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The aim of this study, is to present the fractional model of energy supply-demand 

system (ES-DS) based on the Caputo-Fabrizio derivative. For the first time, the 

existence and uniqueness of solution of the fractional model of ES-DS are proved and 

it is the main novelty of this paper. Also, we know that the obtained results from 

mathematical models with fractional order are more accurate than usual models. This 

model is based on four important functions, energy resources demand (ERD) ε1, energy 

resource supply (ERS) ε2, energy resource import (ESI) ε3 and renewable energy 

resources (RER) ε4. Also, applying the obtained numerical results, we can forecast the 

rate of these functions for spacial interval of time. 
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1. INTRODUCTION

Mathematical models play an important role in the analysis, 

behavior measurement and future prediction of various 

phenomena. Recently, many mathematical models have been 

presented in various fields. Yuzbasi et al. [1, 2] applied the 

exponential Galerkin method and Bessel collocation method 

for solving model of HIV infection of CD4+T cells. Also, 

Noeiaghdam and Khoshrouye Ghiasi [3, 4] discussed the 

homotopy analysis transform method to approximate both 

CD4+T and CD8+T-cells and Ahmad Naik et al. [5-7] studied 

the fractional model of HIV infection. Mathematical models 

of computer viruses were illustrated by Ozturk et al. [8] using 

Chebyshev polynomials and its fractional form was studied by 

Singh et al. [9] applying fractional derivative. Moreover the 

non-linear SIR model of computer viruses was solved by 

homotopy analysis method, variational iteration method and 

Adomian decomposition method [10-12]. Guerrero et al. [13] 

applied the homotopy analysis method and Sikander et al. [14] 

used the variation of parameter method for solving model of 

smoking habit and the model of tuberculosis infection is 

illustrated by Atangana-Baleanu derivative [15] and variable-

order fractional derivatives [16]. For more mathematical 

models you can see ref. [17-20]. 

Energy is one of applicable fields that plays an important 

role in the economy of countries and human life. Many criteria 

and factors can affect the production and supply of energy. 

Therefore, the security of energy demand is one of the 

important issues that has been considered in recent years 

because it has a fundamental role in energy development. 

Since many factors can affect the ES-DS, this model is a 

complex and unstable system. But given the importance of 

energy supply and demand, controlling this system has always 

been of strategic importance. Therefore, in order to develop 

long-term, medium-term and short-term plans, accurate 

models are needed so that we can take control of the ES-DS 

with the necessary forecasts. Sun et al. [21] considered the 

time-delayed feedback control of the energy resource chaotic 

system. The energy resources demand-supply system and its 

dynamical analysis was illustrated by Sun and Tian [22]. Also, 

four-dimensional energy resources system was discussed with 

adaptive control and synchronization [23], with the model 

reference control [24] and with linear feedback control [25]. 

Moreover, supply-demand balancing renewable electricity 

using storage systems is one of the main challenges of 

contemporary power engineering. Sidorov et al. [26] 

considered application of integral equations for electric load 

leveling problems using storage systems. 

Fractional calculus has real applications in different fields 

of engineering and sciences. Wang et al. [27] applied the 

fractional calculus for image denoising, Chen et al. [28] 

combined the application of blockchain technology in 

fractional calculus model of supply chain financial system, 

Zhang et al. [29] studied the fractional calculus based 

modeling of open circuit voltage of lithium-ion batteries for 

electric vehicles. Furthermore, solving fractional integrals and 

equations are among interesting problems. Angelis et al. [30] 

discussed the mean-value approach to solve fractional 

differential and integral equations, Odibat [31] presented the 

approximations of fractional integrals and Caputo fractional 

derivatives and Jahanshahi et al. [32] applied the fractional 

Gauss-Jacobi quadrature rule for approximating fractional 

integrals and derivatives. Also, Suleman [33] applied the 

Elzaki projected differential transform method for fractional 

order system of linear and nonlinear fractional partial 

differential equation. 

The aim of this study is to present the fractional model of 

ES-DS using Caputo-Fabrizio fractional derivative. This 
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model is based on the ERD ε1, ERS ε2, ERI ε3 and RER ε4. 

Furthermore, many other parameters are included to present 

the mentioned model. The fixed-point theorem is used to prove 

the existence of solution. Also, uniqueness of solution of 

model is illustrated. Finally, the nonlinear fractional model of 

ES-DS is approximated and the numerical results are analysed. 

 

 

2. PRELIMINARIES 
 

In this section, definition of the Caputo-Fabrizio fractional 

derivative and its extended form are presented. Also non-

integer order integral of Caputo type of the function with 

fractional order is defined. For more information see ref. [34, 

35]. 

 

Definition 1 [34] The Caputo-Fabrizio fractional 

derivative for 𝑔 ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, 𝜑 ∈ [0,1]  is defined as 

follows  

 

𝐷𝑡
𝜑
(𝑔(𝑡)) =

𝒲(𝜑)

1 − 𝜑
∫
𝑡

𝑎

𝑔′(𝑥)exp [−𝜑
𝑡 − 𝑥

1 − 𝜑
]𝑑𝑥, (1) 

 

where in order to normalize function 𝒲(𝜑) we have 𝒲(0) =
𝒲(1) = 1. For 𝑔 ∉ 𝐻1(𝑎, 𝑏) the Caputo-Fabrizio fractional 

derivative can be defined in the following form 

 

𝐷𝑡
𝜑
(𝑔(𝑡)) =

𝜑𝒲(𝜑)

1 − 𝜑
∫
𝑡

𝑎

(𝑔(𝑡)

−  𝑔(𝑥))exp [−𝜑
𝑡 − 𝑥

1 − 𝜑
]𝑑𝑥. 

(2) 

 

We should note that for 𝜎 =
1−𝜑

𝜑
∈ [0,∞], 𝜑 =

1

1+𝜎
∈ [0,1], 

Eq. (2) can be written as  

 

𝐷𝑡
𝜑
(𝑔(𝑡)) =

𝑁(𝜎)

𝜎
∫
𝑡

𝑎

𝑔′(𝑥)exp [
𝑡 − 𝑥

𝜎
] 𝑑𝑥, (3) 

 

where, 𝑁(0) = 𝑁(∞) = 1  and lim𝜎→0
1

𝜎
exp [

𝑡−𝑥

𝜎
] = 𝛿(𝑥 −

𝑡). 
 

Definition 2  For function 𝑔, the φ order fractional integral 

for 0<φ<1 can  be defined as follows  

 

𝐼𝑡
𝜑
(𝑔(𝑡)) =

2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑔(𝑡) 

     + 
2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

𝑔(𝑠)𝑑𝑠, 𝑡 ≥ 0. 
(4) 

 

We should remaind that the new form of φ order Caputo 

derivative suggested by Nieto and Losada in [35] in the  

following form  
 

𝐷𝑡
𝜑
(𝑔(𝑡)) =

1

1 − 𝜑
∫
𝑡

𝑎

𝑔′(𝑥)exp [−𝜑
𝑡 − 𝑥

1 − 𝜑
] 𝑑𝑥, (5) 

 

where, 0<φ<1. 

 

 

3. MODEL DESCRIPTION  
 

For the first time, the 3-D ES-DS was presented by Sun et 

al. [21, 22]. In these studies, the stability of model and 

numerical results were discussed. Sun et al. [23-25] extended 

this model to the four dimensional nonlinear differential 

equations with unknown parameters as follows  

 

{
 
 
 

 
 
 
ℰ′1 = 𝑎1ℰ1(1 − ℰ1/𝒲) − 𝑎2(ℰ2 + ℰ3) − 𝑑3ℰ4,

ℰ′2 = −𝑧1ℰ2 − 𝑧2ℰ3 + 𝑧3ℰ1[𝑁 − (ℰ1 − ℰ3)],

ℰ′3 = 𝑠1ℰ3(𝑠2ℰ1 − 𝑠3),

ℰ′4 = 𝑑1ℰ1 − 𝑑2ℰ4,

 (6) 

 

where, parameters 𝑎𝑖 , 𝑧𝑖 , 𝑠𝑖 , 𝑑𝑖 ,𝒲,𝑁 > 0 , are positive 

constants, and 𝑁 < 𝒲. The ERD of area A showed by ε1, the 

ERS of area B to A showed by ε2, the energy resource import 

in area A demonstrated by ε3 and the renewable energy 

resources of area A displayed by ε4. The elasticity factor of A 

ERD indicated by a1. The energy supply factor of B expressed 

by a2, which affects the energy demand of area A. The energy 

import coefficient of region A is displayed with a2, which 

affects the demand for energy resources of region A. The 

maximum value of ERD of A showed by 𝒲. N is the valve 

value. The coefficient of the energy supply of region B to A, 

the energy import of region A and the influence of ERD of A 

to the rate of energy resources supply of region B showed by 

z1, z2 and z3 respectively. The velocity factor of energy import 

of A represented by s1. The benefit of imported energy for per 

unit displayed by s2 and the cost of imported energy exhibited 

by s3. d1 is the influence factor of ERD of region A to the rate 

of applying RER. d2 is the influence factor of RER to the rate 

of applying RER. d3 is the influence factor of the RER to the 

energy resources demand of region A. When we apply the 

following values for mentioned parameters, the system will be 

in the chaotic state [23, 24].  

 

𝑎1 = 0.09; 𝑎2 = 0.5; 
𝑧1 = 0.06; 𝑧2 = 0.082; 𝑧3 = 0.07; 
𝑠1 = 0.2; 𝑠2 = 0.5; 𝑠3 = 0.4; 

𝑑1 = 0.1; 𝑑2 = 0.06; 𝑑3 = 0.07;𝒲 = 1.8; 𝑁 = 1. 
 

We know that fractional models are so accurate and 

applicable than usual models. Thus in this study the nonlinear 

model of energy supply-demand system (6) is generalized to 

the fractional form as follows  

 

{
 
 
 

 
 
 

𝐷0
𝐶𝐹

𝑡
𝜑
ℰ′1 = 𝑎1ℰ1(1 − ℰ1/𝒲) − 𝑎2(ℰ2 + ℰ3) − 𝑑3ℰ4,

𝐷0
𝐶𝐹

𝑡
𝜑
ℰ′2 = −𝑧1ℰ2 − 𝑧2ℰ3 + 𝑧3ℰ1[𝑁 − (ℰ1 − ℰ3)],

𝐷0
𝐶𝐹

𝑡
𝜑
ℰ′3 = 𝑠1ℰ3(𝑠2ℰ1 − 𝑠3),

𝐷0
𝐶𝐹

𝑡
𝜑
ℰ′4 = 𝑑1ℰ1 − 𝑑2ℰ4,

 (7) 

 

is illustrated where  

 

ℰ1(0) = 𝛼1, ℰ2(0) = 𝛼2, ℰ3(0) = 𝛼3, ℰ4(0) = 𝛼4. (8) 

 

 

4. EXISTANCE AND UNIQUENESS OF FRACTIONAL 

ORDER ES-DS  

 

The existence theorem is presented based on the fixed-point 

theory. Applying fractional operator for Eq. (7) we have  
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{
 
 
 

 
 
 
ℰ1(𝑡) − ℰ1(0)

           =0
𝐶𝐹 𝐼𝑡

𝜑
[𝑎1ℰ1(1 − ℰ1/𝒲) − 𝑎2(ℰ2 + ℰ3) − 𝑑3ℰ4],

ℰ2(𝑡) − ℰ2(0)

           =0
𝐶𝐹 𝐼𝑡

𝜑
[−𝑧1ℰ2 − 𝑧2ℰ3 + 𝑧3ℰ1[𝑁 − (ℰ1 − ℰ3)],

ℰ3(𝑡) − ℰ3(0) =0
𝐶𝐹 𝐼𝑡

𝜑
[𝑠1ℰ3(𝑠2ℰ1 − 𝑠3)],

ℰ4(𝑡) − ℰ4(0) =0
𝐶𝐹 𝐼𝑡

𝜑
[𝑑1ℰ1 − 𝑑2ℰ4],

 (9) 

 

and using Definition 2 we can write  

 

ℰ1(𝑡) − ℰ1(0) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
[𝑎1ℰ1(𝑡)(1 − ℰ1(𝑡)/𝒲) − 𝑎2(ℰ2(𝑡) + ℰ3(𝑡)) − 𝑑3ℰ4(𝑡)]

+
2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

[𝑎1ℰ1(𝑦)(1 − ℰ1(𝑦)/𝒲) − 𝑎2(ℰ2(𝑦) + ℰ3(𝑦)) − 𝑑3ℰ4(𝑦)]𝑑𝑦,

ℰ2(𝑡) − ℰ2(0) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
[−𝑧1ℰ2(𝑡) − 𝑧2ℰ3(𝑡) + 𝑧3ℰ1(𝑡)[𝑁 − (ℰ1(𝑡) − ℰ3(𝑡))]

+
2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

[−𝑧1ℰ2(𝑦) − 𝑧2ℰ3(𝑦) + 𝑧3ℰ1(𝑦)[𝑁 − (ℰ1(𝑦) − ℰ3(𝑦))]𝑑𝑦,

ℰ3(𝑡) − ℰ3(0) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
[𝑠1ℰ3(𝑡)(𝑠2ℰ1(𝑡) − 𝑠3)]

+
2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

[𝑠1ℰ3(𝑦)(𝑠2ℰ1(𝑦) − 𝑠3)]𝑑𝑦,

ℰ4(𝑡) − ℰ4(0) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
[𝑑1ℰ1(𝑡) − 𝑑2ℰ4(𝑡)] +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

[𝑑1ℰ1(𝑦) − 𝑑2ℰ4(𝑦)]𝑑𝑦.

 (10) 

 

In order to apply the brief form of relations we denote as  

 
𝑘1(𝑡, ℰ1) = 𝑎1ℰ1(𝑡)(1 − ℰ1(𝑡)/𝒲) − 𝑎2(ℰ2(𝑡) + ℰ3(𝑡)) − 𝑑3ℰ4(𝑡),

𝑘2(𝑡, ℰ1) = −𝑧1ℰ2(𝑡) − 𝑧2ℰ3(𝑡) + 𝑧3ℰ1(𝑡)[𝑁 − (ℰ1(𝑡) − ℰ3(𝑡)),

𝑘3(𝑡, ℰ1) = 𝑠1ℰ3(𝑡)(𝑠2ℰ1(𝑡) − 𝑠3),

𝑘4(𝑡, ℰ1) = 𝑑1ℰ1(𝑡) − 𝑑2ℰ4(𝑡).

 (11) 

 

Theorem 1  The Lipchitz condition is satisfied for kernels 

𝑘1, 𝑘2, 𝑘3 and 𝑘4 if  

 

0 ≤ 𝑎1, 𝑧1, 𝑠1, 𝑠2, 𝑠3, 𝑑2 < 1. 
 

Proof:  Applying Eq. (11) for function k1(t, ε1) we can write  

 
∥ 𝑘1(𝑡, ℰ1) − 𝑘1(𝑡, ℰ1

∗) ∥

=∥ 𝑎1(ℰ1(𝑡) − ℰ1
∗(𝑡))

−
𝑎1
𝒲
(ℰ1(𝑡) − ℰ1

∗(𝑡))2 ∥,

 (12) 

 

and using triangular inequality for Eq. (12) we get  

 

∥ 𝑘1(𝑡, ℰ1) − 𝑘1(𝑡, ℰ1
∗) ∥

≤∥ 𝑎1(ℰ1(𝑡) − ℰ1
∗(𝑡)) ∥

+∥
𝑎1
𝒲
(ℰ1(𝑡) − ℰ1

∗(𝑡))2 ∥

≤ 𝑎1 ∥ (ℰ1(𝑡) − ℰ1
∗(𝑡)) ∥

+
𝑎1
𝒲

∥ ℰ1(𝑡) − ℰ1
∗(𝑡) ∥2.

 (13) 

 

We know 0≤a1≤1 and 𝒲 is large value, greater than 1 so 

the second term will be so small and we can write  

 

∥ 𝑘1(𝑡, ℰ1) − 𝑘1(𝑡, ℰ1
∗) ∥≤ 𝑎1 ∥ (ℰ1(𝑡) − ℰ1

∗(𝑡)) ∥. 
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Similarly, for k2(t, ε2) and k3 (t, ε3) we have  

 

∥ 𝑘2(𝑡, ℰ2) − 𝑘2(𝑡, ℰ2
∗) ∥ 

=∥ −𝑧1(ℰ2(𝑡) − ℰ2
∗(𝑡)) ∥ 

≤ 𝑧1 ∥ (ℰ2(𝑡) − ℰ2
∗(𝑡)) ∥, 

 

and  

 

∥ 𝑘3(𝑡, ℰ3) − 𝑘3(𝑡, ℰ3
∗) ∥ 

=∥ 𝑠1(ℰ3(𝑡) − ℰ3
∗(𝑡))(𝑠2ℰ1(𝑡) − 𝑠3) ∥ 

≤ 𝑠1 ∥ ℰ3(𝑡) − ℰ3
∗(𝑡) ∥ (𝑠2 ∥ ℰ1(𝑡) ∥ −𝑠3) 

≤ 𝑠1(𝑠2𝑎 − 𝑠3) ∥ ℰ3(𝑡) − ℰ3
∗(𝑡) ∥, 

where, ||ε1(t)||≤a. And finally for k4(t, ε4) we get  

 

∥ 𝑘4(𝑡, ℰ4) − 𝑘4(𝑡, ℰ4
∗) ∥ 

=∥ 𝑑2(ℰ4(𝑡) − ℰ4
∗(𝑡)) ∥ 

≤ 𝑑2 ∥ (ℰ4(𝑡) − ℰ4
∗(𝑡)) ∥. 

 

Thus, these relations show that kernels k1, k2, k3 and k4 

satisfy in Lipschitz condition if  

 

0 ≤ 𝑎1, 𝑧1, 𝑠1, 𝑠2, 𝑠3, 𝑑2 < 1, 
 

then they will be contraction. Based on Eq. (10) we can write 

 

ℰ1(𝑡) = ℰ1(0) +
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑘1(𝑡, ℰ1) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

𝑘1(𝑦, ℰ1)𝑑𝑦,

ℰ2(𝑡) = ℰ2(0) +
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑘2(𝑡, ℰ2) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

𝑘2(𝑦, ℰ2)𝑑𝑦,

ℰ3(𝑡) = ℰ3(0) +
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑘3(𝑡, ℰ3) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

𝑘3(𝑦, ℰ3)𝑑𝑦,

ℰ4(𝑡) = ℰ4(0) +
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑘4(𝑡, ℰ4) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

𝑘4(𝑦, ℰ4)𝑑𝑦,

 (14) 

and the following successive formulas can be obtained  

 

ℰ1,𝑛(𝑡) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑘1(𝑡, ℰ1,𝑛−1) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

𝑘1(𝑦, ℰ1,𝑛−1)𝑑𝑦,

ℰ2,𝑛(𝑡) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑘2(𝑡, ℰ2,𝑛−1) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

𝑘2(𝑦, ℰ2,𝑛−1)𝑑𝑦,

ℰ3,𝑛(𝑡) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑘3(𝑡, ℰ3,𝑛−1) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

𝑘3(𝑦, ℰ3,𝑛−1)𝑑𝑦,

ℰ4,𝑛(𝑡) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑘4(𝑡, ℰ4,𝑛−1) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

𝑘4(𝑦, ℰ4,𝑛−1)𝑑𝑦,

 

with initial conditions  

 

ℰ1,0(𝑡) = ℰ1(0), 

ℰ2,0(𝑡) = ℰ2(0), 

ℰ3,0(𝑡) = ℰ3(0), 

ℰ4,0(𝑡) = ℰ4(0). 
 

Also, the difference between two successive terms is 

obtained in the following forms  

  

𝜙𝑛(𝑡) = ℰ1,𝑛(𝑡) − ℰ1,𝑛−1(𝑡)  =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
(𝑘1(𝑡, ℰ1,𝑛−1) − 𝑘1(𝑡, ℰ1,𝑛−2)) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

(𝑘1(𝑦, ℰ1,𝑛−1) − 𝑘1(𝑦, ℰ1,𝑛−2))𝑑𝑦, 

𝜓𝑛(𝑡) = ℰ2,𝑛(𝑡) − ℰ2,𝑛−1(𝑡) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
(𝑘2(𝑡, ℰ2,𝑛−1) − 𝑘2(𝑡, ℰ2,𝑛−2)) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

(𝑘2(𝑦, ℰ2,𝑛−1) − 𝑘2(𝑦, ℰ2,𝑛−2))𝑑𝑦, 

𝜉𝑛(𝑡) = ℰ3,𝑛(𝑡) − ℰ3,𝑛−1(𝑡) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
(𝑘3(𝑡, ℰ3,𝑛−1) − 𝑘3(𝑡, ℰ3,𝑛−2)) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

(𝑘3(𝑦, ℰ3,𝑛−1) − 𝑘3(𝑦, ℰ3,𝑛−2))𝑑𝑦, 

𝜒𝑛(𝑡) = ℰ4,𝑛(𝑡) − ℰ4,𝑛−1(𝑡) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
(𝑘4(𝑡, ℰ4,𝑛−1) − 𝑘4(𝑡, ℰ4,𝑛−2)) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

(𝑘4(𝑦, ℰ4,𝑛−1) − 𝑘4(𝑦, ℰ4,𝑛−2))𝑑𝑦, 

  

and for 𝑛-th terms we can write  

 

ℰ1,𝑛(𝑡) =∑

𝑛

𝑖=0

𝜙𝑖(𝑡), ℰ2,𝑛(𝑡) =∑

𝑛

𝑖=0

𝜓𝑖(𝑡), 

ℰ3,𝑛(𝑡) =∑

𝑛

𝑖=0

𝜉𝑖(𝑡), ℰ4,𝑛(𝑡) =∑

𝑛

𝑖=0

𝜒𝑖(𝑡). 

 

For 𝜙𝑛(𝑡) we have  
 

∥ 𝜙𝑛(𝑡) ∥=∥ ℰ1,𝑛(𝑡) − ℰ1,𝑛−1(𝑡) ∥= ‖
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
(𝑘1(𝑡, ℰ1,𝑛−1) − 𝑘1(𝑡, ℰ1,𝑛−2))+

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

(𝑘1(𝑦, ℰ1,𝑛−1) − 𝑘1(𝑦, ℰ1,𝑛−2))𝑑𝑦‖ , 
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and using triangular inequality for above equation the following relation can be obtained 

 

 

∥ ℰ1,𝑛(𝑡) − ℰ1,𝑛−1(𝑡) ∥ ≤
2(1−𝜑)

(2−𝜑)𝒲(𝜑)
‖(𝑘1(𝑡, ℰ1,𝑛−1) − 𝑘1(𝑡, ℰ1,𝑛−2))‖

+
2𝜑

(2−𝜑)𝒲(𝜑)
∫
𝑡

0
‖(𝑘1(𝑦, ℰ1,𝑛−1) − 𝑘1(𝑦, ℰ1,𝑛−2))‖𝑑𝑦.

 

 

Since kernel coincides to the Lipchitz condition then we can write  

 

∥ ℰ1,𝑛(𝑡) − ℰ1,𝑛−1(𝑡) ∥ ≤
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑎1‖ℰ1,𝑛−1 − ℰ1,𝑛−2‖

+
2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑎1∫

𝑡

0

‖ℰ1,𝑛−1 − ℰ1,𝑛−2‖𝑑𝑦,

 

and we get  

 

∥ 𝜙𝑛(𝑡) ∥≤
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑎1‖𝜙𝑛−1(𝑡)‖ +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑎1∫

𝑡

0

‖𝜙𝑛−1(𝑦)‖𝑑𝑦. (15) 

 

Repeating this process to ℰ2,𝑛(𝑡), ℰ3,𝑛(𝑡)  and ℰ4,𝑛(𝑡)  we have  

 

∥ 𝜓𝑛(𝑡) ∥≤
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑧1‖𝜓𝑛−1(𝑡)‖ +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑧1∫

𝑡

0

‖𝜓𝑛−1(𝑦)‖𝑑𝑦,

∥ 𝜉𝑛(𝑡) ∥≤
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑠1(𝑠2𝑎 − 𝑠3)‖𝜉𝑛−1(𝑡)‖ +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑠1(𝑠2𝑎 − 𝑠3)∫

𝑡

0

‖𝜉𝑛−1(𝑦)‖𝑑𝑦,

∥ 𝜒𝑛(𝑡) ∥≤
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑑2‖𝜒𝑛−1(𝑡)‖ +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑑2∫

𝑡

0

‖𝜒𝑛−1(𝑦)‖𝑑𝑦.

 (16) 

 

So Theorem 1 is proved. 

 

Theorem 2 The nonlinear fractional energy supply-demand 

system (7) has exact coupled solutions that we can find 𝑡0 such 

that  

 

2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑎1 +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑎2𝑡0 < 1. 

 

Proof: We know that functions ℰ1(𝑡), ℰ2(𝑡), ℰ3(𝑡)  and 

ℰ4(𝑡) are bounded and Lipchitz condition is connected for Eqs. 

(15) and (16). Thus we need to show 

 

∥ 𝜙𝑛(𝑡) ∥≤∥ ℰ1,𝑛(0) ∥ [
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑎1 +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑎1𝑡]

𝑛

,

∥ 𝜓𝑛(𝑡) ∥≤∥ ℰ2,𝑛(0) ∥ [
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑧1 +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑧1𝑡]

𝑛

,

∥ 𝜉𝑛(𝑡) ∥≤∥ ℰ3,𝑛(0) ∥ [
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑠1(𝑠2𝑎 − 𝑠3) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑠1(𝑠2𝑎 − 𝑠3)𝑡]

𝑛

,

∥ 𝜓𝑛(𝑡) ∥≤∥ ℰ4,𝑛(0) ∥ [
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑑2 +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑑2𝑡]

𝑛

.

 (17) 

 

At first, we assume that  

 

ℰ1(𝑡) − ℰ1(0) = ℰ1,𝑛(𝑡) − 𝐵𝑛(𝑡), 
 

ℰ2(𝑡) − ℰ2(0) = ℰ2,𝑛(𝑡) − 𝐶𝑛(𝑡), 
 

ℰ3(𝑡) − ℰ3(0) = ℰ3,𝑛(𝑡) − 𝐷𝑛(𝑡), 
 

ℰ4(𝑡) − ℰ4(0) = ℰ4,𝑛(𝑡) − 𝐸𝑛(𝑡). 
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So we can write 

 

∥ 𝐵𝑛(𝑡) ∥ = ‖
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
(𝑘(𝑡, ℰ1) − 𝑘(𝑡, ℰ1,𝑛−1)) +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

(𝑘(𝑦, ℰ1) − 𝑘(𝑦, ℰ1,𝑛−1))𝑑𝑦‖

≤
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
‖𝑘(𝑡, ℰ1) − 𝑘(𝑡, ℰ1,𝑛−1)‖ +

2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

‖𝑘(𝑦, ℰ1) − 𝑘(𝑦, ℰ1,𝑛−1)‖𝑑𝑦

≤
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑎1‖ℰ1 − ℰ1,𝑛−1‖ +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑎1‖ℰ1 − ℰ1,𝑛−1‖𝑡.

 

 

Using this process it obtains  

 

∥ 𝐵𝑛(𝑡) ∥≤ (
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
+

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑡)
𝑛+1

𝑎1
𝑛+1𝑎 

 

such that at point 𝑡0 we get  

 

∥ 𝐵𝑛(𝑡) ∥≤ (
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
+

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑡0)

𝑛+1

𝑎1
𝑛+1𝑎 

 

taking limit for above equation when 𝑛 → ∞ then ∥ 𝐵𝑛(𝑡) ∥→
0. 

By similar way we get  

 
∥ 𝐶𝑛(𝑡) ∥→ 0, ∥ 𝐷𝑛(𝑡) ∥→ 0, ∥ 𝐸𝑛(𝑡) ∥→ 0. 

 

Thus proof of existence is completed. 

Now the uniqueness of a system of solutions of Eq. (7) 

should be studied. Let us there is another system od solutions 

for Eq. (7) then  
 

ℰ1(𝑡) − ℰ1,1(𝑡) =
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
(𝑘1(𝑡, ℰ1) − 𝑘1(𝑡, ℰ1,1))

+
2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

(𝑘1(𝑦, ℰ1)

− 𝑘1(𝑦, ℰ1,1))𝑑𝑦, 
 

and applying norm we have  

 

∥ ℰ1(𝑡) − ℰ1,1(𝑡) ∥=
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
∥ 𝑘1(𝑡, ℰ1) − 𝑘1(𝑡, ℰ1,1)

∥ +
2𝜑

(2 − 𝜑)𝒲(𝜑)
∫
𝑡

0

∥ 𝑘1(𝑦, ℰ1) − 𝑘1(𝑦, ℰ1,1) ∥ 𝑑𝑦. 
 

Then using Lipschitz condition we have  

 

∥ ℰ1(𝑡) − ℰ1,1(𝑡) ∥≤
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑎1 ∥ ℰ1 − ℰ1,1 ∥ +

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑎1𝑡

∥ ℰ1 − ℰ1,1 ∥, 

 

and it leads to  

 

∥ ℰ1(𝑡) − ℰ1,1(𝑡) ∥ (1 −
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑎1 −

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑎1𝑡)

≤ 0. 

 

Theorem 3 The system of equations (7) has a unique 

solution if  

 

(1 −
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑎1 −

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑎1𝑡) > 0. (18) 

 

Proof: Assume that Eq. (18) holds then  

 

∥ ℰ1(𝑡) − ℰ1,1(𝑡) ∥ (1 −
2(1 − 𝜑)

(2 − 𝜑)𝒲(𝜑)
𝑎1 −

2𝜑

(2 − 𝜑)𝒲(𝜑)
𝑎1𝑡)

≤ 0 

 

implies that ∥ ℰ1(𝑡) − ℰ1,1(𝑡) ∥= 0 . Then we get ℰ1(𝑡) =

ℰ1,1(𝑡). For other cases we can write  

 

ℰ2(𝑡) = ℰ2,1(𝑡), 

ℰ3(𝑡) = ℰ31,1(𝑡), 

ℰ4(𝑡) = ℰ4,1(𝑡). 
 

Thus, the uniqueness of the system of equation (7) is 

verified. 

  

 

5. NUMERICAL DISCUSSION 

 

In this section, the numerical solution of nonlinear 

fractional model 7 is obtained for n=5 and φ=1 based on the 

mentioned values in Section 3 as follows  

 

ℰ1(𝑡) = 1 − 0.33𝑡 − 0.01235𝑡
2 − 0.001222𝑡3 +⋯− 3.862757−37𝑡30 − 5.493722−39𝑡31,

ℰ2(𝑡) = 1 − 0.072𝑡 − 0.01021𝑡2 − 0.0027571𝑡3 +⋯− 2.938463−37𝑡30 − 3.962139−39𝑡31,

ℰ3(𝑡) = 1 + 0.0199𝑡 − 0.0008𝑡2 − 0.0001986𝑡3 +⋯+ 3.5277104−37𝑡30 + 5.327245−39𝑡31,

ℰ4(𝑡) = 1 + 0.04𝑡 − 0.0177𝑡2 − 0.0000576666𝑡3 +⋯− 4.1859907−19𝑡15 − 1.1534777−20𝑡16.
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(a)                                                                                          (b)                                                      

 
(c)                                                                                             (d)                                                  

 

Figure 1. The response of the solutions (a) ε1(t), (b) ε2(t), (c) ε3(t) and (d) ε4(t) with respect to t for φ=0.5, 0.75, 1 

 

Also, the approximate solutions for φ=0.5, 0.75, 1 are 

presented in Figure 1 at time [0, 2]. As mentioned before, ε1 is 

ERD of area A, ε2 is ERS of area B to A, ε3 is the ERI to area A 

and finally ε4 is the RER of area A. From Figure 1(a), we can 

observe that ERD for φ=0.5 it is decreased with time t and for 

φ=0.75 and 1 it is more decreased. In (b), ERS is almost in 

same condition with ERD. Based on (c), ERI to area A is 

increasing for φ=0.5 and it is more increasing for φ=0.75 and 

1 and finally from (d) RER of area A for φ=0.5 is decreasing 

but for φ=0.75 and 1 and 0≤t≤1 is increasing and for 1≤t≤2 is 

decreasing. 

Figure 2, shows the approximate solutions of ε1(t), ε2(t), ε3(t) 

and ε4(t) for φ=0.5, 0.75, 1. From Figure 2, we can see that 

when ERD of area A is decreasing and ERS of area B to A is 

decreasing slowly then the ERI to area A is decreasing very 

slowly and the RER of area A is fix. The residual errors of ε1(t), 

ε2(t), ε3(t) and ε4(t) for φ=0.5, 0.75, 1 are presented in Table 1.  

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. The plots of approximate solutions of ε1(t), ε2(t), 

ε3(t) and ε4(t) for (a) φ=0.5, (b) φ=0.75 and (c) φ=1 
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Table 1. The residual errors of ε1(t), ε2(t), ε3(t) and ε4(t) for 

φ=0.5, 0.75, 1  

    
function t φ=0.5 φ=0.75 φ=1 

ε1(t) 

0.0 0.147886 0.0709089 0 

0.2 0.145562 0.0665751 0.00664704 

0.4 0.143262 0.0622533 0.0133781 

0.6 0.140988 0.0579496 0.0201769 

0.8 0.138742 0.0536703 0.0270255 

1.0 0.136526 0.0494219 0.0339046 

1.2 0.13434 0.0452114 0.0407936 

1.4 0.132186 0.041046 0.0476709 

1.6 0.130066 0.0369329 0.054514 

1.8 0.127981 0.0328796 0.0612996 

2.0 0.125934 0.0288937 0.0680043 

ε2(t) 

0.0 0.0224797 0.00859077 1.38778×10-17 

0.2 0.0210296 0.00533641 0.00492826 

0.4 0.0196747 0.00218032 0.00989604 

0.6 0.0184181 0.000865924 0.0148763 

0.7 0.0172635 0.00379033 0.01984 

1.0 0.0162142 0.00658057 0.0247567 

1.2 0.0152738 0.00922404 0.0295944 

1.4 0.0144457 0.0117079 0.0343199 

1.6 0.0137336 0.0140191 0.0388991 

1.8 0.0131409 0.0161446 0.0432973 

2.0 0.0126712 0.018071 0.0474794 

ε3(t) 

0.0 0.00611767 0.00267734 0 

0.2 0.00958746 0.00760386 0.0062537 

0.4 0.0130939 0.0126045 0.0126191 

0.6 0.0166373 0.017681 0.019102 

0.7 0.020218 0.0228352 0.0257082 

1.0 0.0238363 0.0280686 0.0324426 

1.2 0.0274924 0.0333827 0.0393097 

1.4 0.0311866 0.0387786 0.0463138 

1.6 0.0349191 0.0442577 0.0534585 

1.8 0.0386902 0.049821 0.0607473 

2.0 0.0424999 0.0554695 0.0681831 

ε4(t) 

0.0 0.020052 0.0144559 0 

0.2 0.0182766 0.013136 1.05237×10-11 

0.4 0.0164984 0.0118146 3.40934×10-10 

0.6 0.0147174 0.0104913 2.62041×10-9 

0.7 0.0129333 0.00916531 1.11735×10-8 

1.0 0.0111459 0.0078363 3.44944×10-8 

1.2 0.00935498 0.00650376 8.68037×10-8 

1.4 0.00756039 0.00516722 1.89681×10-7 

1.6 0.00576193 0.00382627 3.73765×10-7 

1.8 0.00395943 0.0024805 6.80508×10-7 

2.0 0.00215273 0.00112953 1.16398×10-6 

 

   

6. CONCLUSION 

 

Based on the important role of functional calculus in 

different fields, we focused on the fractional model of 

nonlinear ES-DS. Using this applicable model we can adjust 

and control the supply and demand of the energy. Therefore, 

this model can be exploited for countries with limited energy 

resources. We applied the Caputo-Fabrizio derivative and its 

properties to solve the problem. Several theorems were proved 

to show the existence and uniqueness of solution and it is the 

main novelty of this study. We used the special data to forecast 

on the special time and based on them we found the numerical 

results. In the future researches, we will apply the fractional 

semi-analytical methods such as the homotopy analysis 

method and the homotopy perturbation method for solving the 

fractional model of ES-DS. 
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