Maharashtra using the logistic growth and SIR models. It 

was observed that the states experience a totally different 

pattern of the disease transmission. Maharashtra and 

Karnataka are found to be in the decelerating growth stage 

whereas Kerala is already in the steady stage. The strict and 

humane prevention measures taken by the government of 

Kerala may be the reason for the quick control over the 

pandemic. The size of the pandemic was estimated using the 

real time data of the daily reported cases. The logistic growth 

model predicted the maximum number infected individuals in 

Kerala, Karnataka and Maharashtra to be 485, 1009 and 43993 

respectively whereas the SIR model estimated it to be 449, 

1177 and 46678 respectively. The complete control of the 

disease spread is predicted to be by 7 July in Maharashtra 

while it is by 24 April in Kerala and 11 June in Karnataka. 

From the SIR model, it is concluded that the infection growth 

rate is lesser than 5% in Kerala and Karnataka but Maharashtra 

experiences is yet to achieve that state. The predicted values 

and dates are based on the prevalent conditions and pattern of 

disease spread for the considered time period. The high 

predicted number of infectives in Maharashtra calls for more 

preventive measures to be taken in the state. 
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NOMENCLATURE 

 

COVID-19 Coronavirus disease 2019 

SIR Susceptible-Infectious-Recovered 

WHO World Health Organization 

𝒞 accumulated number of cases 

r infection rate 

t time 

K final epidemic size 

S(t) number of susceptible individuals 

I(t) number of infected individuals 

R(t) number of recovered individuals 

N considered constant population size 

involved in the disease 

 

Greek symbols 

 

β contact rate of the disease 

γ mean recovery/removal rate 

 

Subscripts 

 

max maximum 

0 initial number 
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